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Summary 

As sessile organisms, land plants have exploited their metabolic systems to 

produce a panoply of structurally and functionally diverse natural chemicals and 

polymers to adapt to challenging ecosystems. Many of these core and 

specialized metabolites confer chemical shields against a multitude of abiotic 

stresses, while others play important roles in plants’ interactions with their biotic 

environments. Plant specialized metabolites can be viewed as complex traits in 

the sense that the biosynthesis of these molecules typically require multistep 

metabolic pathways comprised of numerous specific enzymes belonging to 

diverse protein fold families. Resolving the evolutionary trajectories underlying 

the emergence of these specialized metabolic pathways will impact a 

fundamental question in biology - how do complex traits evolve in a Darwinian 

fashion? Here, I discuss several general patterns observed in rapidly evolving 

specialized metabolic systems in plants, and surmise mechanistic features at 

enzyme, pathway and organismal levels that rationalize the remarkable 

malleability of these systems through stepwise evolution. Future studies, focused 

on fine sampling of metabolic enzymes and pathways in phylogenetically related 

plant species, or employing directed evolution strategies in synthetic systems, 

will significantly broaden our perspective on how biological complexity arises at 

the metabolic level.
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Introduction 

Complex traits are phenotypic features emerged from the interplay of multiple 

genetic components (Lander & Schork, 1994). Many complex traits are also 

described as irreducible, because the absence of any component of such a trait 

would abolish its overall function (Weber, 1999). Although complex traits are 

omnipresent in life at different biological scales, with examples ranging from the 

butterfly wing patterning to the assembly of multiprotein complexes (Beldade & 

Brakefield, 2002; Alber et al., 2007), little is known about the stepwise trajectories 

through which complex traits arises in nature. Charles Darwin pondered this 

question in the Origin of Species using the evolution of the complex human eye 

as an example writing, “To suppose that the eye … could have been formed by 

natural selection, seems, I freely confess, absurd in the highest possible degree 

(Darwin, 1859).” Despite a lack of molecular details available at the time, he 

offered a rational hypothesis to explain this seemingly impossible puzzle, “If 

numerous gradations from a perfect and complex eye to one very imperfect and 

simple, each grade being useful to its possessor, can be shown to exist, … then 

the difficulty of believing that a perfect and complex eye could be formed by 

natural selection, though insuperable by our imagination, can hardly be 

considered real (Darwin, 1859).” One and a half centuries later, as biologists 

have now elucidated many molecular underpinnings of eyes as well as those 

related but less complex light sensitive structures in multiple animal lineages, 

Darwin’s hypothesis concerning the evolution of the complex eye through 

stepwise selection is being corroborated in principle, and further enriched with 
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more detailed mechanisms (Lamb, 2011). Indeed, since Darwin, elucidation of 

plausible evolutionary paths towards complexity is growing in appreciation in 

modern biology, which is actively pursued in a wide selection of biological 

systems (Lenski et al., 2003; Gompel et al., 2005; Capra et al., 2012; Finnigan et 

al., 2012). 

 Metabolism is a defining property of cellular life, often depicted as a 

complex network of chemical transformations mediated by a multitude of 

enzymes (Weng & Noel, 2012b). Living organisms harness energy and chemical 

substances from their exterior environments, while synthesizing and degrading a 

plethora of metabolites to fulfill discrete physiological needs for the host survival 

and fitness in ever-changing environments. Metabolic systems can be viewed as 

complex traits, since individual metabolic enzymes in isolation are rarely 

pertinent to in vivo physiology until part of an organized metabolic pathway. 

Extant metabolic pathways in general contain a set of enzymes catalyzing 

sequential reactions in a highly concerted manner (Weng & Noel, 2012b). Given 

that the end metabolites of metabolic pathways ultimately confer selective 

advantages to the host, it is indeed difficult to understand how individual incipient 

enzymes arrive at specific activities over defined periods of time through step-

wise evolution - Descent with Modification - prior to assembly of a more complex 

and integrated pathway. Without reference to the historical records encoded in 

organismal phylogeny and function, this quandary touches on the same question 

raised by Darwin concerning the evolution of the complex eye.  
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 Metabolism provides an attractive platform to study evolutionary 

processes leading towards biological complexity. Metabolic systems exhibit 

tremendous depth and richness in their phylogenetic distribution throughout all 

domains of life. On the one hand, primary metabolism, encompassing pathways 

immediately required for the survival of the host, is conserved to a great extent in 

all living organisms, subject to modifications often in organisms living under 

extreme conditions (Mullins et al., 2008); on the other hand, specialized 

metabolism, referring to pathways that yield chemicals dispensable for survival at 

normal conditions but contributing critically to the population fitness of the host in 

ecological niches, is often distributed in a taxonomically restricted manner. This 

feature is especially important for comparative studies of extant metabolic 

systems across lineages spanning a dynamic range of evolutionary time scales, 

through which useful information could be extracted to help reconstitute plausible 

trajectories underlying the occurrences of discrete metabolic traits. 

Plants are renowned for their ability to produce an enormous array of 

chemicals as unique adaptive strategies well suited for their sessile life style in 

challenging terrestrial environments (Weng et al., 2012b). The total number of 

these so called “specialized” metabolites present in the plant kingdom remains 

elusive as more and more species are examined molecularly. Nonetheless, 

through our limited knowledge of a small fraction of this remarkable 

chemodiversity, we continue to add to our knowledge base concerning the 

amazing ability of plants to select and exploit a diverse collection of peculiar 

physicochemical properties of natural chemicals, including but not limited to 
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color, flavor, fragrance, toxicity, stickiness, hydrophobicity, physical rigidity and 

redox potential, as means to overcome the multitude biotic and abiotic 

challenges facing plants throughout their life cycle. In the past few decades, the 

employment of molecular genetics, biochemistry and structural biology for 

studying plant metabolism is yielding a growing molecular appreciation for the 

mechanisms of how specialized metabolite are biosynthesized in plants. Recent 

advances in the development of genomic resources for a widening collection of 

taxonomically diverse plant species across the green plant lineage has further 

facilitated genome mining for identifying new metabolic pathways, and affords 

growing opportunities for comparative studies of phylogenetically related 

metabolic enzymes and pathways. 

To address the conundrum of the evolutionary origin of multi-step 

metabolic pathways, several hypotheses have been put forward historically, 

including the retrograde model (Horowitz, 1945), the patch hypothesis (Jensen, 

1976), the screening hypothesis (Jones et al., 1991), and more recent 

hypotheses deduced from studying adaptive microbial metabolic pathways for 

detoxifying xenobiotics (Copley, 2009). Here, in the context of metabolic enzyme 

and pathway evolution, I summarize a set of general observations regarding to 

the rapid expansion of specialized metabolic system s in plants, and provide a 

number of examples to illustrate probable evolutionary trajectories underlying 

certain specialized metabolic traits. I then discuss the mechanistic basis for 

enzyme catalytic promiscuity and its recently recognized role in metabolic 

evolvability. Finally, I propose a generalized model to explain how complex 
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metabolic traits could arise sometimes in a saltatory fashion through the 

assembly of promiscuous enzymes into new pathways, followed by functional 

refinement at the catalytic, spatial and temporal levels. 

 

General evolutionary patterns in plant specialized metabolism 

System-level phylogenetic examination of specialized metabolic enzymes and 

pathways across major phyla of the plant kingdom reveals several general 

patterns, all consistent with the stepwise evolutionary processes underlying the 

emergence and evolution of the metabolic traits observed in extant plants. First, 

diverse plant specialized metabolic pathways branch from core primary 

metabolism at different nodes (Fig. 1a). For example, enormously rich 

phenylpropanoid metabolism widely present in plants starts with deamination of 

the aromatic amino acid phenylalanine through phenylalanine ammonium lyase 

(PAL) (Vogt, 2010). The diverse family of secondary plant terpenes (isoprenoids) 

begin with the primary metabolites isopentenyl pyrophosphate and dimethylallyl 

pyrophosphate (Chen et al., 2011). Caffeine and related purine alkaloids, 

sparsely found in 13 orders of flowering plants, begin with core purine 

nucleotides (Ashihara et al., 2008). This observation suggests that the 

emergence of new specialized pathways probably involved emergent catalytic 

activities towards certain primary metabolites, which yield new compounds that 

enhance host fitness in particular environments. 

Second, in general, the taxonomic distribution of plant specialized 

metabolic traits correlates with the gradual evolutionary development of 
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specialized tissue types, organs, and/or life styles observed in land plants as they 

underwent extensive divergence over the last 500 million years (Fig. 1b). Several 

pathways, such as the biosynthesis of core phenylpropanoids, cuticles, 

sporopollenins, abscisic acid and flavonoids, are absent in extant charophytic 

algae most closely related to land plants, but ubiquitously present in all extant 

land plants (Weng & Chapple, 2010). The primary functions of these compounds 

are for protection against UV radiation and desiccation, representing major 

abiotic stresses facing those early land plants when migrating from aquatic 

habitats to terrestrial environments. When vascular plants arose, the ancestral 

core phenylpropanoid pathway was further elaborated to produce lignin, a 

phenolic polymer that provides physical rigidity to water-conducting xylem cells in 

vasculature and enables vascular plants to stand upright (Weng & Chapple, 

2010; Weng et al., 2010b). The evolution of trichomes in euphyllophytes 

coincides with the occurrence of a diverse array of metabolites enriched in these 

specialized surface structures, wherein most of these compounds are involved in 

chemical defense against herbivores (Dai et al., 2010). The emergence of seed 

plants approximately 300 million years ago also led to the precipitation of a 

number of metabolic features related to seed physiology, such as the 

accumulation of condensed tannins in the seed coat and the rapid breakdown of 

starch during seed germination (Bradford & Nonogaki, 2007). Moreover, the rise 

of flowering plants over the past 200 million years led to an explosion of 

chemodiversity in volatile compounds, emitted by floral tissues to attract co-

evolving pollinating insects (Pichersky et al., 2006). Similarly, many land plant 
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lineages are also known to form symbiotic relationships with root microbiomes, 

wherein certain metabolites are secreted from root into the rhizosphere as 

chemical signals in to mediate specific root-microbial interactions (e.g. the 

trihydroxychalcone-derived isoflavonoids produced in legumes induces 

nodulation by rhizobia) (Walker et al., 2003; Bulgarelli et al., 2013). In plant 

specialized metabolism, new pathways continuously build on existing pathways, 

resulting in a relatively conserved set of earlier-evolved pathways extended by 

variable lineage-specific peripheral pathway branches in the extant land plants. 

Third, the expansion of the specialized metabolism in plants did not 

involve the emergence of new protein folds, but rather the extensive exploitation 

of the sequence space in the pre-existing protein folds by natural selection. Many 

of these fold families are rooted in more ancient primary metabolic systems 

(Weng et al., 2012b) (Fig. 2, Table 1). Particular catalytic machineries inherited 

along with the ancestral folds are often conserved during enzyme family 

expansion, although it is also common that new catalytic chemistry could arise 

within the fold family by reassembly of new catalytic residues in the active site 

(Weng & Noel, 2012b). For example, chalcone synthase (CHS), the first 

committed enzyme in flavonoid biosynthesis in plants, shares the same fold and 

catalytic machinery as the β-ketoacyl-ACP synthase III (KAS III), a key enzyme 

of fatty acid biosynthesis in plants and bacteria (Weng & Noel, 2012a). In another 

remarkable case, chalcone isomerase (CHI), a stereo-specific and catalytically 

perfected isomerase downstream of CHS in the flavonoid biosynthesis, evolved 

from a clade of non-catalytic CHI-fold proteins. In the green plant lineage 
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including simple chlorophyte algae, these non-catalytic CHI-fold proteins play a 

role in lipid biosynthesis and homeostasis in plants, and are structurally 

conserved in several other eukaryotic lineages as well as in some bacteria 

(Ngaki et al., 2012). Different enzyme families, typified by their structural folds, 

underwent tremendous radiation during land plant evolution due to gene 

duplication events followed by selective refinement (Xue et al., 2012). New 

specialized metabolic pathways continuously emerged in a lineage-specific 

manner by independently recruiting and refining descendants of these radiating 

families to catalyze sequential chemical reactions (Weng et al., 2012b) (Fig. 2). 

 

Repeated emergence of identical metabolic traits in disparate lineages 

As divergent evolution predominantly drives the continuous expansion of 

chemical complexity in plants (Fig. 3a), identical metabolic traits often arise 

independently in disparate lineages through parallel or convergent evolution 

(Barton et al., 2007; Pichersky & Lewinsohn, 2011; Weng & Noel, 2013) (Fig. 3b, 

c). Since a number of plant species derived from divergent lineages often co-

occupy the same ecological niches, repeated evolution of common metabolic 

traits likely resulted from natural selection driven by similar selective pressures 

associated with particular environments. Alternatively, as plant specialized 

pathways are typically less constrained than their cousins in primary metabolism, 

early neutral drift followed later by selection before gene loss to some extent may 

also have contributed to the contingent occurrences of identical specialized 

metabolites in separate lineages. 
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Here, in the context of enzyme evolution, I use the term parallel evolution 

to describe independent acquisitions of identical catalytic properties in 

homologous enzymes belonging to the same fold family, whereas convergent 

evolution is reserved here to refer to the evolution of identical catalytic functions 

in nonhomologous enzymes possessing distinct protein folds (Fig. 3). It should 

be noted that these definitions, using protein fold structure as a major evaluation 

criterion, are more stringent than the ones previously used in describing repeated 

evolution in plant metabolic systems (Weng et al., 2010a; Pichersky & 

Lewinsohn, 2011). These updated definitions of parallel and convergent evolution 

as used in describing enzyme evolution are in compliance with other sub-

disciplines of evolution biology (Zuckerkandl et al., 1965; Barton et al., 2007). 

Moreover, the separation of convergent and parallel evolution, where previously 

parallel was considered subordinate to convergent, clarify existing, blurry and 

imperfect boundaries between the two terms currently in use. 

In an apparent example of parallel evolution, syringyl (S) lignin, a 

fundamental building block of plant cell walls, occurs in two major plant lineages, 

lycophytes and angiosperms, which diverged from each other >400 Mya (Towers 

& Gibbs, 1953; Weng et al., 2008). In angiosperms, S lignin biosynthesis requires 

two enzymes, ferulate 5-hydroxylase (F5H) and caffeic acid O-methyltransferase 

(COMT), forming a metabolic branch diverting flux from the biosynthesis of 

guaiacyl (G) lignin, a lignin type common to all the vascular plants (Weng & 

Chapple, 2010). It was later discovered that the lycophyte Selaginella 

moellendorffii independently evolved a bifunctional phenylpropanoid 3,5-
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hydroxylase, SmF5H, and a companion bifunctional phenylpropanoid OMT, 

SmCOMT. Together, SmF5H and SmCOMT mediate a new S lignin pathway 

directly derived from p-hydroxyphenyl (H) monolignols, bypassing four steps of 

the canonical lignin biosynthetic defined in angiosperms (Weng et al., 2008; 

Weng et al., 2010a; Weng et al., 2011). At the enzyme level, F5Hs and COMTs 

of angiosperms and Selaginella belong to the cytochrome P450 family and the S-

adenosyl-L-Met (SAM)-dependent OMT family respectively, and have apparently 

arrived at their homologous activities in the two lineages via parallel evolution 

(Fig. 3b). Nonetheless, due to major differences in the substrate specificities 

between the homologous enzymes of angiosperm and Selaginella origins, the 

exact metabolic routes of S lignin biosynthesis are distinct at the pathway level in 

the two lineages (Weng et al., 2010a). 

Clear cases of convergent evolution within the boundaries of the above 

separation of convergent and parallel evolution at the protein structure level are 

relatively rare compared to clear cases of parallel evolution, but have been 

documented in various biological systems (Zuckerkandl et al., 1965). A clear 

example of such a case lies in the plant flavonoid biosynthetic pathway. Whereas 

most of the flowering plants examined to date employ type II flavone synthases 

(FNS II), belonging to the cytochrome P450 family, to catalyze the oxidation of 

flavanones to the corresponding flavones, members of the Apiceae family 

evolved a distinct type I flavone synthases (FNS I), belonging to the 2-

oxoglutarate-dependent dioxygenase (ODD) family, to mediate the same overall 
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oxidation reaction but through a distinct chemical mechanism as employed by 

FNS II (Leonard et al., 2005) (Fig. 3c). 

Repeated emergence of similar or identical metabolic traits in distantly 

related taxa is indeed a common theme during land plant evolution, indicative of 

the considerable pliability of plant specialized metabolic systems (Pichersky & 

Lewinsohn, 2011; Weng & Noel, 2013). Nevertheless, our current knowledge of 

this remarkable phenomenon still remains mostly at the level of comparative 

phytochemistry focused on end product identity but rarely clear end product 

function. The ultimate elucidation of the molecular underpinnings of these cases 

will greatly illuminate how specific enzyme mechanisms, structures and 

metabolic networks are accessed through alternative evolutionary trajectories in 

nature.  

 

Catalytic promiscuity and its role in metabolic evolvability 

Enzymes are erroneously considered exquisitely precise and efficient molecular 

catalysts. Natural enzymes are also evolvable, in other words, can migrate 

through mutational trajectories to arrive at alternative catalytic activities 

sometimes in unexpected saltatory fashion (Zuckerkandl et al., 1965; O'Maille et 

al., 2008). How does an enzyme evolve from a given ancestral function to novel 

functions through descent with modification? Under scrutiny of multitude enzyme 

behaviors, it has been increasingly recognized that enzymes are not as 

“perfected” as we assumed, but rather contain varying levels of catalytic 

promiscuity (Tokuriki & Tawfik, 2009) (Fig. 4a). Enzyme catalytic promiscuity is 
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intrinsically associated with the dynamic nature of proteins, and indeed 

encompasses a range of mechanistic processes, namely substrate 

permissiveness, mechanistic elasticity, and concomitant product diversity (Weng 

& Noel, 2012b). Upon varying physicochemical conditions or mutations, the latent 

behaviors of enzymes may be amplified to yield alternative metabolites at 

sufficient levels, on which natural selection can operate (Aharoni et al., 2005) 

(Fig. 4a). Gene duplication events, in many cases, yield mutiple copies of 

isozymes, subject to subsequent differentiation in expression regulation or 

subcellular localization without changes in the catalytic function. In some other 

cases, gene duplication events can also disconnect the newly derived allele from 

its ancestral function that is often under evolutionary restraints, and allow 

divergence of catalytic function to promptly occur through additional mutations 

(Fig. 4a). 

In primary metabolism, the essential functions of these core pathways 

impose constant selective pressures over long historical time, ultimately driving 

the participating enzymes towards catalytic efficiency, and as a result, much 

lower levels of catalytic promiscuity (Bar-Even et al., 2011). However, in 

specialized metabolism, as enzyme functions tend to meander more frequently in 

response to fluctuating environments and/or have not been under sufficiently 

strong selection to reach optimum efficiency, catalytic promiscuity is more easily 

observed in these secondary enzymes (Tokuriki et al., 2012; Weng et al., 2012b). 

For example, terpene synthases (TPSs) are a class of plant specialized enzymes 

highly recognized for their catalytic promiscuity. One TPS can be responsible for 
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the formation of a bouquet of hydrocarbon compounds in vivo (Tholl et al., 2005), 

wherein the product distribution fingerprints of a given TPS are acutely sensitive 

to environmental conditions and mutations (O'Maille et al., 2008). The elevated 

level of catalytic promiscuity in specialized metabolic enzymes is probably one of 

the fundamental factors that contribute to the remarkable evolvability seen in 

these metabolic systems found throughout nature. 

A clear example of metabolic evolution through exploitation of ancestral 

enzyme promiscuity was recently demonstrated in Arabidopsis thaliana, 

highlighting the emergence of a new set of α-pyrone-bearing metabolites, 

arabidopyrones (Weng et al., 2012a). The first step of arabidopyrone 

biosynthesis is catalyzed by a P450 enzyme, CYP84A4, which evolved from a 

gene duplicate of the ancestral CYP84A1, a phenylpropanoid 5-hydroxylase 

involved in S lignin biosynthesis. CYP84A4 has apparently adopted one of the 

ancestral latent activities of its progenitor, and neofunctionalized into a specific 

phenylpropanoid 3-hydroxylase. This evolutionary development led to the 

synthesis of a catechol-substituted substrate, which can be further metabolized 

by a conserved extradiol ring-cleavage dioxygenase together with additional 

downstream redox enzymes to produce arabidopyrones. This study indicates that 

the system-level plasticity of the ancestral metabolic network allows the impact of 

a newly evolved catalytic activity in one enzyme to project through multiple pre-

existing promiscuous catalytic steps to give rise to more profound metabolic 

outcomes. 
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 Enzyme catalytic promiscuity seems to be a key component in how 

complex specialized metabolic pathways can rapidly evolve through Darwinian 

evolution (Fig. 4b). In the crowded cellular milieu, thousands of different types of 

enzymes are working simultaneously transforming a multitude of metabolites at a 

given time point. Due to the intrinsic catalytic promiscuity of enzymes, especially 

those involved in specialized metabolism, there is always a level of “metabolic 

noise” underlying so-called normal metabolic behavior, yielding low-level 

metabolites that are selectively neutral and may also vary greatly in their 

identities and concentrations throughout cellular metabolism. Contingency in 

evolution, such as genetic variations, oscillating ecological conditions or sudden 

changes in environments, can elicit rapid selection of promiscuous activities and 

products, resulting in the recruitment of ancillary enzymes to shape an emergent 

metabolic pathway for enhanced host and population fitness. Natural selection 

continually samples low-level promiscuously-derived metabolites, and when 

conditions are ripe, captures previously neutral metabolites that now confer 

selective advantages. When these selective alleles persist, they rapidly spread 

throughout a population, progressing from pathways of stochastic origins to fixed 

metabolic traits subject at times to further improvement through additional rounds 

of positive selection. 

 

Perspectives 

According to a recent estimation, out of the four billion species that ever lived on 

the Earth over the past 3.5 billion years, only 1% of them have survived today 
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(Barnosky et al., 2011). As biologists trying to understand the evolutionary 

trajectories that connect related but discrete biological features, we are indeed 

left with only a very small fraction of the actual historical phylogenetic sampling 

explored throughout global life. Many highly complex traits, e.g. the human eye, 

are widely present in extant organisms. However, it is very common to find huge 

phylogenetic gaps that will never be known with certainty even with the most 

sophisticated means of "resurrecting" so-called ancient proteins, particularly as 

the phylogenies used for such calculations represent a very sparse sampling of 

extant organisms (Thornton et al., 2003). In short, most evolutionarily 

intermediates - nodes on a phylogenetic tree - even those providing historical 

fitness advantages in organismal populations, were swept away in parallel by 

distinct lineages. This key aspect of descent with modification hinders our 

understanding of the detailed processes underlying molecular evolution, a 

problem also impinging on the emerging field of synthetic biology (Smock & 

Gierasch, 2005). Examination of metabolic systems using a molecular 

evolutionary perspective restrained by our understanding of catalytic 

mechanisms also reveals a set of optimized complex pathways, e.g. the TCA 

cycle, with little clue as to how these pathways initially emerged. However, plant 

specialized metabolism, which has expanded exponentially over the past 500 

million years, provides a phylogenetically rich system for studying evolutionary 

processes leading to metabolic complexity on varying biological, chemical, 

architectural and time scales. 



 19 

 At the enzyme level, one can explore homologous enzymes isolated from 

closely related species to identify recently acquired mutations under positive 

selection in certain lineages that alter enzymatic activities, representing an early 

record of divergent evolution. By harnessing the great sequence diversity of a 

number of enzyme families using bioinformatics methods, e.g. statistical coupling 

analysis (SCA) (Halabi et al., 2009), one can infer and further test the biophysical 

restraints imposed on a given protein fold family that shape evolvability. At the 

pathway level, the progenitor enzymes of a clearly characterized evolutionarily 

new pathway (Matsuno et al., 2009; Weng et al., 2012a) can be reassembled in 

vitro or introduced into a suitable set of hosts to monitor system-level metabolic 

promiscuity under differing extant conditions. Directed evolution can then follow 

to reveal mutational effects and their contribution to catalytic promiscuity or 

specificity, flux, etc., as well as to partially recapitulate mutational trajectories that 

mimic the natural evolutional processes involving modification of multiple 

pathway components simultaneously. At the organismal level, it will be of great 

interest to investigate whether the rapid enzyme evolution in plants is facilitated 

by additional molecular machineries encoded by the plant genomes. For 

example, heat shock proteins may assist in stabilizing inherently unstable 

proteins folds carrying destabilizing mutations long enough for favorable activities 

to be selected for (Queitsch et al., 2002; O'Maille et al., 2008).  
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Table 1 Major enzymes families known to be involved in specialized metabolism 

in extant land plants and their presumed cousins in primary metabolism. The 

number of genes in the genome of the green algae Chlamydomonas reinhardtii 

and the flowering plant Arabidopsis thaliana encoding enzymes belonging to 

each enzyme family are listed for comparison. 

Major enzyme families involved in 
plant specialized metabolism 

Gene number Cousins in primary 
metabolism C. reinhardtii A. thaliana 

Cytochromes P450  39 245 Sterol 14-demethylase 
Glycosyltransferase family 1 1 115 Lipopolysaccharide 

glycosyltransferase 
Class III peroxidase 0 75 Cytochrome c peroxidase 

BAHD acyltransferase 0 61 Carnitine acetyltransferase 
SCPL acyltransferase 7 51 Serine carboxypeptidase 
Terpene synthase 0 32 Farnesyl pyrophosphate 

synthase 
CCR-like NAD(P)H-dependent 
reductase 

5 31 3-β-Hydroxysteroid 
dehydrogenase 

Flavin-dependent monooxygenase 10 29 trimethylamine oxidase 
SABBATH methyltransferase 0 24 Catechol-O-methyltransferase 
CAD-like alcohol dehydrogenase 5 19 Alcohol dehydrogenase 
GH3 acyl-adenylase 0 19 Long-chain fatty 

acyl-CoA synthetase 
COMT-like methyltransferase 1 17 Catechol-O-methyltransferase 
Strictosidine synthase-like 1 15 Gluconolactonase 
Acyl-CoA ligase 4 13 Long-chain fatty 

acyl-CoA synthetase 
CCoAOMT-like methyltransferase 1 8 Catechol-O-methyltransferase 
Type III polyketide synthase 0 4 β-ketoacyl-ACP synthase III 
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Figure legends 

Figure 1. Evolutionary progression of plant specialized metabolism. (a) Most of 

the plant specialized metabolic pathways are extended from the core primary 

metabolic network at various nodes. The colored networks represent the major 

primary metabolic pathways, modified from an image by the Kyoto Encyclopedia 

of Genes and Genomes (KEGG, http://www.genome.jp/kegg/). As examples, 

three plant specialized pathways leading towards the biosynthesis of 

phenylpropanoids, terpenoids, and caffeine are derived from their corresponding 

primary metabolite precursors. PHE, phenylalanine; IPP, isopentenyl 

pyrophosphate; DMIPP, dimethylallyl pyrophosphate; X5P, xanthosine 5′-

phosphate. (b) The taxonomical distribution of plant specialized metabolic 

pathways echoes the gradual diversification of developmental programs and life 

styles during land plant evolution. A number of such examples are illustrated at 

the major branching points of the green plant phylogeny. L, land plants; V, 

vascular plants; E, euphyllophytes; S, seed plants, and F, flowering plants. 

Images of representative species belonging to each major lineage are placed on 

top of the tree branches. 

 

Figure 2. Disparate plant specialized metabolic pathways assembled from 

descendents of radiating enzyme families with their ancestry deeply rooted in 

primary metabolism. For example, acyltransferase, P450, and OMT-fold enzyme 

families are typical plant specialized metabolic enzyme families that share the 

similar protein folds with their cousins in primary metabolism yet have undergone 
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extensive expansion during land plants evolution. CCoAOMT, caffeoyl CoA 3-O-

methyltransferase, HCT, hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl 

transferase; PHE, phenylalanine; SHT, spermidine hydroxycinnamoyl 

transferase; RAS, rosmarinic acid synthase; TSM, Tapetum-specific 

methyltransferase. 

 

Figure 3. Divergent, parallel and convergent evolution of enzyme functions in 

plant specialized metabolism. (a) ChOMT and IOMT are two O-

methyltransferases involved in different stages of flavonoid biosynthetic pathway 

in Medicago sativa. As an example for divergent evolution, ChOMT (PDB: 1FP1) 

and IOMT (PDB: 1FP2) share the same overall fold, but differ significantly in their 

active-site residues, resulting in distinct substrate specificities (Zubieta et al., 

2001). ChOMT, Chalcone O-methyltransferase; IOMT, isoflavone O-

methyltransferase. (b) The lycophyte Selaginella and angiosperms have 

independently recruited paralogous O-methyltransferases for syringyl lignin 

biosynthesis through parallel evolution. Structural comparison between LpCOMT 

(PDB: 3P9I) and SmCOMT (modeled over LpCOMT) suggests that the similar 

active-site steric features for accommodating the same substrate in the two 

enzymes are contributed from distinct amino acids at corresponding positions. 

COMT, caffeic acid O-methyltransferase; Lp, Lolium perenne; Sm, Selaginella 

moellendorffii. (c) As an apparent case of convergent evolution, members of the 

Apiceae family have recruited a unique FNS I, belonging to the ODD family, to 

convert flavanones to flavones, in addition to FNS II, an enzyme more widely 
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spread in flowing plants belonging to the P450 family. FNS I, type I flavone 

synthase; FNS II, type II flavone synthase; ODD, 2-oxoglutarate-dependent 

dioxygenase. 

 

Figure 4. Enzyme catalytic promiscuity and its role in metabolic evolution. (a) 

Catalytic promiscuity is deeply rooted in the dynamic nature of proteins. The level 

of latent activities of an enzyme may vary drastically upon environmental 

conditions or mutations. Gene duplications followed by neo- or sub-

functionalization are common routes towards metabolic diversity in plant 

metabolic evolution. The colored patches illustrated in the middle of the enzyme 

structures represent different steric/electrostatic/ hydrophobic features of the 

enzyme active site subject to changes upon protein dynamics or mutations. 

Hypothetical percentage values denote the proportion of given conformations of 

an enzyme associated with disparate catalytic activities in the entire enzyme 

population in solution. (b) A mechanistic model explaining the rapid emergence 

of complex metabolic pathways in plant specialized metabolism. The 

combinatorial effect of catalytic promiscuity of individual enzymes in the cellular 

milieu elevates to system-level metabolic promiscuity, yielding incipient pathways 

through stochastic assembly of components from the preexisting pathways 

(highlighted in the dotted circle). If such pathways provided selective advantages 

to the host organism, they would become fixed and further improved through 

positive selection. 
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