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Abstract

Answering a question of Bóna, it is shown that for n ≥ 2 the proba-
bility that 1 and 2 are in the same cycle of a product of two n-cycles on
the set {1, 2, . . . , n} is 1/2 if n is odd and 1

2 − 2
(n−1)(n+2) if n is even.

Another result concerns the polynomial Pλ(q) =
∑

w qκ((1,2,...,n)·w),
where w ranges over all permutations in the symmetric group Sn of
cycle type λ, (1, 2, . . . , n) denotes the n-cycle 1 → 2 → · · · → n → 1,
and κ(v) denotes the number of cycles of the permutation v. A for-
mula is obtained for Pλ(q) from which it is deduced that all zeros of
Pλ(q) have real part 0.

1 Introduction.

Let λ = (λ1, λ2, . . . ) be a partition of n, denoted λ ` n. In general, we
use notation and terminology involving partitions and symmetric functions
from [12, Ch. 7]. Let Sn denote the symmetric group of all permutations of
[n] = {1, 2, . . . , n}. If w ∈ Sn then write ρ(w) = λ if w has cycle type λ,
i.e., if the (nonzero) λi’s are the lengths of the cycles of w. The conjugacy
classes of Sn are given by Kλ = {w ∈ Sn : ρ(w) = λ}.

The “class multiplication problem” for Sn may be stated as follows. Given
λ, µ, ν ` n, how many pairs (u, v) ∈ Sn × Sn satisfy u ∈ Kλ, v ∈ Kµ,
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uv ∈ Kν? The case when one of the partitions is (n) (i.e., one of the classes
consists of the n-cycles) is particularly interesting and has received much
attention. For a sample of some recent work, see [1][6] [9]. In this paper we
make two contributions to this subject. For the first, we solve a problem of
Bóna and Flynn [4] asking what is the probability that two fixed elements of
[n] lie in the same cycle of the product of two random n-cycles. In particular,
we prove the conjecture of Bóna that this probability is 1/2 when n is odd.
Our method of proof is an ugly computation based on a formula of Boccara
[2]. The technique can be generalized, and as an example we compute the
probability that three fixed elements of [n] lie in the same cycle of the product
of two random n-cycles.

For our second result, let κ(w) denote the number of cycles of w ∈ Sn,
and let (1, 2, . . . , n) denote the n-cycle 1 → 2 → · · · → n → 1. For λ ` n,
define the polynomial

Pλ(q) =
∑

ρ(w)=λ

qκ((1,2,...,n)·w). (1)

In Theorem 3.1 we obtain a formula for Pλ(q). We also prove from this
formula (Corollary 3.3) that every zero of Pλ(q) has real part 0.

2 A problem of Bóna.

Let πn denote the probability that if two n-cycles u, v are chosen uniformly
at random in Sn, then 1 and 2 (or any two elements i and j by symmetry)
appear in the same cycle of the product uv. Miklós Bóna conjectured (private
communication) that πn = 1/2 if n is odd, and asked about the value when
n is even. For the reason behind this conjecture, see Bóna and Flynn [4].
In this section we solve this problem. Let us note that it is easy to see (a
straightforward generalization of [3, Prop. 6.18]) that the probability that
1, 2, . . . , k appear in the same cycle of a random permutation in Sn is 1/k
for k ≤ n.

Theorem 2.1. For n ≥ 2 we have

πn =

{

1
2
, n odd

1
2
− 2

(n−1)(n+2)
, n even.
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Proof. First note that if w ∈ Sn has cycle type λ, then the probability that
1 and 2 are in the same cycle of w is

qλ =

∑
(

λi

2

)

(

n

2

) =

∑

λi(λi − 1)

n(n − 1)
.

Let aλ be the number of pairs (u, v) of n-cycles in Sn for which uv has type
λ. Then

πn =
1

(n − 1)!2

∑

λ`n

aλqλ.

By Boccara [2] the number of ways to write a fixed permutation w ∈ Sn of
type λ as a product of two n-cycles is

(n − 1)!

∫ 1

0

∏

i

(

xλi − (x − 1)λi
)

dx.

Let n!/zλ denote the number of permutations w ∈ Sn of type λ. We get

πn =
1

(n − 1)!2

∑

λ`n

n!

zλ

(

∑

i

λi(λi − 1)

n(n − 1)

)

·(n − 1)!

∫ 1

0

∏

i

(

xλi − (x − 1)λi
)

dx

=
1

n − 1

∑

λ`n

z−1
λ

(

∑

i

λi(λi − 1)

)

∫ 1

0

∏

i

(

xλi − (x − 1)λi
)

dx.

Now let pλ(a, b) denote the power sum symmetric function pλ in the two
variables a, b, and let `(λ) denote the length (number of parts) of λ. It is
easy to check that

2−`(λ)+1

(

∂2

∂a2
−

∂2

∂a∂b

)

pλ(a, b)|a=b=1 =
∑

λi(λi − 1).

By the exponential formula (permutation version) [12, Cor. 5.1.9] or by [12,
Prop. 7.7.4],

∑

n≥0

∑

λ`n

z−1
λ 2−`(λ)pλ(a, b)

(

∏

i

(

xλi − (x − 1)λi
)

)

tn
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= exp
∑

k≥1

1

k

(

ak + bk

2

)

(xk − (x − 1)k)tk.

It follows that (n − 1)πn is the coefficient of tn in

F (t) :=

2

∫ 1

0

(

∂2

∂a2
−

∂2

∂a∂b

)

exp

[

∑

k≥1

1

k

(

ak + bk

2

)

(xk − (x − 1)k)tk

]∣

∣

∣

∣

∣

a=b=1

dx.

We can easily perform this computation with Maple, giving

F (t) =

∫ 1

0

t2(1 − 2x − 2tx + 2tx2)

(1 − t(x − 1))(1 − tx)3
dx

=
1

t2
log(1 − t2) +

3

2
+

−1
2

+ t

(1 − t)2
.

Extract the coefficient of tn and divide by n− 1 to obtain πn as claimed.

It is clear that the argument used to prove Theorem 2 can be generalized.
For instance, using the fact that

3−`(λ)+1

(

∂3

∂a3
− 3

∂3

∂a2∂b
+ 2

∂3

∂a∂b∂c

)

pλ(a, b, c)|a=b=c=1

=
∑

λi(λi − 1)(λi − 2),

we can obtain the following result.

Theorem 2.2. Let π
(3)
n denote the probability that if two n-cycles u, v are

chosen uniformly at random in Sn, then 1, 2, and 3 appear in the same cycle
of the product uv. Then for n ≥ 3 we have

π(3)
n =

{

1
3

+ 1
(n−2)(n+3)

, n odd

1
3
− 3

(n−1)(n+2)
, n even.

Are there simpler proofs of Theorems 2.1 and 2.2, especially Theorem 2.1
when n is odd?
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3 A polynomial with purely imaginary zeros

Given λ ` n, let Pλ(q) be defined by equation (1). Let (a)n denote the falling
factorial a(a − 1) · · · (a − n + 1). Let E be the backward shift operator on
polynomials in q, i.e., Ef(q) = f(q − 1).

Theorem 3.1. Suppose that λ has length `. Define the polynomial

gλ(t) =
1

1 − t

∏̀

j=1

(1 − tλj ).

Then
Pλ(q) = z−1

λ gλ(E)(q + n − 1)n. (2)

Proof. Let x = (x1, x2, . . . ), y = (y1, y2, . . . ), and z = (z1, z2, . . . ) be three
disjoint sets of variables. Let Hµ denote the product of the hook lengths of
the partition µ (defined e.g. in [12, p. 373]). Write sλ and pλ for the Schur
function and power sum symmetric function indexed by λ. The following
identity is the case k = 3 of [5, Prop. 2.2] and [12, Exer. 7.70]:

∑

µ`n

Hµsµ(x)sµ(y)sµ(z) =
1

n!

∑

uvw=1 inSn

pρ(u)(x)pρ(v)(y)pρ(w)(z). (3)

For a symmetric function f(x) let f(1q) = f(1, 1, . . . , 1, 0, 0, . . . ) (q 1’s).
Thus pρ(w)(1

q) = qκ(w). Let χλ(µ) denote the irreducible character of Sn

indexed by λ evaluated at a permutation of cycle type µ [12, §7.18]. Recall
[12, Cor. 7.17.5 and Thm. 7.18.5] that

sµ =
∑

ν`n

z−1
ν χµ(ν)pν,

where #Kν = n!/zν as above. Take the coefficient of pn(x)pλ(y) in equa-
tion (3) and set z = 1q. Since there are (n − 1)! n-cycles u, the right-hand
side becomes 1

n
Pλ(q). Hence

Pλ(q) = n
∑

µ`n

Hµz−1
n χµ(n)z−1

λ χµ(λ)sµ(1q). (4)

Write σ(i) = 〈n − i, 1i〉, the “hook” with one part equal to n − i and i parts
equal to 1, for 0 ≤ i ≤ n− 1. Now zn = n, and e.g. by [12, Exer. 7.67(a)] we
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have

χµ(n) =

{

(−1)i, if µ = σ(i), 0 ≤ i ≤ n − 1

0, otherwise.

Moreover, sσ(i)(1
q) = (q + n − i − 1)nH−1

σ(i) by the hook-content formula [12,

Cor. 7.21.4]. Therefore we get from equation (4) that

Pλ(q) = z−1
λ

n−1
∑

i=0

(−1)iχσ(i)(λ)(q + n − i − 1)n. (5)

The following identity is a simple consequence of Pieri’s rule [12, Thm. 7.15.7]
and appears in [7, I.3, Ex. 14]:

∏

i

1 + txi

1 − uxi

= 1 + (t + u)
n−1
∑

i=0

sσ(i)t
iun−i−1.

Substitute −t for t, set u = 1 and take the scalar product with pλ. Since
〈sµ, pλ〉 = χµ(λ) the right-hand side becomes (1−t)

∑n−1
i=0 (−1)iχσ(i)(λ)ti. On

the other hand, the left-hand side is given by
〈

exp

(

∑

n≥1

pn

n

)

· exp

(

−
∑

n≥1

pn

n
tn

)

, pλ

〉

=

〈

exp

(

∑

n≥1

pn

n
(1 − tn)

)

, pλ

〉

=
∏̀

i=1

(

1 − tλi
)

,

by standard properties of power sum symmetric functions [12, §7.7]. Hence

n−1
∑

i=0

(−1)iχσ(i)(λ)ti = gλ(t).

Comparing with equation (5) completes the proof.

Note.

1. Since (1 − E)(q + n)n+1 = (n + 1)(q + n − 1)n, equation (2) can be
rewritten as

Pλ(q) =
1

(n + 1)zλ

g′
λ(E)(q + n)n+1, (6)

where g′
λ(t) =

∏`

j=1(1 − tλj ).
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2. A different kind of generating function for the coefficients of Pλ(q)
(though of course equivalent to Theorem 3.1) was obtained by D. Zagier
[13, Thm. 1].

The zeros of the polynomial Pλ(q) have an interesting property that will
follow from the following result.

Theorem 3.2. Let g(t) be a complex polynomial of degree exactly d, such
that every zero of g(t) lies on the circle |z| = 1. Suppose that the multiplicity
of 1 as a root of g(t) is m ≥ 0. Let P (q) = g(E)(q + n − 1)n.

(a) If d ≤ n − 1, then

P (q) = (q + n − d − 1)n−d Q(q),

where Q(q) is a polynomial of degree d − m for which every zero has
real part (d − n + 1)/2.

(b) If d ≥ n−1, then P (q) is a polynomial of degree n−m for which every
zero has real part (d − n + 1)/2.

Proof. First, the statements about the degrees of Q(q) and P (q) are clear;
for we can write g(t) = c

∏

u(t−u) and apply the factors t−u consecutively.
If h(q) is any polynomial and u 6= 1 then deg (E − u)h(q) = deg h(q), while
deg (E − 1)h(q) = deg h(q) − 1.

The remainder of the proof is by induction on d. The base case d = 0 is
clear. Assume the statement for d < n − 1. Thus for deg g(t) = d we have

g(E)(q + n − 1)n = (q + n − d − 1)n−d Q(q)

= (q + n − d − 1)n−d

∏

j

(

q −
d − n + 1

2
− δji

)

for certain real numbers δj. Now

(E − u)g(E)(q + n − 1)n

= (q + n − d − 1)n−d Q(q) − u(q + n − d − 2)n−d Q(q − 1)

= (q + n − d − 2)n−d−1[(q + n − d − 1)Q(q) − u(q − 1) Q(q − 1)]

= (q + n − d − 2)n−d−1Q
′(q),
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say. The proof now follows from a standard argument (e.g., [8, Lemma 9.13]),
which we give for the sake of completeness. Let Q′(α + βi) = 0, where
α, β ∈ R. Thus

(α + βi + n − d − 1)
∏

j

(

α + βi −
d − n + 1

2
− δji

)

= u(α + βi − 1)
∏

j

(

α − 1 + βi −
d − n + 1

2
− δji

)

.

Letting |u| = 1 and taking the square modulus gives

(α + n − d − 1)2 + β2

(α − 1)2 + β2

∏

j

(

α − d−n+1
2

)2
+ (β − δj)

2

(

α − 1 − d−n+1
2

)2
+ (β − δj)2

= 1.

If α < (d − n + 2)/2 then

(α + n − d − 1)2 − (α − 1)2 < 0

and
(

α −
d − n + 1

2

)2

<

(

α − 1 −
d − n + 1

2

)2

.

The inequalities are reversed if α > (d− n + 2)/2. Hence α = (d− n + 2)/2,
so the theorem is true for d ≤ n − 1.

For d ≥ n−1 we continue the induction, the base case now being d = n−1
which was proved above. The induction step is completely analogous to the
case d ≤ n − 1 above, so the proof is complete.

Corollary 3.3. The polynomial Pλ(q) has degree n−`(λ)+1, and every zero
of Pλ(q) has real part 0.

Proof. The proof is immediate from Theorem 3.1 and the special case g(t) =
gλ(t) (as defined in Theorem 3.1) and d = n − 1 of Theorem 3.2.

It is easy to see from Corollary 3.3 (or from considerations of parity) that
Pλ(q) = (−1)nPλ(−q). Thus we can write

Pλ(q) =

{

Rλ(q
2), n even

qRλ(q
2), n odd,
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for some polynomial Rλ(q). It follows from Corollary 3.3 that Rλ(q) has
(nonpositive) real zeros. In particular (e.g., [11, Thm. 2]) the coefficients of
Rλ(q) are log-concave with no external zeros, and hence unimodal.

The case λ = (n) is especially interesting. Write Pn(q) for P(n)(q). From
equation (6) we have

Pn(q) =
1

n(n + 1)
((q + n)n+1 − (q)n+1).

Now
(q)n+1 = (−1)n+1(−q + n)n+1

and

(q + n)n+1 =
n+1
∑

k=1

c(n + 1, k)qk,

where c(n+1, k) is the signless Stirling number of the first kind (the number
of permutations w ∈ Sn+1 with k cycles) [10, Prop. 1.3.4]. Hence

1

n(n + 1)
((q + n)n+1 − (q)n+1) =

1
(

n+1
2

)

∑

k≡n (mod 2)

c(n + 1, k)xk.

We therefore get the following result, first obtained by Zagier [13, Applica-
tion 3].

Corollary 3.4. The number of n-cycles w ∈ Sn for which w·(1, 2, . . . , n) has
exactly k cycles is 0 if n−k is odd, and is otherwise equal to c(n+1, k)/

(

n+1
2

)

.

Is there a simple bijective proof of Corollary 3.4?
Let λ, µ ` n. A natural generalization of Pλ(q) is the polynomial

Pλ,µ(q) =
∑

ρ(w)=λ

qκ(wµ·w),

where wµ is a fixed permutation in the conjugacy class Kµ. Let us point
out that it is false in general that every zero of Pλ,µ(q) has real part 0. For
instance,

P332,332(q) = q8 + 35q6 + 424q4 + 660q2,

four of whose zeros are approximately ±1.11366 ± 4.22292i.
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