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Abstract

Methods for the analysis of chromatin immunoprecipitation sequencing (ChIP-seq) data start by aligning the short
reads to a reference genome. While often successful, they are not appropriate for cases where a reference genome
is not available. Here we develop methods for de novo analysis of ChIP-seq data. Our methods combine de novo
assembly with statistical tests enabling motif discovery without the use of a reference genome. We validate the
performance of our method using human and mouse data. Analysis of fly data indicates that our method
outperforms alignment based methods that utilize closely related species.
Background
Over the last few years, next generation sequencing
(NGS) technologies have revolutionized our ability to
study genomic data. While these techniques have ini-
tially been used to study DNA sequence data [1], they
are now widely used to study additional types of dy-
namic and condition-specific biological data. Specifically,
chromatin immunorecipitation sequencing (ChIP-Seq)
has been used to identify novel motifs [2] to aid in the
reconstruction of regulatory networks [3, 4] and to study
the role of epigenetics in regulation [5].
The standard pipeline for analyzing these experiments

starts with aligning reads to the genome to identify their
origin and to correct errors. Next, peaks (regions where
read abundance is enriched compared to a control) are
identified and their enrichment is determined by com-
paring the coverage of these peaks between case and
controls [6]. Several methods have been proposed to
perform such peak detection and for quantifying peak
enrichment [6]. While these methods differ in important
aspects (including the type of distribution they assume,
the method that they assign reads to genomic regions,
the way in which enrichment is calculated, and so on),
all current ChIP-Seq analysis methods rely on the first
step mentioned above: Read alignment to the genome.
Although genome-based alignment is possible for sev-

eral species, there are many cases in which alignments to
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the genome are either not possible or can miss important
events. Assembly and annotation of complete genomes is
time- and effort-consuming and, to date, less than 250 of
the more than 8 million estimated Eukaryotic species have
been fully sequenced at the chromosome level [7]. How-
ever, information from several related species is often re-
quired in order is to determine common processes and
their evolutionary plasticity in order to understand the
overarching principles of developmental biology. Consider
for example the sea urchin (Stronglyocentrotus purpura-
tus) model. While detailed maps of developmental gene
regulatory networks (GRNs) are well known for this
model organism [8], comparative studies using related
species including sea star and sea cucumber, which have
not been fully sequenced to date, are required to resolve
longstanding questions related to factors involved in sea
urchin development. For example, it has long been as-
sumed that TFs are under selection pressure and so evolve
slower than other proteins [9]. Therefore change in
binding targets for such factors should be predominantly
cis-regulatory [10]. On the other hand, it has become in-
creasingly appreciated that TFs can evolve biochemical
differences and that these will be important to the motifs
that bind to [11, 12]. Analysis of in-vitro binding prefer-
ences (using protein binding arrays) indicates that TFs can
evolve over the evolutionary distance between sea urchin
and sea star [13]. However, this analysis does not provide
information about in-vivo binding properties, which can
only be determined using ChIP-based studies. Thus,
methods that can perform de novo analysis of ChIP-Seq
data can provide important information regarding motif
evolution and inform us on how binding properties of
conserved TFs vary across related species.
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Even when the reference genome is available, in some
cases including in cancer cells, because of mutations, re-
arrangements, and other genomic perturbations we may
not be able to fully rely on it when performing Seq ex-
periments [14–17].
Similar to standard ChIP-Seq analysis methods, in

most RNA-Seq analysis pipelines the reads are first
aligned to the genome and then assembled and quanti-
fied using the genome reference. Thus, transcriptomics
analysis faces similar problems when studying species
for which no reference genome exists or when attempt-
ing to analyze cancer expression data [18]. Several
methods for de novo transcriptomics analysis have been
developed to address these issues [18–20]. However
these methods cannot be directly applied to ChIP studies
since their focus is not on peak and/or motif detection
but rather on transcript assembly, and on resolving alter-
natively spliced transcripts.
To enable experiments that study motif evolution

using non-sequenced species or in cases where the refer-
ence can greatly differ from the genome being studied,
we developed a new method for the analysis of de novo
ChIP-Seq data (Fig. 1). Unlike prior methods that iden-
tify peaks following short read alignment to the genome,
we first use de novo assembly methods originally devel-
oped for RNA-Seq to assemble longer segments that we
term ChIPtigs. Using these ChIPtigs we align reads from
both, the genuine and control ChIP-seq samples to these
assembled ChIPtigs and use these alignments to com-
pute an enrichment score. We next rank the ChIPtigs
and perform de novo motif discovery on the top enriched
ChIPtigs to determine binding motifs.
Fig. 1 De novo ChIP-seq analysis pipeline. Top: Reads from the TF experim
Velvet) leading to longer ChIPtigs, each of which is based on several (often
assembled ChIPtigs is scored to determine its enrichment for experiment v
Bottom left: Top ranking ChIPtigs are used as input for a motif discovery m
To test the new method we first applied it to mouse
data (where we can compare it directly to methods that
utilize the genome). As we show, for most TFs the de
novo method was able to accurately detect the correct
motif even without using the genome as a reference. We
next analyzed ChIP-Seq data from several human cancer
cell lines. This analysis further demonstrates that our de
novo methods are able to accurately identify both the
correct motifs and motifs for co-factors of the TF being
studied. Finally, to simulate de novo analysis of a non-
sequenced species, we used fly data to show that our
method outperforms methods that rely on a closely re-
lated (sequenced) species when analyzing ChIP-Seq data
from a non-sequenced species.

Results
De novo ChIP-seq analysis on mouse embryonic stem cell
(ESC) data
The major goal of de novo ChIP-Seq analysis is to study
species for which the genome is either not sequenced or
not fully annotated or to study cases such as cancer
where we expect large differences between the actual
and general reference genome. Still, to test our method
it is best to use a well annotated genome and dataset so
that we can determine how successful the method is
using ‘gold standard’ data. We have thus initially applied
our method to ChIP-Seq mouse data. Using such data
we can compare de novo motif discovery with estab-
lished methods that are based on peak calling [6].
Briefly, most methods for the analysis of ChIP-Seq data
start by aligning the reads to the genome and identifying
‘peak regions’ places in the DNA that are enriched in the
ent are assembled using a de novo assembly method (SEECER or
hundreds or thousands) of assembled reads. Bottom right: Each of the
s. control reads. ChIPtigs are ranked based on their enrichment scores.
ethod resulting in a set of motifs for the experiments



Table 2 ChIPtig statistics and results of motif finding in the
mouse ESC dataset using SEECER

No.
ChIPtigs

Mapped
ChIPtigs (%)

Motif rank
with peak-
calling

Motif rank
with de novo
pipeline

Motif rank
with random
ChIPtigs

c-MYC 15,987 86.5 1 1 N

CTCF 8,209 39.6 1 N N

ESRRB 41,620 90.7 1 1 1

KLF4 10,144 73.5 1 1 N

NANOG 19,106 43.7 1 N N

n-MYC 13,663 67.2 1 N N

POU5F1 12,939 75.5 1 N N

SMAD1 9,914 39.8 7 N N

SOX2 12,797 77.7 1 1 N

STAT3 17,394 84.7 1 1 N

TCFCP2I1 31,701 89.4 N N N

ZFX 10,569 80.4 1 1 2

Columns are the same as in Table 1
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test experiment when compared to the control. Next,
these genomic regions are extracted and a motif discov-
ery tool is used to determine the actual DNA binding
motifs. We used a mouse ChIP-seq dataset that mea-
sured the binding of 15 TFs in mouse embryonic stem
cells [21]. The data for each TF are composed of be-
tween 5 and 12 million reads, each of length 26 bp. We
excluded three TFs from our analysis (E2F1, p300, and
Suz12), since no specific motif was identified for them,
even when using the reference genome. For the peak-
calling method we used MACS (Zhang et al. 2008) [22].
We also tried CisGenome [23], but it failed to detect
motives that MACS detected and so the results pre-
sented are based on MACS. For the de novo analysis we
used both Velvet and SEECER (Methods) to generate
ChIPtigs from these reads. The ChIPtigs are ranked
based on their enrichment in a cases compared to con-
trols using a statistical test. We then used our pipeline
described in Methods for ranking these ChIPtigs. For
motif discovery in the identified peaks or ChIPtigs, we
used the tool DREME from the MEME suite. We first
assessed the ChIPtigs generated by Velvet and SEECER
to determine the accuracy of these methods for the de
novo assembly task of ChIP-Seq data. Table 1 (Velvet)
and Table 2 (SEECER) present some of the results of this
analysis including information about the number of ChIP-
tigs and the fraction of ChIPtigs that could be mapped to
the genome. A ChIPtig is considered to be successfully
mapped, if at least 95 % of its bases can be aligned to the
mouse genome. As can be seen, for most TFs, several
Table 1 ChIPtig statistics and results of motif finding in the
mouse ESC dataset using Velvet

TF No.
ChIPtigs

Mapped
ChIPtigs (%)

Motif rank
with peak-
calling

Motif rank
with de novo
pipeline

Motif rank
with random
ChIPtigs

c-MYC 5,159 92.9 1 1 4

CTCF 2,152 92.9 1 2 1

ESRRB 30,278 95.9 1 1 1

KLF4 1,660 90.4 1 1 1

NANOG 5,163 94.3 1 N N

n-MYC 3,610 86.8 1 1 1

POU5F1 2,528 92.9 1 1 N

SMAD1 596 96.1 7 N N

SOX2 2,511 92.5 1 1 N

STAT3 4,329 94.8 1 1 N

TCFCP2I1 20,566 95.7 N N N

ZFX 3,348 93.5 1 1 1

Three settings were evaluated for motif finding performance: peak-calling
using reference genome (MACS), top 1,000 ChIPtigs from the de novo pipeline,
and 1,000 random ChIPtigs from the same experiment assembled by Velvet.
The rank of the known motif (from JASPAR) in the DREME results is shown for
each TF. ‘N’ in a row means that either DREME did not find any motif, or none
of the motifs found by DREME matches the known motif for the TF in that row
thousand ChIPtigs are assembled and a large fraction of
them can be mapped back to the reference genome
(often more than 90 %), indicating that the de novo assem-
bly indeed recovers many of the bound regions.
To test if the information contained in these ChIPtigs

is enough to recover the correct motifs, and if the rank-
ings we are using help in such goal we next used our
ranked ChIPtig list (top 1,000 ChIPtigs, though top
2,000 led to similar results) to search for motifs for each
of the TFs and compared the results to known motifs
from the TF studied and to peak-calling methods for the
same data. Results for Velvet are presented in Table 1,
and those of SEECER in Table 2. We also assessed the
performance of motif discovery when using the standard
peak-calling analysis, which relies on the reference gen-
ome. The peak-calling method was able to identify the
correct motif as the top motif for 10 of the 12 TFs based
on the JASPAR database (all except SMAD1 and
TCFCP2I1). Using our de novo ChIP-Seq analysis pipe-
line to select the top 1,000 ranked ChIPtigs (Methods),
we were able to identify the correct motif as the top
motif for eight out of these 10 TFs (a 20 % drop when
not using the reference genome). For an additional ninth
factor (CTCF) the correct motif was ranked second in
our analysis. In contrast, when only using a random sub-
set of the assembled ChIPtigs (that is, using 1,000 ChIP-
tigs selected at random from those assembled by Velvet
from the ChIP-Seq experiment reads), only four TFs had
the correct top-scoring motif (a drop of 60 % compared
to baseline).
We have also compared the overlap between the de-

tected ChIPtigs and the peaks detected by the peak-
calling analysis. We have mapped the top 2,000 ChIPtigs
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we have obtained from each analyses to the genome.
Varying the cutoff for the percentage of the ChIPtig
mapped to the genome, we have obtained the ratio of
the ChIPtigs overlapping with the peaks. Results show
that even using 80 % as the mapping cutoff, 50 % of the
peaks on average are found by using Velvet (53 %) and
more than 40 % by using SEECER. Please see Additional
file 1: Tables S1 and S2 for detailed results.
In summary, our analysis demonstrates that a signifi-

cant fraction of the ChIPtigs assembled from short-reads
is likely regions bound by TFs (as even randomly chosen
ChIPtigs enable motif discovery in some cases), and that
our ranking function (Methods) can accurately identify
bound ChIPtigs, which improves downstream analysis.
In terms of motif discovery, our de novo pipeline per-
forms only slightly worse than the peak-calling method,
which has the benefit of reference genomes.

Analyzing human ChIP-Seq data
The mouse data described above provide a way to test
de novo ChIP-Seq analysis in cases where the motif and
reference genome are known and so genome based
peak-calling methods should be the optimal strategy. It
is thus not surprising that de novo-based methods are
not doing as well as peak-calling methods. Still, the re-
sults above indicate that de novo motif finding can be
successful in several cases indicating that it is a viable
option for species without an available reference se-
quence. To further test the ability of de novo-based ana-
lysis to accurately identify DNA binding motifs we next
Fig. 2 Motif discovery results for the human validation data. The table pres
assembly pipeline with SEECER and Velvet and the results for the peak-calli
in the database). For each method we show: (1) the predicted motif that b
in the JASPAR database; and (3) the motif rank in the DREME results for tha
motif. We also include experiment specific comments in the last column
asked how well it could perform on human cancer data.
While reference genome sequence information is still
available for human cancer data, several cancer cell lines
display significant genomic alterations when compared
to normal samples of the same tissue from the same in-
dividual indicating that the advantages of using genome
based peak-calling methods may be diminished for such
data. We have thus compared the analysis cancer ChIP-
Seq data using our de novo pipeline to the analysis of
the genome-based peak-calling methods SeqPeak and
MACS.
We selected seven TFs from several different cancer

cell lines for this analysis (Fig. 2). Read data for all fac-
tors were downloaded from the ENCODE project re-
pository [24]. For each of the TFs we studied we selected
a specific cancer type (corresponding immortalized cell
line) and have downloaded both the case and control ex-
periment for that factor. Six of the seven TFs have a
known motif while HCFC1 had no known annotated
motif in the Jaspar database [25]. For each of the seven
ChIP-Seq datasets, we performed peak calling using Seq-
Peak and MACS followed by motif discovery using
DREME [26]. For the de novo pipeline we have used Vel-
vet and SEECER (as described in Methods) to identify
enriched ChIPtigs followed by DREME to perform the
motif discovery. We have next used TOMTOM [27] to
compare the top motifs for each TF/method with motifs
in the Jaspar database. The results for the de novo
methods and the MACS peak calling are presented
in Fig. 2 and results for SeqPeak are presented in
ents the results obtained for each of the TFs (rows) using the de novo
ng method MACS. For each TF we present the known motif (if it exists
est matches the known motif; (2) whether it matches the known motif
t method and the TOMTOM P value for the match with the known



Table 3 Co-factors identified in the top 10 motifs predicted by
each method for the human validation dataset

SEECER Velvet Alignment

MAX MYC, MYCN MYC, MYCN MYC, MYCN

HCFC1 GABPA, SP1 GABPA, SP1

CEBPB CEBPA CEBPA, SP1, EGR1 FOX01, CEBPA

SREBF1 SP1 SP1

TCF7L2

STAT1

TAL1 SP1, GATA3 TCF3 GATA3, TCF3

Proteins that are found to be interacting with the target and whose motifs are
predicted in the top 10 by each method are shown
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Additional file 1: Figure S1. Since MACS clearly outper-
formed SeqPeak we only focus on the MACS results in
the discussion below. Overall, as can be seen in Fig. 2,
de novo-based methods performed very similarly to
sequence-based methods (in some cases even improving
upon them, see below), a significant improvement over
the comparison presented in Table 1, which analyzed
data from normal tissues. For five of the seven TFs, both
methods were able to identify to correct motif as the
top motif, though they slightly differed in how well they
recovered the motif based on the TOMTOM P value
match statistics. Interestingly, even though the de novo
methods did not use the reference genome, the P value
they obtained for one of these factors (TAL1) was better
than the P value obtained by the peak-calling method. A
possible explanation for this result is that our method
finds a binding motif of length 7 which leads to higher
significance than the reference-based motif which is of
length 6. The motif found is TAL1::GATA1 motif, to
which GATA1 and TAL1 binds cooperatively. TAL1
binds to the CTG part of the motif shown in Fig. 2. As
for the other two TFs, for SREBF1, SEECER was able to
identify the correct motif as a top hit, and MACS identi-
fied it as a lower hit and was able to recover a portion of
the known motif.

Analysis of co-factors
In addition to identifying motifs for the factors being
studied, ChIP-Seq datasets can often be used to identify
motifs for co-factors of the TF being analyzed (Bailey
et al. 2011) [26]. Thus, the presence of motifs for known
co-factors of a TF can serve as an indication that the
read analysis method (either de novo or alignment) is ac-
curately capturing the biological information in the data-
set. We have thus intersected the TOMTOM TF
matches for the top 10 motifs identified for these eight
factors with interaction data from the human protein
reference database (HPRD) [28]. For each TF we deter-
mined whether any of its top 10 motifs match a motif
for a known co-factor. The results are presented in
Table 3 (see supporting website for complete results).
Again, the results indicate that for the human validation
data de novo and peak-calling methods are comparable,
mostly identifying a similar set of correct co-factors. The
only exceptions here are CEBPB (SP1 and EGR1) and
TAL1 (SP1) where the de novo analyses of SEECER and
Velvet correspondingly were able to identify a motif for
a co-factor that MACS did not identify. MACS, on the
other hand, identified a motif for co-factor of CEBPB
(FOXO1), which the de novo methods did not find.

Effect of number of ChIPtigs used on performance
In order to test the effect of varying number of ChIPtigs
used in the de novo pipeline, we tested Velvet’s performance
on the human validation dataset using top 1,000 ChIPtigs,
top 2,000 ChIPtigs, and using all available ChIPtigs. We
checked if the ranking of the correct motif changed with
respect to varying number of ChIPtigs. We excluded
HCFC1 for this analysis, as there is no known motif for it
and excluded STAT1 as Velvet only returns 415 ChIPtigs.
Only the highest ranked motif was considered when there
are more than one available known motifs. As shown in
Additional file 1: Table S3, the ranking of the top discov-
ered motif did not change as the number of ChIPtigs var-
ied for MAX, CEBPB, and TAL1. For SREBF1, we could
not match the correct motif using top 1,000 ChIPtigs, but
using top 2,000 and using all returned the correct motif at
the seventh spot. Finally, for TCF7L2, increasing the num-
ber of ChIPtigs has deteriorated the results.

Simulating a de novo ChipSeq motif discovery using fly
species data
A key goal of our pipeline is to provide a motif discovery
tool to researchers working on organisms without a se-
quenced genome. To test the usefulness of our approach
we have simulated such a case with two fly species: D.
Melanogaster and D. Pseudoobscura.
While both have been sequenced, if we do not use the

D. pseudoobscura in the analysis (to simulate a case
where a species has not been sequenced) the closest
genome we could use for an alignment based peak-
calling method is D. melanogaster. We obtained four
chipseq datasets for D. pseudoobscura for the following
transcription factors: BCD, GT, HB, and KR [29]. We
performed motif discovery using: (1) standard peak-
calling using the D. pseudoobscura genome (as a sanity
check); (2) standard peak-calling using the D. melanoga-
ster genome; (3) de novo analysis using Velvet; and (4)
de novo analysis using SEECER. Standard peak-calling
was performed using MACS. Results are shown in Fig. 3.
As expected, MACS was able to detect the known motifs
using D. pseudoobscura genome for all transcription fac-
tors. However, it could not detect the correct motif for
three of the four factors when using the D. melanogaster



Fig. 3 Motif discovery results for the fly data. The table presents the results obtained for each of the TFs (rows) using the genome based motif
discovery using D. Melanogaster genome and using D. Pseudoobscura genomes and de novo assembly pipeline with SEECER and Velvet. For
each TF we present the known motif (if it exists in the database). For each method we show: (1) the predicted motif and how the predicted
motif matches (if any); (2) whether it matches the known motif in the JASPAR database; and (3) the motif rank in the DREME results for that
method and the TOMTOM P value for the match with the known motif
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genome. In contrast, using the de novo analysis pipeline
with SEECER we were able to identify the correct motif
for three out of four TFs. Velvet identified the correct
motif for only one factor, the same as the only one iden-
tified by the alignment based method (HB). However,
the correct motif for HB was ranked higher by Velvet
(first) than the correct motif found by the alignment
method (which only ranked fifth). Thus, both Velvet and
SEECER improve upon alignments to closely related spe-
cies when performing de novo analysis.

Conclusions
To date, the analysis of ChIP-Seq data has relied on peak
calling based on the alignment to a reference genome.
While several of the methods developed for this task
have been highly successful, the requirements for a refer-
ence genome prevented the use of this technology for
non-sequenced species. In addition, reliance on genome
alignment may be problematic in cases where the gen-
ome being investigated is very different from the refer-
ence, such as cancer cells [17].
Here we presented a new pipeline for the de novo ana-

lysis of ChIP-Seq data. Unlike prior methods we do not
start by aligning short reads to the genome. Instead, we
first assemble short reads into longer ChIPtigs by modi-
fying methods originally developed for de novo RNA-Seq
analysis [19]. Next, we identify ChIPtigs that are
enriched for test reads compared to control reads and
rank them using a statistical test. The ranked list of
ChIPtigs is then analyzed to identify motifs that are
likely the target of the TF being studied. Finally, the
highly ranked ChIPtigs that contain a motif of interest
(which are much longer and more accurate than the in-
dividual reads) can in some cases be aligned to partially
assembled genomes or to known genomes of closely re-
lated species to determine potential targets of the TF
being investigated. Combined, this de novo analysis pipe-
line provides a solution that spans both motif discovery
and the ability to determine the TF function and regula-
tory subnetwork based on the identified targets (in the
same or related species).
We first tested our method on known motifs from

normal mouse tissues. For such data we expect the
peak-calling method to be optimal and so it can serve as
a test set for expected accuracy reduction when applying
de novo methods to non-sequenced species. As we
show, the de novo pipeline performed very well enab-
ling us to correctly identify eight motifs as top hits,
compared to 10 motifs identified with current peak-
calling methods. Note that this comparison is ex-
tremely challenging for our de novo analysis pipeline
since the original data was based on very short reads
(26 bp) which are thus harder to assemble in a de
novo manner. We expect that the results would be
even better for longer reads.
We next tested our method using human cancer data.

While cancer genomes are still quite similar to the hu-
man reference genome they often suffer from a high mu-
tation rate [17]. These mutations may make it harder to
correctly align the short reads to the reference genome
and in some cases can lead to inability to identify such
alignments or to find regions that are enriched in the
case vs. control studies (peaks). In contrast, de novo ana-
lysis of such read data, which does not rely on the refer-
ence genome, may still be able to identify enriched
ChIPtigs even if the reads used to generate the ChIPtigs
differ from their original reference due to mutations and
rearrangements. Indeed, when analyzing data from can-
cer TF studies we found that de novo ChIP-Seq analysis
performs as well as peak-calling methods, and in some
cases it even slightly improves over alignment based
methods. For four of the seven TFs the motifs identified
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using the de novo methods had a better P value match
to the correct motif when compared to the motifs iden-
tified using the peak-calling methods.
While ChIP-Seq data for non-sequenced species are

not yet available (at least to some extent since no
method currently exists to analyze it), we can simulate
such cases when data are available for a number of
closely related species. We have thus analyzed fly data
by assuming that one fly species does not have a se-
quenced genome, while its close evolutionary relatives
have. We show that while the genome of the evolution-
ary relative fails to be useful for identifying the correct
motif for four transcription factors, our de novo method
was able to recover the correct motif in three of those
transcription factors. While the ranking of the correct
motif is low for these factors, we observe a similar low
rank for the correct motif when using a genome-based
alignment with the true genome. Note that the known
motif is based on D. melanogaster and it could be the
case that in D. pseudoobscura these proteins may bind
to other motifs. In fact, Paris et al. state that the number
of peaks detected for D. pseudoobscura is lower [29],
which indicates that there might be different binding
specificities between these fly species.
In our comparison of de novo and alignment-based

methods, we tested aligning the reads to the genome of
a related species. While longer segments (for example,
the ChIPtigs we generate) may lead to better alignments,
it is unlikely that they would lead to better motifs, be-
cause read alignment not leading to the correct motifs
indicate that there is a divergence between the two spe-
cies at the binding sites.
The ability to perform de novo-based analysis of ChIP-

Seq data opens the door to several possibilities. These
include: (1) comparison of binding motifs for mutated
versus wild-type transcription factors; and (2) motif evo-
lution analysis in developmental studies, for species that
have not been fully sequenced. It also enables re-
searchers to analyze data from studies in which we may
expect the genome being analyzed to diverge from the
reference genome for that species. We provide a fully
implemented pipeline for such de novo analysis (using
either velvet or SEECER) on the supporting website. We
hope that our pipeline will serve as a complementary
procedure to genome based alignment methods when
performing ChIP-Seq studies.

Methods
A de novo ChIP-seq analysis pipeline
We developed a computational pipeline to extract the
TF binding motifs from ChIP-seq data, assuming no ref-
erence genome is available. The input data are the short
reads from a ChIP-seq experiment of the TF being stud-
ied, and from a control experiment where non-specific
antibody or input DNA is used. The pipeline has three
main steps (Fig. 1). First, we perform de novo ChIPtig as-
sembly on the reads obtained in the ChIP-seq experi-
ment of the TF – such ChIPtigs would represent
putative regions bound by the TF. In the second step,
reads in both TF and control experiments are mapped to
these ChIPtigs, and the ChIPtigs are then selected and
ranked by their enrichment for the TF vs. control experi-
ments. Finally, a motif finding program is used to iden-
tify motifs in the most enriched ChIPtigs using a ranking
that is based on the statistics computed in step 2. The
details of each step are described below. Please also see
Additional file 1: Text 1 for instructions on how to use
the pipeline and the supplementary website for the
implementation.

De novo ChIPtig assembly
Since no reference is available, the first step is focused
only on the actual ‘case’ experiments (binding of the real
TF). Note that unlike other datasets for which de novo
assembly is used (most notably RNA-Seq [30]) here the
assembly task is less challenging. Specifically, while in
RNA-Seq we may need to handle alternatively spliced re-
gions leading to branch points in the assembly, ChIP-
Seq data are mostly retrieved from continuous DNA se-
quences and so assembly can be done more accurately.
We tested two methods for such assembly: Velvet and
SEECER. Velvet is a popular de novo genome assembly
tool for short read sequencing data based on De Bruijn
graphs [31]. In the de Bruijn graph, reads are encoded as
paths in the graph spelling the k-mers they contain. A
vertex (node) represents a k-mer, and an edge linking
two nodes represents an overlap of k-1 nucleotides be-
tween the nodes’ sequences. Following iterative error re-
moval steps, which remove short nodes and redundant
paths, the remaining linear paths in this graph are con-
nected by Velvet to form ChIPtigs. Velvet was shown to
construct DNA sequences efficiently from de Bruijn
graphs, while eliminating errors and resolving repeats at
the same time. SEECER, is a Hidden Markov model
(HMM) based de novo assembly and error correction
method [19]. SEECER learns HMMs (one for each ChIP-
tig) which are used to assign reads to ChIPtigs and cor-
rect errors within the short reads. The resulting ChIPtigs
from each HMM represent the assembled, bound, DNA
region. SEECER error corrected ChIPtigs were shown to
improve error correction when compared to other error
correction methods leading to better assembly of the
short reads and making it an attractive method for de
novo analysis [19].

Adjusting SEECER for de novo ChIP-Seq analysis
For SEECER, we made some changes at the ChIPtig ex-
tension step. The general idea of SEECER is: first, it uses
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a set of highly similar reads to construct an initial ChIP-
tig and uses the alignment of these reads to generate an
initial ChIPtig HMM (disagreements for specific col-
umns in the aligned reads are encoded as probabilities,
either emission or transition, in the HMM). Next the
HMM is extended by retrieving reads that are partially
aligned to the end points of the current ChIPtig HMM
(the unaligned bases are used to learn the new columns
of the HMM).
We use entropy to determine a stopping criteria for

the HMM learning. Entropy is a probabilistic statistic
which captures the uncertainty in the discrete distribu-
tion of emissions. Positions with high entropy (here we
use a default max entropy = 0.6) indicate that the current
aligned reads may not come from the same underlying
genomic location. However, unlike RNA-Seq analysis,
where such locations may indicate that we have reached
an alternative splicing point (and so some reads come
from one splice variant whereas the others come from
another, but the transcript is not fully assembled) for
ChIP-Seq we expect a continuous ChIPtig for each bind-
ing location. Thus, unlike for the original SEECER im-
plementation when reaching a high entropy position
ChIPtig extension is terminated and the resulting HMM
is used as a ChIPtig (fully assembled ChIPtig for a spe-
cific binding event). Another difference between RNA-
Seq and ChIP-Seq analysis using SEECER is on handling
ChIPtig extension. In the RNA-Seq version of SEECER,
we fix all parameters learned for the HMM prior to such
extension and so the added reads that partially overlap
the endpoints of the HMM do not impact the emission
and transition parameters for these positions (they are
only used in the extended positions). Such a block based
online learning approach, which follows [32], improves
runtime but can result in lower accuracy, especially if
read coverage for a specific binding event is not very
high.
We thus used a variant online learning methods for

HMMs [33, 34] to improve the accuracy of the recon-
structed ChIPtigs. Let ai,j = p(qt = j| qt-1 = i) be the transi-
tion probability, where qt is the state at time t. Let bj(o) =
p(o|q = j) be the emission probability. To learn a HMM
we need to determine the expected counts for states and
transitioning between states. Let γt (i) = p(qt = i|O,λ) be
the expected count for states at time t (where λ represents
the HMM parameters) and let εt (i,j) = p(qt = i,q(t+1) =
j│O,λ) be the expected transition counts for that time.
HMM learning involves iterative steps (based on an EM
algorithm) in which either the counts are updated using
the parameters or the parameters are updated using the
new counts. Online learning involves sequential updates
of these counts and parameters for each new observation.
Since we are learning tens of thousands of such HMM
models, we cannot use the full Forward-Backward
algorithm for each additional read we add when extending
the HMM to learn a new model. Instead, we set:
εt
(r+1) (i,j) = αεt

r (i,j) + (1-α)εt
R(i,j) where εt

r (i,j) is the ex-
pected transition count for state t after seeing r reads,
and εt

R(i,j) is the expected value for the new read R using
the current values for a and b (or for a new set of reads
using the same parameters). The state counts are up-
dated in a similar way. The discount factor α goes down
as a function of r and helps guarantee that no specific
read leads to large deviations from the current model.
SEECER also has a key parameter, k, the length of the

kmer used to define the initial set of highly similar reads
(all reads sharing the same k-mer will be included in the
initial set). For our mouse analysis, because the reads we
use are short (26 bp), we used k = 17 which is lower than
the read length. We have used k = 19 for the cancer ana-
lysis (read length ranges between 30 bp and 50 bp), ex-
cept for STAT1 analysis, for which we used k =17, as the
read length was 27 bp (for both case and control).

Using velvet with ChIP-Seq data
Velvet is a popular de novo genome assembly tool for
short read sequencing data based on de Bruijn graphs
[30]. To date, Velvet has been primarily used for de novo
analysis of transcriptomics data [19]. Here we discuss
how we extend Velvet for our de novo ChIP-seq analysis
pipeline. In the de Bruijn graph, reads are encoded as
paths in the graph spelling the k-mers they contain. Let
G = (V,E) be a de Bruijn graph, where each node n ∈ V
corresponds to a k-mer s ∈ ∑k over the nucleotide alpha-
bet Σ = {A, C, G, T}. An edge e ∈ Ε connects two nodes
n1 and n2, iff s1 and s2 overlap by exactly k-1 nucleotides.
When using Velvet for ChIP-Seq analysis we also associ-
ate each node n with node n’ that corresponds to the re-
verse complement k-mer of n to guarantee that ChIPtigs
can be recovered from DNA reads that come from both
strands of the genome. This is specifically important for
constructing ChIPtigs, as bound DNA fragments in
ChIP-seq experiments show anti correlated abundance
of reads on the Watson and Crick strand of the DNA
[22]. When using Velvet we first extract the set of k-mer
sequences from each read to construct the set of nodes
V. Edges are generated accordingly based on overlap be-
tween k-mers. Second, all linearly connected subgraphs,
that is, nodes with one incoming and one outgoing edge
are merged into the same node. Third, the following
error removal steps are performed on G iteratively: a
short chain of nodes (cumulative length <2k) that is dis-
connected on one end is removed and bubbles induced
by highly similar sequences are collapsed. Bubbles are
found by performing a Dijkstra-like breadth-first search
(named Tour Bus): starting from an arbitrary node alter-
native paths are discovered, their corresponding sequences
are extracted, aligned against each other and collapsed if
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they are within a sequence similarity threshold. After-
wards, low coverage nodes are removed from the graph.
These steps prevent false positive ChIPtigs resulting from
sequencing errors to be reported by the algorithm. After
the error removal step all linear subgraphs are again
merged and the assembler outputs the corresponding se-
quences of all nodes with length greater than a predefined
threshold.

ChIPtig selection and ranking
From the output of the ChIPtigs assembly step, we first
discard all ChIPtigs that are shorter than 50 bp or longer
than 500 bp as we do not expect bound regions to be
much larger than 500 bp. All ChIPtigs are then scored
by their enrichment in the TF experiment vs. control.
Specifically, for a given ChIPtig, C, let x1 and x0 be the
number of reads mapped to this ChIPtig from the case
experiment (x1) and the control (x0). Denote by r the ra-
tio between the number of reads in the TF experiment
and the number of reads obtained from the control ex-
periment (that is, r = x1 / x0). If C is not enriched in the
TF experiment, then any random chosen read among
(x1 + x0) reads will have a probability r/(r + 1) (or equiva-
lently x1/(x0 + x1)) to occur in the TF experiment. We
next use a binomial distribution to determine the en-
richment of reads mapped to C in the case experiment:
we ask what is the probability of observing x1 or more
successes in (x1 + x0) trials with the probability of each
success per trial equal to r/(r + 1). The P value is thus
defined as:

p ¼
Xx1þx0

k¼x1

x1 þ x0
k

� �
r

r þ 1

� �k 1
r þ 1

� �x1þx0−k

ð1Þ

After scoring each ChIPtig, the total set of ChIPtigs
are ranked by their P values.

Motif discovery
We use DREME for discovering motifs in the top M
chiptigs returned by the previous step (where M is a par-
ameter of the method). DREME is a discriminative motif
finding tool that searches for short motifs (represented
by k-mers of length up to 8, allowing degenerate sym-
bols) that are overrepresented in the input sequences, as
compared with the background sequences [26]. DREME
uses Fisher’s exact test to determine the significance of
the found motifs. The motifs that are found by DREME
can then be compared to the motifs identified by in-vitro
methods (for example, from protein binding microarray
experiments [35]) or to known motifs from several dif-
ferent databases. For this comparison we relied on the
Jaspar database [25] and compared motifs using the
TOMTOM tool [27]. TOMTOM computes the signifi-
cance of a motif in a database matching the query motif
using E-values, the expected number of times that the
query would match a target in a randomized database of
the same size. Whenever TOMTOM could not detect
any motives, we reran TOMTOM using a custom data-
base which only includes the known motif for the target
TF, to see if we can detect the motif when other known
motifs in the database are eliminated.
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