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A critical problem faced in many scientific fields is the adequate
separation of data derived from individual sources. Often, such
datasets require analysis of multiple features in a highly multidi-
mensional space, with overlap of features and sources. The
datasets generated by simultaneous recording from hundreds of
neurons emitting phasic action potentials have produced the
challenge of separating the recorded signals into independent
data subsets (clusters) corresponding to individual signal-generat-
ing neurons. Mathematical methods have been developed over
the past three decades to achieve such spike clustering, but a
complete solution with fully automated cluster identification has
not been achieved. We propose here a fully automated mathe-
matical approach that identifies clusters in multidimensional space
through recursion, which combats the multidimensionality of
the data. Recursion is paired with an approach to dimensional
evaluation, in which each dimension of a dataset is examined for
its informational importance for clustering. The dimensions offer-
ing greater informational importance are given added weight
during recursive clustering. To combat strong background activity,
our algorithm takes an iterative approach of data filtering according
to a signal-to-noise ratio metric. The algorithm finds cluster cores,
which are thereafter expanded to include complete clusters. This
mathematical approach can be extended from its prototype context
of spike sorting to other datasets that suffer from high dimension-
ality and background activity.

spike sorting | dimensional evaluation | dimensional selection |
curse of dimensionality | dimension reduction

Cluster analysis is important in many fields, ranging from bio-
chemistry (1) to genetics (2) to neuroscience (3, 4). In neuro-

science, improved sensors (4) have permitted large increases in
the size and dimensionality of recorded datasets. An essential
problem remains that the brain contains millions of simulta-
neously active neurons, emitting action potentials (spikes) with
varying frequencies and patterns related to ongoing behavior and
brain state (3, 5). The identification of signals from individual
neurons, in a sea of brain action potential, is critical. Commonly
used four-sensor electrodes (tetrodes) (6, 7) and array recording
methods (4) produce large, multidimensional datasets, which
then require cluster analysis to separate signals from individual
neurons. These expansive datasets present the need for fully
automated methods for spike sorting (3, 4) with mathematical
calculations and algorithms capable of analyzing multidimen-
sional recordings (8). In particular, there is a need for algorithms
than can process data containing overlapping clusters with un-
clear borders in the persistence of strong background signals.
Due to its great complexity, spike sorting currently lacks a

well-developed solution (3, 9). The recordings made from many
neurons with varying proximity to probes provide no knowledge
as to the number of clusters present (6). Also, there are often no
clear boundaries between the signals of the different neurons
recorded, and the density of neurons varies widely across different
regions of the brain and across different recording methods (10).
Overlapping clusters and strong background activity, produced
by neighboring neurons, as well as the similarity of spike wave-
forms in given classes of neurons, present different problems for

algorithms that rely on matching spike waveforms to templates,
principal component analysis (PCA), density, and distance
metrics (5). Compounding the complexity of the spike-sorting
problem, recordings can involve 10–20 “useful” dimensions, es-
pecially those that use tetrodes or multisensor probes (8).
Our approach individually solves the three primary challenges

of spike sorting: space complexity, cluster overlap, and differing
cluster densities, all in the presence of background activity. To
combat feature space complexity, our algorithm employs
a method of space evaluation, whereby each dimension in the
feature space is independently evaluated based on its contribu-
tion to the goal of clustering. To overcome the challenge of
cluster overlap and bridges, our algorithm includes a system of
extensive preprocessing that removes all data except for cluster
cores, which are identified by larger spike density relative to
their surroundings. Later, during postprocessing, clusters are
rebuilt around these cores. Finally, to take into account dif-
fering clustering densities and a wide range of signal-to-noise
ratio (SNR) in regions of the data spaces, our algorithm in-
troduces a multipass clustering method. Upon each iteration,
the algorithm changes its threshold for SNR and removes suc-
cessful clusters from the data space, thereby simplifying the
space and making it more likely to find clusters that are typically
difficult to find.

Results
We analyzed neuronal data recorded with tetrodes, represented
as 32 voltage readings per tetrode channel over the interval of
1 ms (Fig. 1A). Tetrode recordings often have slightly misaligned
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data streams from the four sensors. Waveforms are interpolated
and aligned (Fig. S1; Materials and Methods) by shifting signal
waveforms from the different channels horizontally along the
time axis. Obvious noise, introduced as a malfunction of system
components, is removed from the recorded data (Fig. S2; Materials
and Methods). Sometimes more than one spike is recorded during
the 1 ms of data capture typically used, and these nearly simul-
taneous spikes must be separated into two independent spikes
(Fig. S1D).

Algorithm Design. For the spikes of individual neurons to be
clustered by the algorithm, the recorded spike waveforms must
be featurized. Each feature of a spike wave, which will hereafter
be termed a “dimension,” corresponds to an attribute of the
waveform. Attributes must be chosen so as to maximize the
power of identification, while avoiding unnecessary complexity.
The algorithm that we developed includes a feature space con-
sisting of 11 dimensions: four peak voltage dimensions, each
corresponding to each tetrode channel (example of one channel

peak voltage dimension shown in Fig. 1B, Upper); four PC
dimensions, including PC1 of each waveform (example of
eigenvectors used for PC spike projections shown in Fig. 1B,
Lower); and three peak PC dimensions. PC dimensions are
calculated by means of a modified PC technique (Materials
and Methods).
The algorithm attempts to identify a cluster for spikes of one

neuron in the presence of the background activity of other
neurons. The algorithm presented overcomes these challenges
through three processes. The initial “cleaning” temporarily
removes background and overlapping activity through SNR and
density filters (Fig. 1 C and D). Without background and over-
lapping activity, a simple algorithm can be used to find cluster
centers. The second process, rebuilding clusters from cores,
occurs after cluster core identification. The removed spikes are
assigned to correct clusters based on the removed spikes’
similarity to the spikes in the cluster cores. The third process,
iteration with different SNRs, involves the repetition of the
main clustering process. The algorithm begins by identifying
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Fig. 1. Algorithm flowchart and feature extraction. (A) Raw spikes recorded by four channels of a tetrode measured over 1 ms. Black traces represent a spike
simultaneously recorded by four tetrode channels, and gray traces show all spikes recorded during the session. (B) Features extracted from the spikes
measured by each channel. Each spike recorded on a channel is decomposed into voltage peak (Upper) and projected into PC1 eigenvector (Lower).
(C) Algorithm flowchart. High density cluster cores are isolated (preprocessing), and the modality of each dimension is identified and weighted according to
importance for clustering (dimension selection and spatial transformation). The dataset is clustered by FCM. If the resulting cluster remains multimodal, then
it is recursively clustered (blue arrow). Surrounding points are then reattributed to cluster cores (rebuild cluster from core), which terminates the core al-
gorithm (red frame). After each iteration of the algorithm, the SNR level is adjusted, and the clustering algorithm repeats (red arrow). Each cluster identified
by this algorithm is examined and graded (postprocessing). (D) An example of spike sorting of data recorded with tetrodes and processed by the algorithm.
Space bins with low density and spikes with low SNR are temporarily removed (preprocessing). Cluster centers are identified (FCM clustering), and points
around the cluster center are attributed to that cluster (rebuild cluster from core). Using lower SNR, additional clusters are found (iteration 2), and eventually,
the entire data space is clustered, and the optimality of each cluster can be rated (iteration 5).
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clusters with a high SNR, and once identified, these clusters
are removed from the dataset (Fig. 1C and Fig. S3). On each
iteration, the SNR and density filters are decreased until the
clusters with low SNR are identified (Fig. 1 C and D). Once
clusters are finalized, the identified clusters are graded (Fig. 1
C and D).

Recursive Clustering Paired with Dimensional Evaluation. Clustering
is difficult in a multidimensional environment due to the “curse of
dimensionality” and the fact that some clusters are only visible in
a specific dimensional set. To solve these problems, the algorithm
uses recursive clustering (Fig. 2) combined with dimension selec-
tion and evaluation (Fig. 3). Clustering is performed using fuzzy
c-means (FCM) clustering (Fig. S4). In each step of recursive
clustering, the initial dataset is prepared for clustering by di-
mensional evaluation and selection. Dimensional evaluation also
provides criteria for ending the recursive clustering. The resulting
clusters from the first iteration of recursive clustering (Fig. 2 A
and B) are separated and are individually clustered (Fig. 2C). This
process continues recursively until each cluster has been evaluated
(Fig. 2D).

Dimensional Importance. The cluster configuration is represented in
a multidimensional space. Each dimension likely has a different
contribution to an algorithm’s ability to find different clusters in the
configuration. This contribution can be termed as its “dimensional
importance.” Dimensional importance is a function of the number
of clearly separable data density peaks across a dimension, known
as modes (Fig. 3A). Unimodal dimensions have a clustering value
of zero according to this metric. As the modality of a dimension
increases, its dimensional importance also increases. The number
of clearly separable modes is identified by first projecting the data
onto the dimension of interest. Then cluster analysis is performed
on the one-dimensional projection of the data using FCM with
different numbers of clusters. The number of well-separable clus-
ters is found by modified partition coefficient (MPC) analysis (11)
(Fig. 3A; Materials and Methods). If each dimension of the con-
figuration is unimodal, then the configuration does not require
further clustering. This criterion is used as the stop-condition for
recursive subclustering (Fig. 3B). If one or more dimensions of
the configuration are not unimodal, dimensional selection prepares
for another recursive clustering step (Fig. 3B). A space for clus-
tering is constructed from the multimodal dimensions (Fig. 3C).
Dimensions with higher modality are given more weight during
clustering to account for increased value (Fig. 3D and Fig. S4).

Rebuilding of Clusters from Identified Cores. In the initial stages of
the algorithm, low SNR spikes and background activity are re-
moved. After the identification of cluster cores by the recursive

clustering process, each spike must be properly assigned to its
core (Fig. 4A; Materials and Methods). However, several chal-
lenges arise during spike assignment. The central challenge is the
fact that cluster cores found by FCM during recursive clustering
usually do not coincide with true cluster centers (centers of mass
of the cores; Fig. 4B). To find full clusters, clusters must be re-
built around the cores (Fig. 4B). Further, during the process of
rebuilding a cluster from cluster centers, the algorithm must
avoid mistakenly attributing spikes from neighboring clusters to
that cluster. In addition, cluster cores that are detected by FCM
can be found inside multiunit activity or very far away from the
true cluster center (Fig. S5A). To address these challenges, our
cluster-rebuilding algorithm includes a three-step process. First,
the algorithm iteratively finds correct cluster centers (Fig. 4C).
To find a center, the algorithm uses a process of expansion and
contraction that iteratively moves the identified cluster core to-
ward the cluster’s center of mass. Second, the algorithm mea-
sures and transforms the space between neighboring clusters.
The distance from the cluster core to the rest of the spikes is
independently measured in each dimension. For dimensions
along which the cluster is close to the rest of the spikes, distance
is elongated (Fig. 4D; Materials and Methods). Then clusters are
rebuilt from cores (Fig. 4 E and F). Third, the modality of the
density functions of the resulting clusters is analyzed (Fig. S5 B
and C). Two types of density functions are attributed to “bad”
clusters: clusters with fat-tailed distributions (Fig. S5B) or
multi-modal distributions (Fig. S5C). When such bad clusters
are identified, the assignments of spikes to those clusters are
discarded, and those spikes, reintegrated with the rest of data,
continue to the next iteration of the algorithm.

Assignment of Cluster Quality. Identified clusters have different
quality, reflecting many factors, including the intrinsic properties
of the given neuron, properties of the recording tetrode, re-
cording distance, quality of the recording system, and levels of
nearby background activity (10, 12). To create an accurate
measure of quality, the algorithm evaluates the assigned clusters
through a series of four methods. First, the separation of the
cluster from the remainder of the data is measured as the
Bhattacharyya distance (13) between clusters (Fig. 5A) and
the L-ratio (10). Second, the similarity of raw waveforms to the
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cluster mean waveform is calculated (Fig. 5B). Third, cluster
incompleteness is measured using the symmetry of distribution
(Fig. 5C). Fourth, the stationarity of the recordings through all
recording periods is examined. Outputs from these four methods
are combined in the calculation of the final grade (Fig. S6).
Clusters are graded on a scale from −9 to +5. Clusters with
grades of 3, 4, and 5 are separable neurons that can be used for
data analysis (Fig. 5 D–F). Clusters with grades of 1 and 2 are
strongly contaminated with multiunit activity. Clusters with
negative grades are classified as different types of artifact.

Estimates of the Algorithm’s Success.To measure the success of our
algorithm, we made comparisons to three baselines. First, we cre-
ated a baseline of clusters identified by eight expert spike-sorters,
using spikes recorded in the neocortex and dorsal striatum. We
rated clusters found by these spike-sorters by the method de-
scribed above (Figs. S6 and S7). Then, considering only the
clusters useful for data analysis (886 clusters with grade 5, 2,516
clusters with grade 4, and 728 clusters with grade 3), we counted
the number of these clusters found by the algorithm. A cluster
was considered found only if it was also graded 3, 4, or 5. Our
algorithm successfully found more than 80% of clusters identi-
fied by expert spike-sorters (Fig. 6A). We calculated the per-
centage of spikes found by both spike-sorters and our algorithm
in well-isolated clusters (grade 5), and we found 97.4% of
overlap (Fig. 6B). Additionally, the algorithm found clusters that
the expert spike-sorters missed, often as a result of human error
(Fig. 6 C and D). Hence, we conclude that the algorithm is in
good agreement with expert spike-sorters. However, our algo-
rithm also occasionally missed small clusters (Fig. 6E). To
evaluate our algorithm’s performance against existing software,
we compared the number of clusters found by KlustaKwik (8)
(Fig. 6F) and by our algorithm (Fig. 6A), against clusters iden-
tified by expert spike-sorters in a set of real tetrode recordings.
The number of clusters found was significantly higher for our
algorithm (Fig. 6 A and F). We next tested data from experiments
in which extracellular recordings were performed simultaneously
with intracellular recordings (14, 15), and the percentage of cor-
rectly attributed spikes was calculated. The proportion of spikes
correctly attributed by our algorithm was greater than 90%, and
the proportion of misidentified spikes was ∼2% (Fig. 6G). An
additional comparison involved the use of simulation data (16).
We generated different datasets with waveforms resembling those

of striatal neurons in which the correct spikes per cluster were
known (Fig. 6H and Fig. S8). These data were generated with
different levels of background noise and neuronal firing rates, and
waveforms were sampled with the same probability as observed in
actual cortical and striatal recordings. The number of correctly
attributed spikes per cluster and the number of correct clusters
found by the algorithm were counted. Our algorithm successfully
found all clusters in the simulation-generated spike data with the
degree of overlap that we typically encounter in real tetrode
recordings, and over 98% of spikes belonging to those clusters
were correctly identified (Fig. 6H).

Discussion
Our approach suggests a reliable mathematical method for cluster
identification, implemented and tested for the prototype problem
of neuronal spike sorting. As increasing numbers of hardware
systems allow for the recording of spike activity from thousands
of neurons simultaneously, manual clustering of the data
becomes impossible even for trained experts, and a fully auto-
mated method becomes a requirement (4). We have developed
a mathematical approach for the identification of clusters, and
demonstrate that this algorithm involving iterative cleaning and
dimension-sensitive rebuilding of clusters effectively sorts spikes
in the presence of this multidimensionality and high background
activity, an environment with which clustering struggles in gen-
eral. The success of our algorithm in the spike-sorting context
suggests that our approach to data separation could be har-
nessed for clustering in similarly challenging environments,
including classifications of proteins, genes (2), and pattern rec-
ognition (17).
There have been many prior attempts to solve spike-sorting

problems. One approach uses algorithms that cluster by minimizing
distance between points, such as k-means and FCM algorithms
(17). These algorithms combine classic distance minimization
techniques with other intricate algorithms. All algorithms that
use distance minimization must contain methods that combat the
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natural weaknesses of distance minimization algorithms, which
are especially prevalent in spike sorting: overlapping clusters,
background noise, and lack of knowledge of the number of
clusters (3, 6, 10). Another approach uses density algorithms
(18). This approach, which clusters together points that stem
from a density nucleus, can provide reliable sorting in difficult cases
(18). However, density algorithms are challenged by certain prob-
lems, including density and background variability between clusters.
An additional approach, which searches for similarity between

spike shapes, includes PCA (19) and template library matching
(20). PCA can successfully cluster overlapping points (19), but it
faces the challenge of similarity in spike shape between neurons. A
fourth approach uses advanced algorithms to match the shapes of
measured waveforms to the shapes of waveforms in a template li-
brary (20). These algorithms encounter difficulties when a wave-
form does not match with template library, defaulting either to
an incorrect match or missing neurons. Increasing these challenges,
neurons have many different, although similar, shapes. Template-
matching algorithms also present the task of preparing a template
library of each of these neuron shapes. Independent component
analysis (ICA) can successfully identify independent sources by
decomposing a signal into multiple independent signals (5, 21).
However, ICA techniques operate under the assumption that the
number of neurons is equal to or less than the number of elec-
trodes, so ICA is not a good fit for spike sorting in the brain, where
multiunit activity recorded by four channels of a tetrode often
contains 5–10 neurons.
Our objective and subjective methods of rating algorithms

allows us to compare our algorithm against the success of these
several clustering techniques. In an environment where many
algorithms lack a relevant baseline, and each is less than optimal
in general (9), finding relevant grading criteria is essential (10,
12). Our approach is to test spikes sorted by our algorithm
against several baselines, including a human cluster database, a
neuron simulation database, and intracellular recordings combined
with extracellular recordings. These methodologies are essential
for grading and rating our algorithm, and can be translated to
other similar cases. Our ability to find a relevant baseline for
comparison of our algorithm, however, is limited. A human-
clustered baseline provides a very good baseline, but humans
struggle to find exact borders of clusters on a 2D projection,
introducing up to 10–20% variability.

High levels of background activity and high levels of overlap
between clusters limit clustering effectiveness. The ratio between
background activity and overlap between the clusters must re-
main under a certain ratio, with respect to cluster size and the
level of similarity of the cluster waveforms. Given that all of
these variables compoundly contributed to the effectiveness of
the algorithm, it was difficult to isolate the key cases when testing
with simulation data. We ultimately simulated a similar config-
uration of 16 neurons with highly overlapping clusters (Fig. 6H),
and encountered some clustering errors. Many clusters were
found, but some were merged, and some had a significant
number of spikes misclassified (Fig. S8).
Several other factors, when combined, limit the effectiveness

of our algorithm and clustering in general. Small clusters (100–
250 spikes) may be missed by our algorithm (Fig. 6E). Analysis
may also be impacted by small cluster sizes. Our algorithm
assumes that clusters must have Gaussian distributions, an as-
sumption without which FCM and rebuilding clusters from cores
will not function. A possible source of non-Gaussian distributions
is tetrode drift, in which a tetrode moves slightly during recordings.
Another limitation is overlap between nearly simultaneous

spikes. Our algorithm assumes a consistent spike shape for each
recorded neuron, but spike shape may actually vary within a
burst of activity. The bursts that we observed in our cortical and
striatal training sets did not impact the algorithm’s clustering
ability. However, if the problem occurs, a possible solution would
involve measuring several clusters for each spike shape at the
burst, and later, based on the constant time between the clusters,
merging the clusters.
In summary, the full automation of this algorithm, combined

with its successful performance in sets of test data, recommend
this approach for spike clustering of neuronal data as well as
other datasets.

Materials and Methods
Additional description of study materials and methods is provided in SI
Materials and Methods.

Spike Alignment. Spike waveforms are interpolated before alignment. For our
striatal and cortical data, we use cubic spline interpolation. Our algorithm
converts a 32-point waveform into a 120-point waveform. For each channel, the
1-ms recording window is expanded to 1.25 ms, by adding 18.75 ms to the be-
ginning and 6.25 ms to the end. This expansion gives room to shift waveforms
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horizontally within the 1.25-ms window to achieve peak alignment (Fig. S1 A–C)
while avoiding excessive truncation. The shifted waveforms are padded with
zeros and are sometimes truncated at the edge of the 1.25-ms window. This
spike alignment prevents the generation of misleading results in PCA.

Spike Amplitude SNR Filter. To compute spike amplitude SNR, the algorithm
first calculates amplitude = peak – valley for the candidate spike waveform
on each of the four tetrode channels, where peak and valley are the maxi-
mum and minimum voltage values, respectively (Fig. S3A). To normalize the
amplitudes of differences among tetrode channels (in particular, those
resulting from differences in impedance and proximity of the wire to the
neuron), the algorithm calculates the z-scores of the amplitudes for each
channel individually. For each spike, it then finds the best channel, i.e., the
channel having the maximum z-score over the four channels; finally, it
normalizes these maximum values through computation of z-scores. Each
spike’s SNR is defined as its final z-score. Thus, each spike has a single SNR
value. A candidate spike is retained only if its SNR is greater than a criterion
level. In each iteration of the algorithm, as described below, this level is
decreased. In the final iteration, the filter is removed. For the examples
given here, the level begins at 2 and decreases to 1.5, 1.0, and 0 (Fig. 3B).

Local Density Filter. To enhance the separability of clusters, this filter aims to
remove background spikes that are not part of clusters. The algorithm
partitions the 4D peak space into bins. If the density of a bin is less than the
density of the bins in its neighborhood (multiplied by a constant), the al-
gorithm removes the spikes in the bin. Bins not containing spikes are omitted
from the analysis; this promotes the removal of spikes from bins containing
edges of clusters (Fig. S3 C–E).

Multiple Iterations. Repetition of the core algorithm often yields additional
clusters (Fig. 1 C and D and Fig. S3B). The number of iterations is specified in
the configuration file and is five for the examples given here. The statio-
narity filter is applied in every iteration. SNR and local density filters are
omitted only in the final iteration to look for valid clusters that may have
been filtered out. In each iteration, the SNR criterion level is decreased.

PCA of the Waveforms. In most cases, when performing PCA, we apply to the
waveform in each channel a mean subtraction that focuses on the variability
in the shape of the waveform rather than on vertical shifts of the whole
waveform. The waveform in each channel is subtracted by the mean of the
points within that waveform. This mean subtraction is intended to reduce
the impact of variability due to background multiunit activity. By contrast,
when computing peak PCs, thewaveform in each channel is subtracted by the
mean of all waveforms over time in that channel.

Dimensional Evaluation. Dimensional importance, used in weighting the
dimensions via the spatial transformation described below, is calculated for each
dimension (Fig. 3). Dimensional importance is based on the number of valid
clusters in the projection of the distribution of candidate spike data points onto

a 1D subspace. The evaluation of clusters is performed by a combination of
FCM clustering (to find the clusters) and a MPC (to assess cluster validity) (11).

FCM requires the number of clusters, c, as one of its inputs. To find the
number of clusters that optimizes the cluster validity, the algorithm per-
forms FCM clustering on the projection of the distribution multiple times,
varying c. Each time FCM clustering is performed, the MPC value m is
recalculated. MPC ranges between 0 and 1. The maximum value of m and
corresponding number of clusters c are used in dimension evaluation as
follows: If m < 0.75, then the partitioning as a result of FCM describes the
data poorly, so we set dimensional importance = 0, and the dimension is
removed. Otherwise, dimensional importance = (c − 1)2, thereby giving
dimensions with more identifiable clusters more weight.

Spatial Transformation. In preparation for FCM clustering of the multidi-
mensional distribution of candidate spike data points, a transformed feature
space is constructed by weighting (scaling) each dimension by its dimensional
importance as determined in the dimension evaluation step (Fig. 3D). Before
this transformation, the projection of the distribution onto each dimension
is normalized independently using a z-score.

Computing Cluster Quality Measures. We evaluate cluster quality based on
several criteria (Fig. S6): (i) Bhattacharyya distance to other identified clus-
ters is calculated (13). (ii) Bhattacharyya distance is calculated to multiunit
activity. (iii) L-ratio, the distance from the cluster and the rest of the data, is
calculated (10). (iv) Cluster waveform similarity is computed to measure
spike waveform consistency. Each waveform is compared with the normalized
mean cluster waveform. The total projection error is summed. (v) Cluster in-
completeness is estimated as the fraction of the cluster truncated by the spike
recording threshold. Our measure of cluster incompleteness assumes that the
cluster has a normal distribution. (vi) Cluster consistency in time is found to
ensure that the neuron is consistently active during the recording session.
(vii) Cluster multimodality is measured using FCM with MPC. (viii) The number
of active tetrode channels is identified.

For each cluster, based on a combination of the criteria listed above, we
evaluated cluster quality. Clusters are rated as good, mediocre, separable,
multiunit activity, or unacceptable (Fig. S6).
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