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Abstract

We present an introduction to Bayesian inference as it is used in probabilistic

models of cognitive development. Our goal is to provide an intuitive and accessible

guide to the what, the how, and the why of the Bayesian approach: what sorts

of problems and data the framework is most relevant for, and how and why it

may be useful for developmentalists. We emphasize a qualitative understanding

of Bayesian inference, but also include information about additional resources for

those interested in the cognitive science applications, mathematical foundations,

or machine learning details in more depth. In addition, we discuss some important

interpretation issues that often arise when evaluating Bayesian models in cognitive

science.

Keywords: Bayesian models; cognitive development
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1 Introduction

One of the central questions of cognitive development is how we learn so much from such

apparently limited evidence. In learning about causal relations, reasoning about object

categories or their properties, acquiring language, or constructing intuitive theories,

children routinely draw inferences that go beyond the data they observe. Probabilistic

models provide a general-purpose computational framework for exploring how a learner

might make these inductive leaps, explaining them as forms of Bayesian inference.

This paper presents a tutorial overview of the Bayesian framework for studying

cognitive development. Our goal is to provide an intuitive and accessible guide to

the what, the how, and the why of the Bayesian approach: what sorts of problems

and data the framework is most relevant for, and how and why it may be useful for

developmentalists. We consider three general inductive problems that learners face,

each grounded in specific developmental challenges:

1. Inductive generalization from examples, with a focus on learning the referents of

words for object categories.

2. Acquiring inductive constraints, tuning and shaping prior knowledge from expe-

rience, with a focus on learning to learn categories.

3. Learning inductive frameworks, constructing or selecting appropriate hypothesis

spaces for inductive generalization, with applications to acquiring intuitive theo-

ries of mind and inferring hierarchical phrase structure in language.

We also discuss several general issues as they bear on the use of Bayesian models:

assumptions about optimality, biological plausibility, and what idealized models can tell

us about actual human minds. The paper ends with an appendix containing a glossary

and a collection of useful resources for those interested in learning more.
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2 Bayesian Basics: Inductive generalization from

examples

The most basic question the Bayesian framework addresses is how to update beliefs and

make inferences in light of observed data. In the spirit of Marr’s (1982) computational-

level of analysis, it begins with understanding the logic of the inference made when

generalizing from examples, rather than the algorithmic steps or specific cognitive pro-

cesses involved. A central assumption is that degrees of belief can be represented as

probabilities: that our conviction in some hypothesis h can be expressed as a real num-

ber ranging from 0 to 1, where 0 means something like “h is completely false” and 1

that “h is completely true.” The framework also assumes that learners represent prob-

ability distributions and that they use these probabilities to represent uncertainty in

inference. These assumptions turn the mathematics of probability theory into an engine

of inference, a means of weighing each of a set of mutually exclusive and exhaustive

hypotheses H to determine which best explain the observed data. Probability theory

tells us how to compute the degree of belief in some hypothesis hi, given some data d.

Computing degrees of belief as probabilities depends on two components. One,

called the prior probability and denoted P (hi), captures how much we believe in hi

prior to observing the data d. The other, called the likelihood and denoted P (d|hi),

captures the probability with which we would expect to observe the data d if hi were

true. These combine to yield the posterior probability of hi, given via Bayes’ Rule:

P (hi|d) =
P (d|hi)P (hi)∑

hj∈H P (d|hj)P (hj)
. (1)

As we will see, the product of priors and likelihoods often has an intuitive interpretation.

It balances between a sense of plausibility based on background knowledge on one hand

and the data-driven sense of a “suspicious coincidence” on the other. In the spirit

of Ockham’s Razor, it expresses the tradeoff between the intrinsic complexity of an

explanation and how well it fits the observed data.
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The denominator in Equation 1 provides a normalizing term which is the sum of

the probability of each of the possible hypotheses under consideration; this ensures that

Bayes’ Rule will reflect the proportion of all of the probability that is assigned to any

single hypothesis hi, and (relatedly) that the posterior probabilities of all hypotheses

sum to one. This captures what we might call the “law of conservation of belief”: a

rational learner has a fixed “mass” of belief to allocate over different hypotheses, and the

act of observing data just pushes this mass around to different regions of the hypothesis

space. If the data lead us to strongly believe one hypothesis, we must decrease our

degree of belief in all other hypotheses. By contrast, if the data strongly disfavor all

but one hypothesis, then (to paraphrase Sherlock Holmes) whichever remains, however

implausible a priori, is very likely to be the truth.

To illustrate how Bayes’ Rule works in practice, let us consider a simple application

with three hypotheses. Imagine you see your friend Sally coughing. What could explain

this? One possibility (call it hcold) is that Sally has a cold; another (call it hcancer is

that she has lung cancer; and yet another (call it hheartburn) is that she has heartburn.

Intuitively, in most contexts, hcold seems by far the most probable, and may even be the

only one that comes to mind consciously. Why? The likelihood favors hcold and hcancer

over hheartburn, since colds and lung cancer cause coughing, while heartburn does not.

The prior, however, favors hcold and hheartburn over hcancer: lung cancer is thankfully rare,

while colds and heartburn are common. Thus the posterior probability – the product

of these two terms – is high only for hcold.

The intuitions here should be fairly clear, but to illustrate precisely how Bayes’

Rule can be used to back them up, it can be helpful to assign numbers.1 Let us set

the priors as follows: P (hcold) = 0.5, P (hheartburn) = 0.4, and P (hcancer) = 0.1. This

captures the intuition that colds are slightly more common than heartburn, but both are

1Note that we have assumed that these are the only possible hypotheses, and that exactly one
applies. That is why the priors are much higher than the base rates of these diseases. In a real
setting, there would be many more diseases under consideration, and each would have much lower
prior probability. They would also not be mutually exclusive. Adding such details would make the
math more complex but not change anything else, so for clarity of exposition we consider only the
simplified version.
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significantly more common than cancer. We can set our likelihoods to be the following:

P (d|hcold) = 0.8, P (d|hcancer) = 0.9, and P (d|hheartburn) = 0.1. This captures the

intuition that both colds and cancer tend to lead to coughing, and heartburn generally

does not. Plugging this into Bayes’ Rule gives:

P (hcold|d) =
P (d|hcold)P (hcold)

P (d|hcold)P (hcold) + P (d|hcancer)P (hcancer) + P (d|hheartburn)P (hheartburn)

=
(0.8)(0.5)

(0.8)(0.5) + (0.9)(0.1) + (0.1)(0.4)

=
0.4

0.4 + 0.09 + 0.04
= 0.7547.

Thus, the probability that Sally is coughing because she has a cold is much higher than

the probability of either of the other two hypotheses we considered. Of course, these

inferences could change with different data or in a different context. For instance, if the

data also included coughing up blood, chest pain, and shortness of breath, you might

start to consider lung cancer as a real possibility: the likelihood now explains that data

better than a cold would, which begins to balance the low prior probability of cancer

in the first place. On the other hand, if you had other information about Sally – e.g.,

that she had been smoking two packs of cigarettes per day for 40 years – then it might

raise the prior probability of lung cancer in her case. Bayes’ Rule will respond to these

changes in the likelihood or the prior in a way that accords with our intuitive reasoning.

The Bayesian framework is generative, meaning that observed data are assumed

to be generated by some underlying process or mechanism responsible for creating the

data. In the example above, data (symptoms) are generated by an underlying illness.

More cognitively, words in a language may be generated by a grammar of some sort, in

combination with social and pragmatic factors. In a physical system, observed events

may be generated by some underlying network of causal relations. The job of the learner

is to evaluate different hypotheses about the underlying nature of the generative process,

and to make predictions based on the most likely ones. A probabilistic model is simply

a specification of the generative processes at work, identifying the steps (and associated
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probabilities) involved in generating data. Both priors and likelihoods are typically

describable in generative terms.

To illustrate how the nature of the generative process can affect a learner’s inference,

consider another example, also involving illness. Suppose you observe that 80% of the

people around you are coughing. Is this a sign that a new virus is going around? Your

inference will depend on how those data were generated – in this case, whether it is a

random sample (composed, say, of people that you saw on public transport) or a non-

random one (composed of people you see sitting in the waiting room at the doctor’s

office). The data are the same – 80% of people are coughing – regardless of how it was

generated, but the inferences are very different: you are more likely to conclude that

a new virus is going around if you see 80% of people on the bus coughing. A doctor’s

office full of coughing people means little about whether a new virus is going around,

since doctor’s offices are never full of healthy people.

How can the logic of Bayesian inference, illustrated here with these medical exam-

ples, apply to problems like word and concept learning, the acquisition of language,

or learning about causality or intuitive theories? In these cases, there is often a huge

space of hypotheses (possibly an infinite one). It may not be clear how the models in

question should be interpreted generatively, since they seem to delineate sets (e.g., the

set of instances in a concept, the set of grammatical sentences, or the set of phenomena

explained by a theory). Here we illustrate how Bayesian inference works more generally

in the context of a simple schematic example. We will build on this example throughout

the paper, and see how it applies and reflects problems of cognitive interest.

Our simple example, shown graphically in Figure 1, uses dots to represent individual

data points (e.g., words or events) generated independently from some unknown process

(e.g., a language or a causal network) that we depict in terms of a region or subset of

space: the process generates data points randomly within its region, never outside.

Just as each of the hypotheses in the medical example above (i.e., cold, heartburn,

or cancer) are associated with different data (i.e., symptoms), each hypothesis here
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(i) (ii)

Figure 1: (i) Example data and hypothesis. Graphical representation of data and one
possible hypothesis about how those data were generated. There are three hypotheses
here, each corresponding to a single rectangle. The black data points can only be
generated by the solid or the dashed rectangle. A new data point in position a might
be generated if the dashed rectangle is correct, but not the solid or dotted one. (ii) Some
hypotheses in the hypothesis space for this example. Hypotheses consist of rectangles;
some are well-supported by the data and some are not.

encodes a different idea about which subset of space the data are drawn from. Figure

1(i) depicts three possible hypotheses, each consisting of a single rectangle in the space:

hsolid corresponds to the solid line, hdashed to the dashed line, and hdotted to the dotted

line. Before seeing data, a learner might have certain beliefs about which hypothesis is

most likely; perhaps they believe that all are equally likely, or they have a bias to prefer

smaller or larger rectangles. These prior beliefs, whatever they are, would be captured

in the prior probability of each hypothesis: P (hsolid), P (hdashed), and P (hdotted). The

different hypotheses also yield different predictions about what data one would expect

to see; in Figure 1(i), the data are consistent with hsolid and hdashed, but not hdotted,

since some of the points are not within the dotted rectangle. This would be reflected in

their likelihoods; P (d|hsolid) and P (d|hdashed) would both be non-zero, but P (d|hdotted)

would be zero. Bayesian inference can also yield predictions about about unobserved

data. For instance, one would only observe new data at position a if hdashed is correct,

since P (a|hsolid) = 0, but P (a|hdashed) > 0. In this sense, inferring the hypotheses most

likely to have generated the observed data guides the learner in generalizing beyond

the data to new situations.

The hypothesis space H can be thought of as the set of all possible hypotheses,
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defined by the structure of the problem that the learner can entertain. Figure 1(ii)

shows a possible hypothesis space for our example, consisting of all possible rectangles

in this space. Note that this hypothesis space is infinite in size, although just a few

representative hypotheses are shown.

The hypothesis space is defined by the nature of the learning problem, and thus

provided to the learner a priori. For instance, in our example, the hypothesis space

would be constrained by the range of possible values for the lower corner (x and y),

length (l), and width (w) of rectangular regions. Such constraints need not be very

strong or very limiting: for instance, one might simply specify that the range of possible

values for x, y, l, and w lies between 0 and some extremely large number like 109, or

be drawn from a probability distribution with a very long tail. In this sense, the prior

probability of a hypothesis P (hi) is also given by a probabilistic generative process –

a process operating “one level up” from the process indexed by each hypothesis that

generates the observed data points. We will see below how these hypothesis spaces and

priors need not be built in, but can be constructed or modified from experience.

In our example the hypothesis space has a very simple structure, but because a

Bayesian model can be defined for any well-specified generative framework, inference

can operate over any representation that can be specified by a generative process. This

includes, among other possibilities, probability distributions in a space (appropriate

for phonemes as clusters in phonetic space); directed graphical models (appropriate

for causal reasoning); abstract structures including taxonomies (appropriate for some

aspects of conceptual structure); objects as sets of features (appropriate for catego-

rization and object understanding); word frequency counts (convenient for some types

of semantic representation); grammars (appropriate for syntax); argument structure

frames (appropriate for verb knowledge); Markov models (appropriate for action plan-

ning or part-of-speech tagging); and even logical rules (appropriate for some aspects of

conceptual knowledge). The appendix contains a detailed list of papers that use these

and other representations.
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The representational flexibility of Bayesian models allows us to move beyond some

of the traditional dichotomies that have shaped decades of research in cognitive de-

velopment: structured knowledge vs. probabilistic learning (but not both), or innate

structured knowledge vs. learned unstructured knowledge (but not the possibility of

knowledge that is both learned and structured). As a result of this flexibility, tradi-

tional critiques of connectionism that focus on their inability to adequately capture

compositionality and systematicity (e.g., Fodor & Pylyshyn, 1988) do not apply to

Bayesian models. In fact, there are several recent examples of Bayesian models that

embrace language-like or compositional representations in domains ranging from causal

induction (Griffiths & Tenenbaum, 2009) to grammar learning (Perfors, Tenenbaum,

& Regier, submitted) to theory acquisition (Kemp, Tenenbaum, Niyogi, & Griffiths,

2010).

2.1 A case study: learning names for object categories

To illustrate more concretely how this basic Bayesian analysis of inductive generalization

applies in cognitive development, consider the task a child faces in learning names for

object categories. This is a classic instance of the problem of induction in cognitive

development, as many authors have observed. Even an apparently simple word like

“dog” can refer to a potentially infinite number of hypotheses, including all dogs, all

Labradors, all mammals, all animals, all pets, all four-legged creatures, all dogs except

Chihuahuas, all things with fur, all running things, etc. Despite the sheer number of

possible extensions of the word, young children are surprisingly adept at acquiring the

meanings of words – even when there are only a few examples, and even when there is

no systematic negative evidence (Markman, 1989; Bloom, 2000).

How do children learn word meanings so well, so quickly? One suggestion is that in-

fants are born equipped with strong prior knowledge about what sort of word meanings

are natural (Carey, 1978; Markman, 1989), which constrains the possible hypotheses

considered. For instance, even if a child is able to rule out part-objects as possible
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Figure 2: Schematic view of hypotheses about possible extensions considered by the
learner in Xu & Tenenbaum (2007); because the taxonomy is hierarchical, the hypothe-
ses are nested within each other. Figure reproduced from Xu & Tenenbaum (2007).

extensions, she cannot know what level of a taxonomy the word applies: whether “dog”

actually refers to dogs, mammals, Labradors, canines, or living beings. One solution

would be to add another constraint – the presumption that count nouns map preferen-

tially to the basic level in a taxonomy (Rosch, Mervis, Gray, Johnson, & Boyes-Braem,

1976). This preference would allow children to learn names for basic-level categories,

but would be counterproductive for every other kind of word.

Xu and Tenenbaum (2007b) present a Bayesian model of word learning that offers

a precise account of how learners could make meaningful generalizations from one or a

few examples of a novel word. This problem can be schematically depicted as in Figure

2: for concepts that are organized in a hierarchical taxonomy, labelled examples are

consistent with multiple different extensions. For instance, a single label “Labrador”

could pick out only Labradors, but it could also pick out dogs, animals, or living things.

This problem is faced by a child who, shown one or many objects with a given label,

must decide which hypothesis about possible extensions of the label is best. Intuitively,
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(i) (ii)

Figure 3: Learning object words. (i) Hypothesis space that is conceptually similar
to that in Figure 2, now depicted as a two-dimensional dot diagram; hypotheses with
higher probability are darker rectangles. With one data point, many hypotheses have
some support. (ii) With three examples, the most restrictive hypothesis is much more
strongly favored.

we would expect that when given one object, a reasonable learner should not strongly

prefer any of the hypotheses that include it, though the more restricted ones might be

slightly favored. If the learner were shown three examples, we would expect the most

closely-fitting hypothesis to be much more strongly preferred. For instance, given one

Labrador as an example of a “fep”, it is unclear whether “fep” refers to Labradors,

dogs, mammals, or animals. But if given three Labradors as the first three examples of

“fep”, it would be quite surprising – a highly suspicious coincidence – if “fep” in fact

referred to a much more general class such as all dogs.

The same problem is depicted more abstractly in the dot diagram in Figure 3. Su-

perordinate hypotheses (e.g., “animal”) are represented as larger rectangles. Sometimes

they fully enclose smaller rectangles (corresponding to more subordinate hypotheses),

just as the extension of “animals” includes all Labradors. Sometimes they can also cross-

cut each other, just as the extension of “pets” includes many (but not all) Labradors.

The smaller rectangles represent hypotheses with smaller extensions, and we can use

this to understand how Bayesian reasoning captures the notion of a suspicious coin-

cidence, explaining the tendency to increasingly favor the smallest hypothesis that is

consistent with the data as the number of data points increases.

This ability emerges due to the likelihood p(d|h), the probability of observing the
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data d assuming hypothesis h is true. In general, more restrictive hypotheses, corre-

sponding to smaller regions in the data space, receive more likelihood for a given piece

of data. If a small hypothesis is the correct extension of a word, then it is not too

surprising that the examples occur where they do; a larger hypothesis could be consis-

tent with the same data points, but explains less well exactly why the data fall where

they do. The more data points we observe falling in the same small region, the more

of a suspicious coincidence it would be if in fact the word’s extension corresponded to

a much larger region.

More formally, if we assume that data are sampled uniformly at random from all

cases consistent with the concept, then the probability of any single data point d con-

sistent with h is inversely proportional to the size of the region h picks out – call this

the “size of h.” This is why when there is one data point, as in Figure 3(i), there is a

slight preference for the most restrictive (smallest) hypothesis; however, the preference

is only slight, because it could still easily have been generated by any of the hypothe-

ses that include it. But if multiple data points are generated independently from the

concept, as in Figure 3(ii), the likelihood of h with n consistent examples is inversely

proportional to the size of h, raised to the nth power. Thus the preference for smaller

consistent hypotheses over larger hypotheses increases exponentially with the number

of examples, and the most restrictive consistent hypothesis is strongly favored. This

assumption is often referred to as the size principle (Tenenbaum & Griffiths, 2001).

The math behind the size principle is best understood concretely if we think about

the hypotheses as discrete subsets of possible objects we might observe, such as bags

of colored marbles, rather than as continuous regions such as rectangular regions in a

two-dimensional space. Suppose bag A contains two marbles (a red and a green) and

bag B contains three (a red, a green, and a yellow). The probability of pulling the red

marble out of bag A is 1
2

= 0.5, since there are two possible marbles to choose from.

The probability of pulling the red marble out of bag B is 1
3

= 0.33 for similar reasons.

Thus, if you know only that a red marble has been pulled out of a bag (but not which
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bag it is), you might have a weak bias to think that it was pulled out of bag A, which

is 0.5
0.33

= 1.67 times as likely as bag B.

Now suppose that someone draws out the following series of marbles, shaking the

bag fully between each draw: red, green, red, green. At this point most people would

be more certain that the bag is A. The size principle explains why. If the probability

of pulling one red (or green) marble from bag A is 1
2
, the probability of pulling that

specific series of marbles is 1
2
∗ 1

2
∗ 1

2
∗ 1

2
= 1

24 = 1
16

= 0.0625, since each draw is

independent. By contrast, the probability of drawing those marbles from bag B is

1
3
∗ 1

3
∗ 1

3
∗ 1

3
= 1

34 = 1
91

= 0.0109. This means that bag A is now 0.0625
0.0109

= 5.73 times

as likely as B. In essence, the slight preference for the smaller bag is magnified over

many draws, since it becomes an increasingly unlikely coincidence for only red or green

marbles to be drawn if there is also a yellow one in there. This can be magnified if

the number of observations increases still further (e.g., consider observing a sequence

of red, green, red, green, green, green, red, green, red, red, green) or the relative size

of the bags changes (e.g., suppose the observations are still red, green, red, green, but

that the larger bag contains six marbles, each of a different color, rather than three).

In either case bag A is now preferred to bag B by over a factor of 80, and there is little

doubt that the marbles were drawn from bag A. In a similar way, a small hypothesis

makes more precise predictions; thus, if the data are consistent with those predictions,

then the smaller hypothesis is favored.

The size principle explains how it is possible to make strong inferences based on very

few examples. It also captures the notion of a suspicious coincidence: as the number

of examples increases, hypotheses that make specific predictions – those with more

explanatory power – tend to be favored over those that are more vague. This provides

a natural solution to the “no negative evidence” problem: deciding among hypotheses

given positive-only examples. As the size of the data set approaches infinity, a Bayesian

learner rejects larger or more overgeneral hypotheses in favor of more precise ones. With

limited amounts of data, the Bayesian approach can make more subtle predictions, as
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the graded size-based likelihood trades off against the preference for simplicity in the

prior. The likelihood in Bayesian learning can thus be seen as a principled quantitative

measure of the weight of implicit negative evidence – one that explains both how and

when overgeneralization should occur.

The results of Xu and Tenenbaum (2007b) reflect this idea. Adults and 3- and

4-year-old children were presented with 45 objects distributed across three different

superordinate categories (animals, vegetables, and vehicles), including many basic-level

and subordinate-level categories within those. Subjects were then shown either one or

three labelled examples of a novel word such as “fep”, and were asked to pick out the

other “feps” from the set of objects. Both children and adults responded differently

depending on how many examples they were given. Just as in Figure 3, with one

example, people and the model both showed graded generalization from subordinate

to superordinate matches. By contrast, when given three examples, generalizations

became much sharper and were usually limited to the most restrictive level.

This also illustrates how assumptions about the nature of the generative process

affect the types of inferences that can be made. We have seen that people tend show

restricted generalizations on the basis of three examples; however, this only if they

think the experimenter was choosing those examples sensibly (i.e., as examples of the

concept). If people think the data were generated in some other way – for instance, an-

other learner was asking about those particular pictures – then their inferences change

(Xu & Tenenbaum, 2007a). In this case, the lack of non-Labradors no longer reflects

something the experimenter can control; though it is a coincidence, it is not a suspi-

cious one. The data are the same, but the inference changes as the generative process

underlying the data changes. In other words, the size principle applies in just those

cases where the generative process is such that data are generated from the concept

(or, more generally, hypothesis) itself.

So far we have illustrated how Bayesian inference can capture generalization from

just a few examples, the simultaneous learning of overlapping extensions, and the use
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of implicit negative evidence. All of these are important, but it is also true that we

have built in a great deal, including a restricted and well-specified hypothesis space.

Very often, human learners must not make reasonable specific generalizations within a

set hypothesis space, they also much be able to make generalizations about what sort

of generalizations are reasonable. We see an example of this in the next section.

3 Acquiring inductive constraints

One of the implications of classic problems of induction is the need for generalizations

about generalizations, or inductive constraints, of some sort. The core problem is how

induction is justified based on a finite sample of any kind of data, and the inevitable

conclusion is that there must be some kind of constraint that enables learning to occur.

Nearly every domain studied by cognitive science yields evidence that children rely

on higher-level inductive constraints. Children learning words prefer to apply them

to whole objects rather than parts (Markman, 1990). Babies believe that agents are

distinct from objects in that they can move without contact (Spelke, Phillips, & Wood-

ward, 1995) and act in certain ways in response to goals (Woodward, 1998; Gergely &

Csibra, 2003). Confronted with evidence that children’s behavior is restricted in pre-

dictable ways, the natural response is to hypothesize the existence of innate constraints,

including the whole object constraint (Markman, 1990) core systems of object repre-

sentation, psychology, physics, and biology (Carey & Spelke, 1996; Spelke & Kinzler,

2007; Carey, 2009), and so on. Given that they appear so early in development, it

seems sensible to postulate that these constraints are innate rather than learned.

However, it may be possible for inductive constraints to be learned, at least in some

cases. For instance, consider the problem of learning that some features “matter” for

categorizing new objects while others should be ignored (e.g., Nosofsky, 1986). Acquir-

ing higher-level abstract knowledge would enable one to make correct generalizations

about an object from a completely novel category, even after seeing only one example.

A wealth of research indicates that people are capable of acquiring this sort of knowl-
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edge, both rapidly in the lab (Nosofsky, 1986; Perfors & Tenenbaum, 2009) and over

the course of development (Landau, Smith, & Jones, 1988; L. Smith, Jones, Landau,

Gershkoff-Stowe, & Samuelson, 2002). Children also acquire other sorts of inductive

constraints over the course of development, including the realization that categories

may be organized taxonomically (Rosch, 1978), that some verbs occur in alternating

patterns and others don’t (e.g., Pinker, 1989) or that comparative orderings should be

transitive (Shultz & Vogel, 2004).

How can an inductive constraint be learned, and how might a Bayesian framework

explain this? Is it possible to acquire an inductive constraint faster than the specific

hypotheses it is meant to constrain? If not, how can we explain people’s learning in

some situations? If so, what principles explain this acquisition?

A familiar example of the learning of inductive constraints was provided by Goodman

(1955). Suppose we have many bags of colored marbles and discover by drawing samples

that some bags seem to have black marbles, others have white marbles, and still others

have red or green marbles. Every bag is uniform in color; no bag contains marbles of

more than one color. If we draw a single marble from a new bag in this population

and observe a color never seen before – say, purple – it seems reasonable to expect that

other draws from this same bag will also be purple. Before we started drawing from

any of these bags, we had much less reason to expect that such a generalization would

hold. The assumption that color is uniform within bags is a learned overhypothesis,

an acquired inductive constraint. The ability to infer such a constraint is not in itself

a solution to the ultimate challenges of induction; it rests on other, arguably deeper

assumptions – that the new bag is like the previous bags we have seen in relevant

ways. Yet it is still a very useful piece of abstract knowledge that guides subsequent

generalizations and can itself be induced from experience.

We can illustrate a similar idea in the rectangle world by imagining a learner who

is shown the schematic data in Figure 4(i). Having seen point a only, the learner has

no way to decide whether b or c is more likely to be in the same category or region as
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(i) (ii)

Figure 4: Learning higher-order information. (i) Given point a, one cannot identify
whether b or c is more likely. (ii) Given additional data, a model that could learn
higher-order information about hypotheses might favor regions that tend to be long,
thin rectangles oriented along the y axis (i.e., regions for which the length l tends to
be short, the width w tends to be long, and the location (x and y coordinates) can
be nearly anywhere). If this is the case, points a and b are probably within the same
region, but a and c are not.

a. However, if the learner has also seen the data in Figure 4(ii), they might infer both

first-order and second-order knowledge about the data set. First-order learning refers

to the realization that the specific rectangular regions constitute the best explanation

for the data points seen so far; second-order (overhypothesis) learning would involve

realizing that the regions tend to be long, thin, and oriented along the y-axis. Just

as learning the how categories are organized helps children generalize from new items,

this type of higher-order inference helps with the interpretation of novel data, leading

to the realization that point b is probably in the same region as a but point c is not,

even though b and c are equidistant from a.

A certain kind of Bayesian model, known as a hierarchical Bayesian model (HBM),

can learn overhypotheses by not only choosing among specific hypotheses, but by also

making higher-order generalizations about those hypotheses. As we’ve already seen, in

a non-hierarchical model, the modeler sets the range of the parameters that define the

hypotheses. In a hierarchical model, the modeler instead specifies hyperparameters –

parameters defining the parameters – and the model learns the range of the parameters

themselves. So rather than being given that the range of each of the the lower corner
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(x, y), length l, and width w values lies between 0 and 109, a hierarchical model might

instead learn the typical range of each (e.g., that l tends to be short while w tends to

be long, as depicted in Figure 4(ii)) while the modeler specifies the range of the ranges.

The idea of wiring in abstract knowledge at higher levels of hierarchical Bayesian

models may seem reminiscent of nativist approaches, but several key features fit well

with empiricist intuitions about learning. The top level of knowledge in an HBM is

prespecified, but every level beneath that can be learned. As one moves up the hierarchy,

knowledge becomes increasingly abstract and imposes increasingly weak constraints on

the learners specific beliefs at the lower levels. Thus, a version of the model that

learns at higher levels builds in weaker constraints than a version that learns only at

lower levels. By adding further levels of abstraction to an HBM while keeping pre-

specified parameters to a minimum, at the highest levels of the model, we can come

increasingly close to the classical empiricist proposal for the bottom-up, data-driven

origins of abstract knowledge.

Although the precise mathematical details of any HBM are too complex to go into

detail here, we can give a simplified example designed to motivate how it might be

possible to learn on multiple levels simultaneously. Imagine you are faced with the

marble example described earlier. We can capture this problem by saying that for each

bag b, you have to learn the distribution of colors in the bag: call this distribution θb.

At the same time, you want to make two inferences about the sets of bags as a whole:

how uniform colors tend to be within bags (call this α) and what sorts of colors exist

overall (call this β). Here, α and β are the hyperparameters of each of the θb values,

since how likely any particular bag is will depend on the higher-level assumptions about

bags: if you think, for instance, that colors tend to be uniform within bags, then a bag

with lots of marbles of different colors in it will be low probability relative to a bag

with only one. We can use this fact to learn on the higher level as well. A Bayesian

model that sees three bags, all uniform in color, will search for the setting of α, β, and

θ that make the observed data most probable; this will correspond to α values that
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tend to favor uniformity within bags, and β and θ values that capture the observed

color distributions. The Bayesian model learns these things simultaneously in the sense

that it seeks to maximize the joint probability of all of the parameters, not just the

lower-level ones.

This example is a simplified description of one of the existing hierarchical Bayesian

models for category learning (Kemp, Perfors, & Tenenbaum, 2007); there are sev-

eral other HBMs for the same underlying problem (Navarro, 2006; Griffiths, Sanborn,

Canini, & Navarro, 2008; Heller, Sanborn, & Chater, 2009). Though they differ in

many particulars, what all of these models have in common is that they can perform

inference on multiple levels of abstraction. When presented with data consisting of

specific objects and features, these models are capable of making generalizations about

the specific objects as well as the appropriate generalizations about categorization in

general. For instance, children in an experiment by L. Smith et al. (2002) were pre-

sented with four novel concepts and labels and acquired a bias to assume not only that

individual categories like chairs tend to be organized by shape, but also that categories

of solid artifacts in general are as well. A hierarchical Bayesian model can make the

same generalization on the basis of the same data (Kemp, Perfors, & Tenenbaum, 2007).

A surprising effect of learning in hierarchical models is that, quite often, the higher-

order abstractions are acquired before all of the specific lower-level details: just as

children acquire some categorization biases even before they have learned all categories,

the model might infer parameter values such that l tends to be short and w tends to be

long, significantly before the size and location of each rectangular region is learned with

precision. This effect, which we might call the “blessing of abstraction”2, is somewhat

counterintuitive. Why are higher-order generalizations like this sometimes easier for a

Bayesian learner to acquire?

One reason is that the higher-level hypothesis space is often smaller than the lower-

level ones. As a result, the model has to choose between fewer options at the higher level,

which may require less evidence. In our rectangle example, the higher-level knowledge

2We thank Noah Goodman for this coinage.
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may consist of only three options: l and w are approximately equal, l is smaller than

w, or w is smaller than l. Even if a learner doesn’t know whether l is 10 units or 11

units long and w is 20 or 22, it might be fairly obvious that l is smaller than w.

More generally, the higher-level inference concerns the lower-level hypothesis space

(and is therefore based on the data set as a whole), whereas the lower-level inference is

only relevant for specific data points. A single data point is informative only about the

precise size and location of a single region. However, it – and every other single data

point – is informative about all of the higher-level hypotheses. There is, in effect, more

evidence available to the higher levels than the lower ones, and they can therefore be

learned quite quickly.

Is there empirical evidence that people acquire higher-level abstract knowledge at

the same time as, or before, lower-level specific knowledge? Adult laboratory category

learning studies indicate that generalizations on the basis of abstract knowledge occurs

at least as rapidly as lower-level generalizations (Perfors & Tenenbaum, 2009). There is

also some indication that children show an abstract to concrete shift in both biological

knowledge (Simons & Keil, 1995) and categorization, tending to differentiate global,

super-ordinate categories before basic level kinds (Mandler & McDonough, 1993). Even

infants have been shown to have the capacity to form overhypotheses given a small

amount of data, providing initial evidence that the mechanisms needed for rapidly

acquired inductive constraints exist early in development (Dewar & Xu, in press).

There is also a great deal of research that demonstrates the existence of abstract

knowledge before any concrete knowledge has been acquired. For instance, the core

knowledge research program suggests that before children learn about many specific

physical objects or mental states, they have abstract knowledge about physical objects

and intentional agents in general (e.g., Spelke & Kinzler, 2007). The core knowledge

view suggests that the presence of this abstract knowledge so early in development, and

before the existence of specific knowledge, implies that the abstract knowledge must be

innate in some meaningful sense. More broadly, the basic motivation for positing innate
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constraints on cognitive development is that without these constraints, children would

be unable to infer the specific knowledge that they seem to acquire from the limited data

available to them. What is critical to the argument is that some constraints are present

prior to learning some of the specific data, not that those constraints must be innate.

Approaches to cognitive development that emphasize learning from data typically view

the course of development as a progressive layering of increasingly abstract knowledge

on top of more concrete representations; under such a view, learned abstract knowledge

would tend to come in after more specific concrete knowledge is learned, so the former

could not usefully constrain the latter.

This view is sensible in the absence of explanations that can capture how abstract

constraints could be learned together with (or before) the more specific knowledge they

are needed to constrain. However, the hierarchical Bayesian framework provides such

an explanation (or, at minimum, evidence that such a thing is possible). A model

with the capability of acquiring abstract knowledge of a certain form3 can identify

what abstract knowledge is best supported by the data by learning which values of

hyper-parameters (like α and β) are the most probable given the data seen so far. If

an abstract generalization like this can be acquired very early and can function as a

constraint on later acquisition of specific data, it may function effectively as if it were an

innate domain-specific constraint, even if it is in fact not innate and instead is acquired

by domain-general induction from data.

In sum, then, hierarchical Bayesian models offer a valuable tool for exploring ques-

tions of innateness due to the ability to limit built-in knowledge to increasingly abstract

levels and thereby learn inductive constraints at other levels. As we will see in the next

section, the Bayesian framework is also a useful way of approaching these questions for

another reason – their ability to evaluate the rational tradeoff between the simplicity

of a hypothesis and its goodness-of-fit to the evidence in the world. Because of this,

Bayesian learners can make inferences that otherwise appear to go beyond the amount

3See Section for a more thorough discussion of how this degree of supervision is consistent with a
non-innatist perspective, and is in fact impossible to avoid in any model of learning.
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of evidence available.

4 Developing inductive frameworks

The hierarchical Bayesian models described above explain the origins of inductive biases

and constraints by tuning priors in response to data observed from multiple settings

or contexts. But the acquisition of abstract knowledge often appears more discrete or

qualitative – more like constructing an appropriate hypothesis space, or selecting an ap-

propriate hypothesis space from a higher level “hypothesis space of hypothesis spaces”.

Consider the “theory theory” view of cognitive development. Children’s knowledge

about the world is organized into intuitive theories with a structure and function anal-

ogous to scientific theories (Carey, 1985; Gopnik & Meltzoff, 1997; Karmiloff-Smith,

1988; Keil, 1989). The theory serves as an abstract framework that guides inductive

generalization at more concrete levels of knowledge, by generating a space of hypothe-

ses. Intuitive theories have been posited to underlie real-world categorization (Murphy

& Medin, 1985), causal induction (Waldmann, 1996; Griffiths & Tenenbaum, 2009),

biological reasoning (Atran, 1995; Inagaki & Hatano, 2002; Medin & Atran, 1999),

physical reasoning (McCloskey, 1983) and social interaction (Nichols & Stich, 2003;

Wellman, 1990). For instance, an intuitive theory of mind generates hypotheses about

how a specific agent’s behavior might be explained in particular situations – candidate

explanations framed in terms of mental states such as goals, beliefs, or preferences.

Under this view, cognitive development requires recognizing that a current theory of a

domain is inadequate, and revising it in favor of a new theory that makes qualitative

conceptual distinctions not made in the earlier theory (Carey, 1985; Gopnik, 1996).

Probabilistic models provide a way to understand how such a process of theory change

might take place, and in particular how a learner might weigh the explanatory power

of alternative theories against each other. In the Bayesian framework, developmental

change is a result of model selection; as data accumulate, eventually one theory becomes

more likely than another, and the learner prefers a different one than before. In the
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next section we describe how and why this transition occurs.

4.1 Trading off parsimony and goodness-of-fit

One of the most basic challenges in choosing between theories (or grammars, or other

kinds of inductive frameworks) is trading off the parsimony, or simplicity, of a theory

with how well it fits the observed data. To take a developmental example inspired

by one of the papers that appears in this special issue (Lucas et al., submitted), we

can imagine a child choosing between two theories of human choice behavior. Under

one theory, everybody shares essentially the same assumptions about what kinds of

things are desirable, such as having the same preferences for different kinds of food

(and hence everybody has the same preferences as the child). Under the other theory,

different people can possess different preferences. The developmental data suggest that

a transition between these two theories occurs when children are between 14 and 18

months of age (Repacholi & Gopnik, 1997). However, the second theory is significantly

more complex than the first, with the information required to specify the preferences of

everybody the child knows increasing with the number of people. This extra complexity

makes the theory more flexible, and thus better able to explain the pattern of choices a

group of people might make. However, even if it were the case that everybody shared

the same preferences, any random variation in people’s choices could be explained by

the more complex theory in terms of different people having different preferences. So,

how can the child know when a particular pattern of choices should lead to the adoption

of this more complex theory?

Developing intuitive theories requires trading off parsimony with goodness-of-fit. A

more complex theory will always fit the observed data better, and thus needs to be

penalized for its additional flexibility. While our example focuses on the development

of theories of preference, the same problem arises whenever theories, grammars or other

inductive frameworks that differ in complexity need to be compared. Just as a higher-

order polynomial is more complicated but can fit a data set more precisely, so too can a
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highly expressive theory or grammar, with more internal degrees of freedom, fit a body

of data more exactly. How does a scientist or a child recognize when to stop positing

ever more complex epicycles, and instead adopt a qualitatively different theoretical

framework? Bayesian inference provides a general-purpose way to formalize a rational

tradeoff between parsimony and fit.

As we saw earlier, goodness-of-fit for a hypothesis h is captured by the likelihood

term in Bayes’ Rule, or P (d|h), while the prior P (h) reflects other sources of a learner’s

beliefs. Priors can take various forms, but in general, a preference for simpler or more

parsimonious hypotheses will emerge naturally without having to be engineered deliber-

ately. This preference derives from the generative assumptions underlying the Bayesian

framework, in which hypotheses are themselves generated by a stochastic process that

produces a space of candidate hypotheses and P (h) reflects the probability of generating

h under that process.

To illustrate, consider the three hypotheses shown in Figure 5. We expand on our

previous example by now stipulating that individual hypotheses may include more than

one rectangular subregion. As a result, hypotheses are generated by first choosing a

number of rectangular subregions and then choosing l, w, x, and y for each subregion.

The first choice of how many subregions could be biased towards smaller numbers, but it

need not be. Simpler hypotheses, corresponding to those with fewer subregions, would

still receive higher prior probability because they require fewer choice points in total

to generate. The simplest hypothesis A, with one subregion, can be fully specified by

making only four choices: l, w, x, and y. Hypothesis C, at the other extreme, contains

sixteen distinct rectangular subregions, and therefore requires 64 separate choices to

specify, four for each subregion. Intuitively, the more complicated a pattern is, the

more “accidental” it is likely to appear; the more choices a hypothesis requires, the

more likely it is that those choices could have been made in a different way, resulting

in an entirely different hypothesis. More formally, because the prior probability of a

hypothesis is the product of the probabilities for all choices needed to generate it, and
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Figure 5: Hypothesis A is too simple, fitting the observed data poorly; C fits closely
but is too complex; while B is “just right.” A Bayesian analysis naturally ensures that
the best explanation of the data optimizes a tradeoff between complexity and fit, as in
B.

the probability of making any of these choices in a particular way must be less than

one, a hypothesis specified by strictly more choices will in general receive strictly lower

prior probability.

There are other ways of generating the hypotheses shown in Figure 5 – for instance,

we could choose the upper-right and lower-left corners of each rectangular subregion,

rather than choosing one corner, a height and a width. These might generate quanti-

tatively different prior probabilities but would still give a qualitatively similar tradeoff

between complexity and fit. The “Bayesian Ockham’s razor” (MacKay, 2003) thus re-

moves much of the subjectivity inherent in assessing simplicity of an explanation.4 Note

that in any of these generative accounts where hypotheses are generated by a sequence

of choices, earlier or higher-up choices tend to play more important roles because they

can affect the number and the nature of choices made later on or lower down. The

4That said, it is always possible to imagine bizarre theories, generating hypotheses from very
different primitives than we typically consider, in which hypotheses that are intuitively more complex
receive higher (not lower) prior probabilities. For instance, suppose that the hypotheses shown in
Figure 5 were generated not by choosing the dimensions of one or more rectangles from some generic
distribution, but by starting with just the twenty-one small rectangles in Figure 5C, and then making
choices about whether to add or remove rectangles to or from this set. In that case, hypothesis C would
have higher prior probability than A or B. Because the simplicity of a hypothesis is only meaningful
relative to the primitives out of which hypotheses are generated, the decision of which primitives to
include in a probabilistic model of cognition is a crucial choice, which we consider in more depth later.
For now, we simply note that this is a key concern for any cognitive modeler, Bayesian or otherwise
inclined. It can be seen as a virtue of the Bayesian framework that it forces us to make these choices
and their consequences explicit, and that it provides a tool to evaluate the primitives we choose.
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initial choice of how many rectangular subregions to generate determines how many

choices about positions and side lengths are made later on. Perhaps we could have

also chosen initially to generate circular subregions instead of rectangles; then each

subregion would involve only three choices rather than four.

The same general logic applies to cognitively interesting hypothesis spaces, not

just circles and rectangles: for instance, more complex grammars incorporate more

rules and non-terminals (and therefore more choices are involved in specifying each

one), and more complex causal theories involve more hidden causes or a greater degree

of specification about the form that the causal relationship takes. These higher-level

“choices that control choices” characterize the learner’s “hypothesis space of hypothesis

spaces”; they embody a more discrete, qualitative version of the hierarchical Bayesian

ideas introduced in the previous section. They capture the role that intuitive theo-

ries or grammars play in providing frameworks for inductive inference in cognition, or

the analogous role that higher-level frameworks or paradigms play in scientific theory

building (Henderson, Goodman, Tenenbaum, & Woodward, 2010).

The logic outlined in the preceding paragraphs has been used to analyze develop-

mental theory transitions in several settings. Elsewhere in this issue, Lucas et al. (sub-

mitted) show that the change from believing everybody shares the same preferences

(analogous to hypothesis A in Figure 5) to believing everybody has different prefer-

ences (analogous to hypothesis C in Figure 5) can be produced simply by providing

more data, a mechanism that we discuss in more detail in the next section. Goodman

et al. (2006) show that the same approach can be used to explain the development of

understanding of false beliefs, with a theory in which the beliefs that people maintain

are influenced by their access to information being more complex but providing a better

fit to the data than a theory without this principle. Schmidt, Kemp, and Tenenbaum

(2006) demonstrated that a high-level theory about the properties of semantic predi-

cates known as the M-constraint (essentially the constraint that predicates respect the

structure of an ontological hierarchy; Sommers, 1971; Keil, 1979) can be induced from
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linguistic data consistent with that theory, providing an alternative to the idea that

this constraint is innate. Perfors, Tenenbaum, and Regier (2006) and Perfors et al.

(submitted) reanalyze one version of a famous “poverty of stimulus” argument, and

demonstrates that highly abstract and universal features of language – in particular,

the principle that grammars incorporate hierarchical phrase structure – need not be

built in as a language-specific bias but instead can be inferred on the basis of only

a few hours of child-directed speech, given certain reasonable assumptions. This is

because hierarchical grammars offer a more parsimonious explanation of the observed

sentences: the grammars are shorter, with fewer non-terminals and fewer rules – that

is, fewer choice points.

4.2 Adapting Ockham’s Razor to the data

A key advantage of Bayesian approaches over earlier approaches to selecting grammars

or theories based on data can be seen in how they adapt the preference for simpler

hypotheses as the amount of observed data increases. In language acquisition, a tradi-

tional solution to the problem of constraining generalizing in the absence of negative

evidence is the Subset Principle (Wexler & Culicover, 1980; Berwick, 1986): learners

should choose the most specific grammar consistent with the observed data. In scientific

theorizing, the classical form of Ockham’s Razor speaks similarly: entities should not

be multiplied beyond necessity. The difficulty with these approaches is that because

their inferential power is too weak, they require additional constraints in order to work

– and those constraints often apply only in a way we can recognize post hoc. In Figure 5,

for instance, the preference for hypothesis B over A can be explained by the Subset

Principle, but to explain why B is better than C (a subset of B), we must posit that C

is ruled out a priori by some innate constraint; it is just not a natural hypothesis and

should never be learnable, regardless of the data observed.

A Bayesian version of Ockham’s Razor, in contrast, will naturally modulate the

tradeoff between simplicity and goodness-of-fit based on the available weight of data,
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even if the data are always generated by the same underlying process. This adaptiveness

is intuitively sensible and critical for human learning. Consider Figure 6, which shows

three data sets generated from the same underlying process but varying in the amount

of data observed. The best hypothesis fits the five data points in data set 1 quite loosely,

but because there are so few points this does not impose a substantial penalty relative

to the high prior probability of the hypothesis. Analogously, early on in development

children’s categories, generalizations, and intuitive theories are likely to be coarser

than those of adults, blurring distinctions that adults consider highly relevant and

therefore being more likely to over-generalize.5 As data accumulate, the relative penalty

imposed for poor fit is greater, since it applies to each data point that is not predicted

accurately by the hypothesis. More complex hypotheses become more plausible, and

even hypothesis C that looked absurd on the data in Figure 5 could become compelling

given a large enough data set, containing many data points all clustered into the sixteen

tiny regions exactly as the theory predicts. The Subset Principle is not flexible in the

same way. Being able to explain the process of development, with different theories

being adopted by the child at different stages, requires being able to adapt to the data.

This property makes it possible for the gradual accumulation of data to be the driving

force in theory change, as in the examples discussed above.

Looking at Figure 6, one might guess that as the data increase, the most complex

5Adopting a sequence of ever more complex theories as the relevant data come to light seems like a
plausible account of cognitive development, but it appears to be at odds with the familiar phenomenon
of U-shaped learning curves (e.g., Marcus et al. (1992); see also Siegler (2004) for an overview). A
U-shaped learning pattern occurs when a learner initially appears to have correctly acquired some piece
of knowledge, producing it without error, but then follows this by an interval of incorrect performance
marked by overgeneralization before eventually self-correcting. It may be possible to understand U-
shaped acquisition patterns by considering a learner who can simply memorize individual data points
in addition to choosing among hypotheses about them. In our example, memorizing a data point
would require two choices to specify – its x and y coordinates – but even the simplest hypothesis
would require at least four (x, y, l, and w). Moreover, a single data point also has the highest possible
likelihood, since it predicts the data (itself) exactly. A data set with only one or a few data points,
therefore, would be preferred in both the prior and the likelihood. Only as the number of data points
increases would the penalty in the prior become high enough to preclude simply memorizing each data
point individually: this is when overgeneral, highly simple hypotheses begin to be preferred. Thus,
whether a U-shaped pattern occurs depends on the tradeoff in complexity that it takes to represent
individual data points as opposed to entire hypotheses: if it is cheaper to memorize a few data points,
then that would have both a higher prior and likelihood than would an extremely vague, overly general
hypothesis.
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Figure 6: Role of data set size. Three datasets with increasing numbers of data points
and their corresponding best hypotheses. For dataset 1, there are so few data points
that the simplicity of the hypothesis is the primary consideration; by dataset 3, the
preferred hypothesis is one that fits the clustered data points quite tightly.

hypotheses will eventually always be preferred. This is not true in general, although

as data accumulate a Bayesian learner will tend to consider more complex hypotheses.

Yet the preferred hypothesis will be that which best trades off between simplicity and

goodness-of-fit, and ultimately, this will be the hypothesis that is closest to the true

generative process (MacKay, 2003).6 In other words, if the data are truly generated

by a process corresponding to twenty-one different rectangular regions, then the points

will increasingly clump into clusters in those regions, and hypothesis C will eventually

be preferred. But if the data are truly generated by a process inhabiting two larger

regions, then hypothesis B would still have a higher posterior probability as more data

accumulate.

6Technically, this result has been proven for information-theoretic models in which probabilities
of data or hypotheses are replaced by the lengths (in bits) of messages that communicate them to a
receiver. The result is known as the “MDL Principle” (Rissanen, 1978), and is related to Kolmogorov
complexity (Solomonoff, 1964; Kolmogorov, 1965). The Bayesian version applies given certain assump-
tions about the randomness of the data relative to the hypotheses and the hypotheses relative to the
prior (Vitànyi & Li, 2000). Both versions apply only to the hypotheses in the hypothesis space: if no
hypothesis corresponding to the true data generating process exists in the space, then it will never
be considered, much less ultimately preferred. Thus, the hypothesis that is preferred by the model in
the limit of infinite data is the “best” hypothesis only in the sense that it is closest to the true data
generating process out of all of the hypotheses considered.
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5 Discussion

Several issues are typically raised when evaluating Bayesian modelling as a serious

computational tool for cognitive science. Bayesian reasoning characterizes “optimal”

inference: what does this mean? How biologically plausible are these models, and how

much does this matter? And finally, where does it all come from – the hypothesis space,

the parameters, the representations? The answers to each of these questions affect what

conclusions about actual human cognition we can draw on the basis of Bayesian models;

we therefore consider each in turn.

5.1 Optimality: What does it mean?

Bayesian probability theory7 is not simply a set of ad hoc rules useful for manipulating

and evaluating statistical information: it is also the set of unique, consistent rules for

conducting plausible inference (Jaynes, 2003). In essence, it is a extension of deductive

logic to the case where propositions have degrees of truth or falsity – that is, it is

identical to deductive logic if we know all the propositions with 100% certainty. Just as

formal logic describes a deductively correct way of thinking, Bayesian probability theory

describes an inductively correct way of thinking. As Laplace (1816) said, “probability

theory is nothing but common sense reduced to calculation.”

What does this mean? If we were to try to come up with a set of desiderata that a

system of “proper reasoning” should meet, they might include things like consistency

and qualitative correspondence with common sense – if you see some data supporting a

new proposition A, you should conclude that A is more plausible rather than less; the

more you think A is true, the less you should think it is false; if a conclusion can be

7Bayesian methods are often contrasted to so-called “frequentist” approaches, which are the basis
for many of the standard statistical tests used in the social sciences, such as t-tests. Although fre-
quentist methods often correspond to special cases of Bayesian probability theory, Bayesian methods
have historically been relatively neglected, and often attacked, in part because they are viewed as un-
necessarily subjective. This perception is untrue – Bayesian methods are simply more explicit about
the prior information they take into account. Regardless, the issue of subjectivity seems particularly
irrelevant for those interested in modelling human cognition, where accurately capturing “subjective
belief” is part of the point.
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reasoned multiple ways, its probability should be the same regardless of how you got

there; etc. The basic axioms and theorems of probability theory, including Bayes’ Rule,

emerge when these desiderata are formalized mathematically (Cox, 1946, 1961), and

correspond to common-sense reasoning and the scientific method. Put another way,

Bayesian probability theory is “optimal inference” in the sense that a non-Bayesian

reasoner attempting to predict the future will always be out-predicted by a Bayesian

reasoner in the long run (de Finetti, 1937).

Even if the Bayesian framework captures optimal inductive inference, does that

mean it is an appropriate tool for modelling human cognition? After all, people’s

everyday reasoning can be said to be many things, but few would aver that it is always

optimal, subject as it is to emotions, heuristics, and biases of many different sorts (e.g.,

Tversky & Kahneman, 1974). However, even if humans are non-optimal thinkers in

many ways – and there is no reason to think they are in every way – it is impossible to

know this without being able to precisely specify what optimal thinking would amount

to. Understanding how humans do think is often made easier if one can identify the

ways in which people depart from the ideal: this is approximately the methodology

by which Kahneman and Tversky derived many of their famous heuristics and biases,

and the flexibility of the Bayesian approach makes it relatively easy to incorporate

constraints based on memory, attention, or perception directly into one’s model.

Many applications of Bayesian modelling operate on the level of computational

theory (Marr, 1982), which seeks to understand cognition based on what its goal is,

why that goal would be appropriate, and the constraints on achieving that goal, rather

than precisely how it is implemented algorithmically. Understanding at this level is

important because the nature of the reasoning may often depend more on the learner’s

goals and constraints than it does on the particular implementation. It can also enhance

understanding at the other levels: for instance, analyzing connectionist networks as an

implementation of a computational-level theory can elucidate what sort of computations

they perform, and often explain why they produce the results they do (Hertz, Krogh,
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& Palmer, 1991; MacKay, 2003).

Being able to precisely specify and understand optimal reasoning is also useful for

performing ideal learnability analysis, which is especially important in the area of cog-

nitive development. What must be “built into” the newborn mind in order to explain

how infants eventually grow to be adult reasoners, with adult knowledge? One way

to address this question is to establish the bounds of the possible: if some knowledge

couldn’t possibly be learned by an optimal learner presented with the type of data

children receive, it is probably safe to conclude either that actual children couldn’t

learn it either, or that some of the assumptions underlying the model are inaccurate.

The tools of Bayesian inference are well-matched to this sort of problem, both because

they force modelers to make all of these assumptions explicit, and also because of their

representational flexibility and ability to calculate optimal inference.

That said, not all Bayesian models operate on the computational level, and not all

Bayesian models strive to capture optimal inference. Rational process models (see, e.g.,

Doucet, Freitas, & Gordon, 2001; Sanborn, Griffiths, & Navarro, 2010) are Bayesian

models that focus on providing approximations to optimal reasoning. As such, they span

the algorithmic and computational level, and can provide insight into how a resource-

limited learner might reason. Likewise, much work in computational neuroscience fo-

cuses on the implementational level, but is Bayesian in character (e.g., Pouget, Dayan,

& Zemel, 2003; T. Lee & Mumford, 2003; Zemel, Huys, Natarajan, & Dayan, 2005;

Ma, Beck, Latham, & Pouget, 2006; Doya, Ishii, Pouget, & Rao, 2007; Rao, 2007). We

discuss the implications of this work in the next section.

5.2 Biological plausibility

Because cognitive scientists are ultimately interested in understanding human cogni-

tion, and human cognition is ultimately implemented in the brain, it is important that

our computational-level explanations be realizable on the neurological level, at least

potentially. This is one reason for the popularity of the Parallel Distributed Process-
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ing, or connectionist, approach, which was developed as a neurally inspired model of

the cognitive process (Rumelhart & McClelland, 1986). Connectionist networks, like

the brain, contain many highly interconnected, active processing units (like neurons)

that communicate with each other by sending activation or inhibition through their

connections. As in the brain, learning appears to involve modifying connections, and

knowledge is represented in a distributed fashion over the connections. As a result,

representations degrade gracefully with neural damage, and reasoning is probabilistic

and “fuzzy” rather than all-or-none.

In contrast, Bayesian models may appear implausible from the neurological perspec-

tive. One of the major virtues of Bayesian inference – the transparency of its compu-

tations and the explicitness of its representation – is, in this light, potentially a major

flaw: the brain is many wonderful things, but it is neither transparent nor explicit. How

could structured symbolic representations like grammars or logics be instantiated in our

neural hardware? How could our cortex encode hypotheses and compare them based

on a tradeoff between their simplicity and goodness-of-fit? Perhaps most problemati-

cally, how could the brain approximate anything like optimal inference in a biologically

realistic timeframe, when conventional algorithms for Bayesian inference running on

conventional computing hardware take days or weeks to tackle problems that are vastly

smaller than those the brain solves?

These are good questions, but there is growing evidence for the relevance of Bayesian

approaches on the neural level (e.g., Doya et al., 2007). Probability distributions can

in fact be represented by neurons, and they can be combined according to a close

approximation of Bayes’ Rule; posterior probability distributions may be encoded in

populations of neurons in such a way that Bayesian inference is achieved simply by

summing up firing rates (Pouget et al., 2003; Ma et al., 2006). Spiking neurons can be

modelled as Bayesian integrators accumulating evidence over time (Deneve, 2004; Zemel

et al., 2005). Recurrent neural circuits are capable of performing both hierarchical and

sequential Bayesian inference (Deneve, 2004; Rao, 2004, 2007). Even specific brain
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areas have been studied: for instance, there is evidence that the recurrent loops in

the visual cortex integrate top-down priors and bottom-up data in such a way as to

implement hierarchical Bayesian inference (T. Lee & Mumford, 2003).

This work, though still in its infancy, suggests that concerns about biological plau-

sibility may not, in the end, prove to be particularly problematic. It may seem to

us, used to working with serial computers, that searching these enormous hypothesis

spaces quickly enough to perform anything approximating Bayesian inference is im-

possible; but the brain is a parallel computing machine made up of billions of highly

interconnected neurons. The sorts of calculations that take a long time on a serial com-

puter, like a sequential search of a hypothesis space, might be very easily performed

in parallel. They also might not; but whatever the future holds, the indications so far

serve as a reminder of the danger of advancing from the “argument from incredulity”

to any conclusions about biological plausibility.

It is also important to note that, for all of their apparent biological plausibility, neu-

ral networks are unrealistic in important ways, as many modelers acknowledge. Units in

neural networks are assumed to have both excitatory and inhibitory connections, which

is not neurally plausible. This is a problem because the primary learning mechanism,

backpropagation, relies on the existence of such connections (Rumelhart & McClelland,

1986; Hertz et al., 1991). There is also no analogue of neurotransmitters and other chem-

ical transmission, which play an important role in brain processes (Gazzaniga, Ivry, &

Mangun, 2002). These issues are being overcome as the state of the art advances

(see Rao, Olshausen, and Lewicki (2002) for some examples), but for the models most

commonly used in cognitive science – perceptrons, multilayered recurrent networks, and

Boltzmann machines – they remain a relevant concern.

Different techniques are therefore biologically plausible in some ways and perhaps

less so in others. Knowing so little about the neurological mechanisms within the brain,

it is difficult to characterize how plausible either approach is or how much the ways

they fall short impact their utility. In addition, biological plausibility is somewhat ir-
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relevant on the computational level of analysis. It is entirely possible for a system to

be emergently or functionally Bayesian, even if none of its step-by-step computations

map onto anything like the algorithms used by current Bayesian models. Just as opti-

mal decision-making can be approximated under certain conditions by simple heuristics

(Goldstein & Gigerenzer, 2002), it may be possible that the optimal reasoning described

by Bayesian models can be approximated by simple algorithms that look nothing like

Bayesian reasoning in their mechanics. If so – in fact, even if the brain couldn’t imple-

ment anything even heuristically approximating Bayesian inference – Bayesian models

would still be useful for comprehending the goals and constraints faced by the cognitive

system and comparing actual human performance to optimal reasoning. To the extent

that neural networks are relevant to the computational level, the same is true for them.

5.3 Where does it all come from?

For many, a more important critique is that, in some sense, Bayesian models do not

appear to be learning at all. The entire hypothesis space, as well as the evaluation

mechanism for comparing hypotheses, has been given by the modeler; all the model

does is choose among hypotheses that already exist. Isn’t learning, particularly the sort

of learning that children perform over the first years of their life, something more than

this? Our intuitive notion of learning certainly encompasses a spirit of discovery that

does not appear at first glance to be captured by a model that simply does hypothesis

testing within an already-specified hypothesis space.

The same intuition lies at the core of Fodor’s famous puzzle of concept acquisi-

tion (Fodor, 1975, 1981). His essential point is that one cannot learn anything via

hypothesis testing because one must possess it in order to test it in the first place.

Therefore, except for those concepts that can be created by composing them from oth-

ers (which Fodor believes to be in the minority), all concepts (including carburetor

and grandmother) must be innate.

To understand how this intuition can be misleading, it is helpful to make a distinc-
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tion between two separate notions of what it means to build in a hypothesis space. A

trivial sense is to equip the model with the representational capacity to represent any

of the hypotheses in the space: if a model has this capacity, even if it is not currently

evaluating or considering any given hypothesis, that hypothesis is in some sense latent

in that space. Thus, if people have the capacity to represent some given hypothesis, we

say it can be found in their latent hypothesis space. The ability to represent possible

hypotheses in a latent hypothesis space is necessary for learning of any sort, in any

model or being. We can contrast this with hypotheses that may be explicitly consid-

ered or evaluated – the hypotheses that can be actively represented and manipulated

by the conceptual system – which we refer to as the explicit hypothesis space.

As an analogy, consider a standard English typewriter with an infinite amount of

paper. There is a space of documents that it is capable of producing, which includes

things like The Tempest and does not include, say, a Vermeer painting or a poem

written in Russian. This typewriter represents a means of generating the hypothesis

space for a Bayesian learner: each possible document that can be typed on it is a

hypothesis, the infinite set of documents producible by the typewriter is the latent

hypothesis space8, and the documents that have actually been typed out so far make

up the explicit hypothesis space. Is there a difference between documents that have

been created by the typewriter and documents that exist only in the latent hypothesis

space? Of course there is: documents that have been created can be manipulated in all

sorts of ways (reading, burning, discussing, editing) that documents latent in the space

cannot. In the same way, there may be a profound difference between hypotheses that

have been considered by the learner and hypotheses that are simply latent in the space:

the former can be manipulated by the cognitive system – evaluated, used in inference,

compared to other hypotheses – but the latter cannot. Hypothesis generation would

describe the process by which hypotheses move from the latent space to the explicit

8Note that the latent hypothesis space does not need to be completely enumerated in order to
exist; it must simply be defined by some sort of process or procedure. Indeed, in practice, exhaustive
hypothesis enumeration is intractable for all but the simplest models; most perform inference via
guided search, and only a subset of the hypotheses within the space are actually evaluated.
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space – the process by which our typist decides what documents to produce. Hypothesis

testing would describe the process of deciding which of the documents produced should

be preferred (by whatever standard). Learning, then, would correspond to the entire

process of hypothesis generation and testing – and hence would never involve new

hypotheses being added to the latent hypothesis space. This is what some critics object

to: it doesn’t “feel” like learning, since in some sense everything is already “built in.”

However, this intuitive feeling is misleading. If we take “learning” to mean “learning

in the Fodorian sense” or, equivalently, “not built into the latent hypothesis space”,

then there are only two conclusions possible. Either the hypotheses appear in the

latent hypothesis space completely arbitrarily, or nothing can ever be learned. In other

words, there is no interpretation of learning “in the Fodorian sense” that allows for an

interesting computational model or theory of learning to emerge.

How is this so? Imagine that we could explain how a new hypothesis could be added

to a latent hypothesis space; such an explanation would have to make reference to some

rules or some kind of process for adding things. That process and those rules, however,

would implicitly define a meta latent space of their own. And because this meta-

space is pre-specified (implicitly, by that process or set of rules) in the exact same way

the original hypothesis space was pre-specified (implicitly, by the original generative

process), the hypotheses within it are “innate” in precisely the same way that the

original hypotheses were. In general, the only way for something to be learned in the

Fodorian sense – the sense that underlies this critique – is for them to be able to spring

into a hypothesis space in such a way that is essentially random (i.e., unexplainable

via some process or rule). If this is truly what learning is, it seems to preclude the

possibility of studying it scientifically; but luckily, this is not what most of us generally

mean by learning.

One implication is that every computational learning system – any model we build,

and the brain if it can be understood as a kind of computer – must come equipped with

a latent hypothesis space that consists of everything that it can possibly represent
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and compute; all learning must happen within this space. This is not a novel or

controversial point – all cognitive scientists accept that something must be built in

– but it is often forgotten; the fact that hypothesis spaces are clearly defined within the

Bayesian framework makes them appear more “innate” than if they were simply implicit

in the model. But even neural networks – which are often believed to presume very little

in the way of innate knowledge – implicitly define hypotheses and hypothesis spaces via

their architecture, functional form, learning rule, etc. In fact, neural networks can be

viewed as implementations of Bayesian inference (e.g., Funahashi, 1998; McClelland,

1998; MacKay, 2003), corresponding to a computational-level model whose hypothesis

space is a set of continuous functions (e.g., Funahashi, 1989; Stinchcombe & White,

1989). This is a large space, but Bayesian inference can entertain hypothesis spaces

that are equivalently large.

Does this mean that there is no difference between Bayesian models and neural

networks? In one way, the answer is yes: because neural networks are universal ap-

proximators, it is always possible to construct one that approximates the input-output

functionality of a specific Bayesian model. In practice, however, the answer is usually

no: the two methods have very different strengths and weaknesses, and therefore their

value as modelling tools varies depending on the questions being asked (see Griffiths,

Chater, Kemp, Perfors, and Tenenbaum (2010) and McClelland et al. (2010) for a

more thorough discussion of these issues). One difference is that connectionist mod-

els make certain commitments about representation that make it difficult to capture

explicit symbolic knowledge, of the sort that is commonly incorporated into cognitive

theories. Another difference relates to how the models trade off between simplicity

and goodness-of-fit; in most Bayesian models, that tradeoff is (or approximates) opti-

mality. By contrast, neural network models perform a similar tradeoff, but generally

non-optimally and in a more ad hoc manner, avoiding overfitting by limiting the length

of training and choosing appropriate weights, learning rules, and network architecture.9

9There is an interesting subfield called Bayesian neural networks studying how to construct models
that make these choices for themselves, pruning connections in a Bayes-optimal way (e.g., MacKay,
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In the Bayesian framework, what is built in is the generative process, which implicitly

defines the assignment of prior probabilities, the representation, and the size of the hy-

pothesis space; in the PDP framework, these things are built in through choices about

the architecture, weights, learning rule, training procedure, etc.

It is therefore incorrect to say one framework assumes more innate knowledge than

another: specific models within each may assume more or less, but it can be quite

difficult to compare them precisely, in part because neural networks incorporate it im-

plicitly. Which model assumes more innate knowledge is often not even the interesting

question. A more appropriate one might be: what innate knowledge does it assume?

Instead of asking whether one representation is a stronger assumption than another,

it is often more productive to ask which predicts human behavior better. The an-

swer will probably depend on the problem and the domain, but the great advantage of

computational modelling is that it allows us to explore this dependence precisely.

5.4 Limitations of Bayesian models

Because of their combination of representational flexibility and powerful domain-general

statistical learning mechanisms, Bayesian models are a useful tool for modeling in cog-

nitive science and language acquisition. However, no approach can be all things to all

people. What are some of the limitations of the Bayesian paradigm?

One of the most important is that Bayesian modeling is not an appropriate tool for

every question. Bayesian models address inductive problems, which cover a large range

of the problems in cognitive science. However, there are many important problems in

cognitive science that are not obviously cast as inductive problems. For instance, many

scientists are concerned with understanding how different cognitive characteristics are

related to each other (for instance, IQ and attention), and how that changes over the

lifespan. Bayesian models have also had little to say about emotional regulation or

psychopathology. This is not to say that Bayesian models could not be applicable to

1995; Neal, 1994, 1996).

40



these problems, but to the extent that induction is not the central concern here, they

are unlikely to be illuminating.

Another set of limitations stems from a general factor that afflicts any model or

theory: if the assumptions behind that model or theory are wrong, then it will not

describe human behavior. Broadly speaking, we see two key ways in which the as-

sumptions underlying Bayesian modelling might be wrong. One would occur if it turns

out that human behavior can only be explained by appealing to some hardware (or

implementation-level, or biological) characteristics of the cognitive system. For in-

stance, if some behavior emerges only because of the particular architecture of the brain

or the way in which action potentials are propagated – and there is no computational-

level explanation for why those aspects of the system should be the way they are – then

Bayesian models would not be able to explain that behavior. Rational process models

(Sanborn et al., 2010), which explore ways in which to approximate optimal inference,

might explain some types of deviation from optimality, but not all.

The second major way that Bayesian modelling might be wrong is that it might

make the wrong computational-level assumptions about the human mind. For instance,

Bayesian models assume that a computational-level description of human inference

should follow the mathematics of probability theory. Although doing so is rational for

all of the reasons described earlier, it is still possible that human reasoners nevertheless

do not do it (or even approximate it). If this is the case, Bayesian models would

fail to match human behavior for reasons that could not be attributable the sorts of

computational-level factors that are typically explored within the Bayesian modelling

framework, like different specifications of the problem or the goal of the learner.

If there are places where Bayesian models err in either of these two ways, the most

straightforward way to identify these places is to do exactly what the field is currently

doing: pairing good experimental work with theoretical explorations of the capabilities

of a broad array of Bayesian models. Acquiring solid empirical data about how humans

behave is vital when evaluating the models, and systematically exploring the space
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of models is vital for determining whether some behavior cannot be accounted for by

such models. Thus, even if it is ultimately the wrong explanation for some behavior

of interest, a Bayesian model may still be useful for identifying when that behavior

departs from optimality, and clarifying how it departs, as a cue to its algorithmic basis.

A final limitation exists more in practice than in principle. As Bayesian models

get increasingly complex, their computational tractability decreases dramatically. Cur-

rently, no Bayesian model exists that can deal with a quantity of input that is within

orders of magnitude as much as a developing child sees over the course of a few years:

the search space is simply too large to be tractable. Improvements in computer hard-

ware (Moore’s Law) and machine learning technologies will reduce this limitation over

time; however, for now, it does mean that generating precise predictions on the basis

of large amounts of data, especially when the domain is highly complex, is difficult. In

fact, even effectively searching through extremely high-dimensional hypothesis spaces

with multimodal posteriors (such as grammars) is currently effectively intractable. The

problem of computational intractability on large problems is one that affects all com-

putational models of learning, because the problems are intrinsically hard. We expect

developments in computer hardware and machine learning technology over the coming

years to offer dramatically new possibilities for Bayesian models of cognition and other

approaches as well.

6 Conclusion

Bayesian models offer explanatory insights into many aspects of human cognition and

development. The framework is valuable for defining optimal standards of inference,

and for exploring tradeoffs between simplicity and goodness-of-fit that must guide any

learner’s generalizations from observed data. Its representational flexibility makes it

applicable to a wide variety of learning problems, and its transparency makes it easy

to be clear about what assumptions are being made, what is being learned, and why

learning works.
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A Appendix

This appendix contains additional references that may be useful to those interested in

learning more about different aspects of Bayesian learning.

A.1 Glossary

This is a brief glossary of some of the terms that may be encountered when learning

about Bayesian models.

Bayesian Ockham’s Razor : Describes how a preference for “simpler” models emerges

in a Bayesian framework.

Blessing of abstraction : The phenomenon whereby higher-level, more abstract knowl-

edge, may be easier or faster to acquire than specific, lower-level knowledge.

Conditional distribution : The probability of one variable (e.g., a) given another

(e.g., b), denoted p(a|b).

Graphical model : A probabilistic model for which a graph denotes the conditional

independence structure between random variables. A directed graphical model

identifies which of the nodes are the parents, and thus enables the joint distribu-

tion to be factored into conditional distributions. A directed graphical model is

also known as a Bayesian network.

Hierarchical Bayesian model (HBM) : A type of Bayesian model capable of learn-

ing at multiple levels of abstraction.

Hyperparameters : The higher-level parameters learned in a hierarchical Bayesian

model. These parameters capture the overhypothesis knowledge and govern the

choice of lower-level parameters.

Hypothesis space : The set of all hypotheses a learner could entertain. This is

divided into the latent hypothesis space, which consists of all logically possible
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hypothesis spaces and is defined by the structure of the learning problem, and

the explicit hypothesis space, which contains the hypotheses a learner has explicitly

considered or enumerated.

Joint distribution : The probability of multiple variables (e.g., a and b) occurring

jointly, denoted p(a, b).

Likelihood : The probability of having observed some data d if some hypothesis h is

correct, denoted p(d|h).

Marginal distribution : The probability distribution of a subset of variables, having

averaged over information about another. For instance, given two random vari-

ables a and b whose joint distribution is known, the marginal distribution of a is

the probability distribution of a averaging over information about b, generally by

summing or integrating over the joint probability distribution p(a, b) with respect

to b.

Markov chain Monte Carlo (MCMC) : A class of algorithms for sampling prob-

ability distributions. It is generally used when the probability distributions are

too complex to be calculated analytically, and involves a series of sampling steps.

Metropolis-Hastings and Gibbs sampling are two common types of MCMC meth-

ods.

Markov model : A model which captures a discrete random process in which the

current state of the system depends only on the previous state of the system,

rather than on states before that.

Overhypothesis : A higher-level inductive constraint that guides second-order gen-

eralization (or above). The term originates from Goodman (1955).

Posterior probability : The degree of belief assigned to some hypothesis h after

having seen some data d (combines the likelihood and the prior, denoted p(h|d).
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Prior probability : The degree of belief assigned to some hypothesis h before having

seen the data, denoted p(h).

Probability distribution : Defines either the probability of a random variable (if

the variable is discrete) or the probability of the value of the variable falling in a

particular interval (when the variable is continuous).

Size principle : The preference for smaller hypotheses over larger ones, all else being

equal, naturally instantiated by the likelihood term.

Stochastic : Random.

A.2 Applications

Recent years have seen a surge of interest in applying Bayesian techniques to many

different problems in cognitive science. Although an exhaustive overview of this research

is beyond the scope of this paper, we list here some example references, loosely organized

by topic, intended to give the interested reader a place to begin, and also to illustrate

the flexibility and scope of this framework. In addition, Trends in Cognitive Sciences

(2007) published a special issue (Volume 10, Issue 7) focused on probabilistic models

in cognition.

1. Learning and using phonetic categories: Vallabha, McClelland, Pons, Werker,

and Amano (2007); N. Feldman, Morgan, and Griffiths (2009); N. Feldman and

Griffiths (2009)

2. Acquisition and nature of causal reasoning: Cheng (1997); Pearl (2000);

Steyvers, Tenenbaum, Wagenmakers, and Blum (2003); Sobel, Tenenbaum, and

Gopnik (2004); Gopnik et al. (2004); Griffiths and Tenenbaum (2005); Lu, Yuille,

Liljeholm, Cheng, and Holyoak (2008); Griffiths and Tenenbaum (2009)

3. Abstract reasoning and representation based on graphical structures:

Kemp, Perfors, and Tenenbaum (2004); Roy, Kemp, Mansinghka, and Tenenbaum
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(2006); Schmidt et al. (2006); Xu and Tenenbaum (2007b)

4. Abstract semantic representations: Navarro and Griffiths (2007); Griffiths,

Steyvers, and Tenenbaum (2007); Andrews and Vigliocco (2009)

5. Category learning and categorization: Anderson (1991); Ashby and Alfonso-

Reese (1995); Navarro (2006); Kemp, Perfors, and Tenenbaum (2007); Shafto,

Kemp, Mansinghka, Gordon, and Tenenbaum (2006); Griffiths et al. (2008); Per-

fors and Tenenbaum (2009); Heller et al. (2009); Sanborn et al. (2010)

6. Decision making: M. Lee (2006); M. Lee, Fuss, and Navarro (2007)

7. Grammar learning and representation: Dowman (2000); Perfors et al. (2006,

submitted); Bannard, Lieven, and Tomasello (2009)

8. Individual differences: Navarro, Griffiths, Steyvers, and Lee (2006)

9. Language evolution: Griffiths and Kalish (2007); Kirby, Dowman, and Griffiths

(2007); K. Smith (2009)

10. Morphological acquisition: Goldwater, Griffiths, and Johnson (2006); Frank,

Ichinco, and Tenenbaum (2008)

11. Planning and inferences about agents: Verma and Rao (2006); Baker, Tenen-

baum, and Saxe (2007); J. Feldman and Tremoulet (2008); Lucas et al. (submit-

ted)

12. Learning logical rules: J. Feldman (2000); Goodman, Griffiths, Feldman, and

Tenenbaum (2007)

13. Theory learning: Kemp, Goodman, and Tenenbaum (2007); Kemp et al. (2010)

14. Verb learning: Alishahi and Stevenson (2008); Hsu and Griffiths (2009); Perfors,

Tenenbaum, and Wonnacott (2010)
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15. Word learning: Xu and Tenenbaum (2007b); Andrews, Vigliocco, and Vinson

(2009); Frank, Goodman, and Tenenbaum (2009)

16. Word segmentation: Goldwater, Griffiths, and Johnson (2007); Frank, Gold-

water, Griffiths, and Tenenbaum (2007)

A.3 Further reading

The mathematical foundations of Bayesian inference extend back decades if not cen-

turies. Sivia (1996) and P. Lee (1997) are good introductory textbooks; more advanced

texts include Berger (1993) and Jaynes (2003).

As discussed briefly within the paper, Bayesian probability theory brings up several

issues related to the subjectivity of the prior probability, relation to frequentist sta-

tistical approaches, and the interpretation and nature of probability in the first place.

Classic work from a frequentist perspective includes Fisher (1933) and van Dantzig

(1957), and from a Bayesian perspective Jeffreys (1939), Cox (1946), Savage (1954),

and de Finetti (1974). Box and Tiao (1992) explores how the frequentist approach may

be interpreted from a Bayesian perspective, and Jaynes (2003) provides a nice overview,

bringing the threads of many of these arguments together.

There is a great deal of work exploring the relationship between Bayesian learning

and information-theoretic or minimum description length (MDL) approaches. Vitànyi

and Li (2000), Jaynes (2003), MacKay (2003) and Grünwald, Myung, and Pitt (2005)

provide excellent discussions and overview of some of the issues that arise. More classic

texts include Rissanen (1978), Solomonoff (1964), and Kolmogorov (1965).

One of the largest areas of research in machine learning is focused on developing

more effective techniques for searching the (sometimes quite large) hypothesis spaces

defined by Bayesian models. Bayesian methods in artificial intelligence and machine

learning are described generally in Russell and Norvig (2010) and MacKay (2003).

One of the standard approaches includes Markov chain Monte Carlo (MCMC), which

is introduced and explained in Neal (1993); MacKay (1998); Gilks, Richardson, and
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Spiegelhalter (1996) and Gelman, Carlin, Stern, and Rubin (2004) provide examples of

how to incorporate these methods into Bayesian models. In addition, sequential Monte

Carlo methods (e.g., Doucet et al., 2001; Sanborn et al., 2010) provide a means to

explore capacity limitations and a more “on-line” processing approach.
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