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Abstract
Current homology modeling methods for predicting protein-protein interactions (PPIs) have
difficulty in the “twilight zone” (<40%) of sequence identities. Threading methods extend
coverage further into the twilight zone by aligning primary sequences for a pair of proteins to a
best-fit template complex to predict an entire three-dimensional structure. We introduce a
threading approach, iWRAP, which focuses on only the protein interface. Our approach combines
a novel linear programming formulation for interface alignment with a boosting classifier for
interaction prediction. We demonstrate its efficacy on SCOPPI, a classification of PPIs in the
Protein Databank, and on the entire yeast genome. iWRAP provides significantly improved
prediction of PPIs and their interfaces in stringent cross-validation on SCOPPI. Furthermore, by
combining our predictions with a full-complex threader, we achieve coverage of 13% for the yeast
PPIs, which is close to a 50% increase over previous methods at a higher sensitivity. As an
application, we effectively combine iWRAP with genomic data to identify novel cancer related
genes involved in chromatin remodeling, nucleosome organization and ribonuclear complex
assembly. iWRAP is available at http://iwrap.csail.mit.edu.
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1. Introduction
Protein-protein interactions (PPIs) play a central role in all biological processes. Akin to the
complete sequencing of genomes, complete description of interactomes is a fundamental
step towards a deeper understanding of biological processes, and has a vast potential to
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impact systems biology, genomics, molecular biology and therapeutics. Although high-
throughput biochemical approaches for discovering PPIs have proven very
successful[1,2,3,4], the coverage of experimentally determined PPI data remains poor (Table
S1) and is prone to errors[5,6]. Such low coverage is partly because the set of possible PPIs
to be verified is so large (50 million for a species with 10,000 genes) that any exhaustive
experimental verification will take a long time, even with high-throughput techniques. While
the rate of PPI discovery has leveled off in recent years (see Fig S1), the number of solved
protein structural complexes has rapidly grown: there has been a 40% increase in the
number of complex templates in the 14 months between the two versions of Structural
Classification of Proteins database (SCOP, 1.65 and 1.69)[7]. This growing resource of
structural data presents an opportunity to utilize this information for accurate PPI
predictions.

There have recently been proposals to harness the information provided by structure-based
computational approaches as a potentially high-quality, high-coverage data source for large-
scale integrative approaches to interactome construction[8,9,10,11,12]. Prieto, Las and
Rivas[13] have reviewed publicly available interaction databases of known structural data
that facilitate analysis of PPIs[14,15,16]. In the absence of a solved structure for a pair of
protein “query” sequences, structure-based approaches typically rely on aligning the query
sequences to either sequence or structure-based “templates” for solved structures in the
Protein Data Bank (PDB)[17].

In one such approach, homology modeling, two protein sequences are assumed to interact
based simply on their primary sequence homology to known interacting proteins. Homology
modeling has had considerable success at predicting PPIs on a genome scale[11,18,19,20]
and reconstructing and predicting 3D multi-protein complexes[9]. More recently, Fukuhara
and Kawabata have described HOMCOS[21,22], a web-server that performs a similar task
to Aloy and Russell's InterPrets[9], again by homology modeling. MODBase is a database
of homology models for protein complexes that have sequence similarity to known
structures higher than 50%[23]. ADAN is a specialized database for prediction of protein-
protein interactions mediated by linear motifs and utilizes position-specific matrices to
assess putative interactions[24]. Other sequence-based methods utilize genetic information
and multiple sequence alignments to predict specific protein-protein
interactions[25,26,27,28]. However, effective use of homology modeling requires relatively
high sequence similarity between the query and template protein-pairs[8].

In another popular approach, threading, the three-dimensional (3D) structure for a pair of
protein query sequences is predicted by aligning their sequences to templates, based on both
sequence and structure profiles, for complexes in the PDB to see if a similar structure can be
found. The goodness of a query pair-template alignment is evaluated using a scoring
function. The essential computational components of a PPI threading approach are: template
construction, alignment of query sequences to templates, and interaction scoring. Lu et al.
developed Multiprospector[29], a threading algorithm that constructs statistical potential
functions to evaluate potential PPIs[30]. Singh, Xu & Berger further proposed a machine-
learning based threading algorithm DBLRAP, which also performs full complex threading,
and demonstrated its superiority in predicting PPIs over homology modeling and
Multiprospector[8,31]. Threading identifies compatible structures for proteins that share less
sequence similarity with the template; thus typically widening the range of proteins for
which predictions can be made over homology modeling.

While homology modeling/threading approaches work well and have good overall accuracy
when sequences are somewhat similar to their putative templates, they perform poorly in the
“twilight zone” of sequence identities. In particular, they often give inaccurate alignments in
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the putative interaction regions for sequences with low similarity and therefore are unable to
predict interactions accurately in such cases, which we demonstrated previously for the
special case of cytokines[32]. It has been observed that functional residues such as those at
the interface are more conserved than non-functional ones, both in sequence[33,34,35] and
structure[36,37]. Furthermore, it has been shown just recently that partial homology models,
based only on interface alignments, are good candidates for templates used in docking
studies[38]. Here we capitalize on these observations by performing threading on only the
protein-protein interface after a suitable complex template is identified.

We introduce the program iWRAP (Interface Weighted RAPtor), which predicts whether
two proteins interact by combining a novel linear programming approach for interface
alignment with a boosting classifier[39] for interaction prediction. iWRAP simultaneously
optimizes contacts in query sequences to templates of protein-protein interfaces, after
constraining alignments to only those residues likely to be involved in the interaction. This
approach is in contrast to existing threading approaches that align each sequence
individually to an entire protein structure in the complex. We recently demonstrated the
utility of interface threading on two cytokine receptor families by implementing
LTHREADER[32], where we manually generated templates specific to this family and
aligned each query sequence separately to each template. The driving hypothesis of
iWRAP's approach is that more accurate prediction of protein-protein interfaces improves
predictions of protein-protein interactions. We show in this paper for general PPIs that (i)
more accurate interface alignments lead to improved interface contact prediction, which in
turn (ii) significantly improves PPI prediction. Thus, by optimizing the interface alignments
after identifying a suitable template, iWRAP exploits functional conservation at the interface
to predict PPIs.

We demonstrate the efficacy of these techniques on two datasets, SCOPPI, a database that
classifies protein complexes in the PDB[40], and the yeast genome. First, we use SCOPPI as
our gold standard database to confirm hypothesis (i): we show that interface threading, i.e.
localized threading, leads to better interface contact prediction over full-complex threaders.
For difficult alignment problems and a range of sequence identity values less than 40%,
iWRAP outperforms standard threading and sequence-based methods, while for easier
problems the methods are comparable. Our results on the full yeast genome scan address
hypothesis (ii): we demonstate that our method, which novelly uses boosting[39] to classify
iWRAP's interface threading scores for PPI prediction, outperforms methods based on
whole-sequence alignments. In particular, we perform a full genome scan of yeast to predict
interactions, and compare iWRAP's performance on experimental data to DBLRAP, which
has been shown to have the best performance amongst available structure-based PPI
prediction methods[8,31].

As an application, through mapping of yeast cancer related genes and their putative
interactions to the human genome, we identify interactions enriched relative to a recent yeast
genetic interaction set[41]. We find that these interacting genes are involved in chromatin
remodeling, ribonuclear complex assembly and nucleosome organization[42]; processes
known to be critically involved in cancer. We focus on yeast cancer related genes and
putative interactions since the function and interactions of yeast genes are much better
understood than human genes[43]. Moreover, the malignant behavior of human cells is often
caused by dis-regulation of cell cycle, growth and apoptosis processes that are conserved
across eukaryotic organisms at the level of genes and their interactions[44].

iWRAP's predictions are made publicly available at its website so that they can be used for
further exploration or systems-level integrative approaches.
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2. Results
2.1. Overview of the threading algorithm

We develop iWRAP, an algorithm for threading query sequence pairs to only the interface
of a suitable complex template. Figure 1 is a schematic of iWRAP, displaying a flowchart of
the various stages of the algorithm. In the first stage, template construction, from alignments
of multiple protein-protein interfaces[36], we construct specific interface profiles based on
amino acid propensities, secondary structure and solvent accessibilities for discrete
environmental classes of the interface.

In the second stage, alignment of a query sequence pair to a template, we utilize a profile-
scoring scheme that captures amino acid sequence propensities and predicted secondary
structure for the query sequences. We first identify a suitable template using a single domain
threader- RAPTOR[45] (also see PPI Prediction: yeast genome). RAPTOR is used for
whole genome scans of pairs of proteins to identify structures most compatible with each
protein sequence. For each protein, we select ten top-scoring single domain structures with a
threading z-score of at least 3. We then rank the complex templates composed of these
single domains based on the sum of their single-domain threading z-scores. When only one
sequence of the query pair matches a domain in the complex, we do not discard it. This
procedure selects for each query pair at most 10 possible complex templates for threading of
the interface by iWRAP. For each of these selected complex templates, iWRAP uses a local
alignment of the query sequence profile to the interface template profile; this directly
reflects the quality of the interface alignment, without being influenced by alignments
elsewhere in the structure. We select the best interface template using a z-score that
evaluates iWRAP's interface score with respect to a distribution obtained by randomizing
the interface contacts.

For the third stage, scoring the putative interaction, we begin by integrating stage 2's
interface-specific alignment score into a general threading scoring scheme implemented
similar to RAPTOR[45]. This produces an initial contact map, which we further refine
through contact map optimization in the neighborhood of interacting residues. For the fourth
stage, interaction prediction, we extract features of the predicted interface (e.g. interface
energy, z-score, size) to input into a boosting classifier, which then computes a probability
of interaction for the two query proteins. Note that this stage is employed only for our yeast
genome scans, and not for our benchmarking tests on SCOPPI. See Materials and Methods
for a more detailed description of each of these stages and training and test sets.

Our algorithm builds upon our previous work LTHREADER[32], where we have shown that
supervised construction of the interface templates, along with a localized scoring scheme
based on sequence-specific profiles significantly improves alignment and prediction
accuracies for the cytokine family. LTHREADER independently aligned each sequence to a
profile representing one sequence of the interface template using a sliding-window
approach. In contrast, iWRAP uses a linear programming approach (LP) to align pairs of
sequences to a two-dimensional (2D) profile of a protein-protein interface and utilizes
pairwise quasi-chemical scores for evaluation and optimization. Additionally,
LTHREADER focused the alignments on putative interaction cores determined by predicted
secondary structure, while iWRAP does not make such an assumption; it uses the LP to
decide the optimal interface region. iWRAP further optimizes an objective function based on
the Hadamard product of 2D contact maps, thereby simultaneously adjusting interface
residues of both interacting proteins. iWRAP rigorously deals with gaps in the alignment,
whereas LTHREADER aligns the entire putative interaction core to the interface profile
ignoring gaps altogether. Moreover, interface templates used by iWRAP are constructed by
a fully-automated procedure that uses our recent multiple interface alignment algorithm
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CMAPi[36], while LTHREADER had to rely on time-consuming manually-constructed
multiple interface alignments. In particular, LTHREADER chose parameters in its
alignment algorithm to reflect the structural and physical constraints of the two cytokine
families it was tested on. Extension of LTHREADER to other families would require the
estimation of those parameters in a principled way. A detailed description of the nontrivial
task of interface template construction from the CMAPi alignments is provided in Materials
and Methods: Template construction. Finally, the combination of iWRAP's interface
threading with a general single-domain threader (RAPTOR), the latter of which is used to
identify most likely complexes for pairwise threading, allows PPI prediction on a genomic
scale – a feature missing in LTHREADER.

2.2. Interface validation
We evaluate iWRAP on two challenges that one encounters using structural information to
predict likely protein-protein interactions: sequence-interface alignment and interface
contact prediction. For sequence-interface alignments, we first compare the performance of
iWRAP with that of a full complex threader, DBLRAP[8], a profile-based alignment
program MUSCLE[46] and our previous algorithm LTHREADER, in stringent cross-
validation on SCOPPI. We then continue to compare the two superior alignment algorithms,
iWRAP and DBLRAP, using several additional metrics that evaluate the absolute quality of
the putative interface: Root Mean Square Deviation (RMSD) of the interface alignments,
contact accuracy and interfacial energy (Definitions in SI). See Materials and Methods for a
detailed description of the training and test set construction. We emphasize that in cross-
validation tests, we restrict ourselves to only difficult alignments (i.e. sequence identity <
40%) because easier alignments are straightforward to address using conventional threading
techniques or sequence alignment.

Cross-validation within SCOPPI families—iWRAP performs better than or
competitive to other sequence and structure-based techniques in terms of average alignment
accuracies (see Table 1). Average alignment accuracies are calculated by averaging the
alignment accuracies computed by threading the test sequence pair to each template in the
training set. iWRAP improves average alignment accuracies for roughly 80% of the families
(in cross-validation tests) for which we can construct multiple interface alignments and
sufficiently large training and test sets. For the remaining 20% of families, iWRAP gives
equivalent or slightly lower accuracies than DBLRAP. iWRAP performs much better than
techniques based on sequence alone. We compared iWRAP with profile-based alignments
computed using a state-of-the-art alignment program MUSCLE[46]. Profiles for the
sequences were computed by running PSI-BLAST for 5 iterations with an E-value cutoff of
0.001 against the ‘nr’ protein database[47]. Profile-based alignments, rather than pairwise
alignments, were used as they have been shown to be more accurate for remote homology
detection[48]. iWRAP also performs much better than our earlier algorithm LTHREADER.
To evaluate the additional value of iWRAP scoring function, we used our new interface
profiles along with the threading approach employed by LTHREADER. Briefly, we first
align the secondary structure tags of the query and template to roughly identify the
interaction cores. Then we use predicted secondary structure and predicted solvent
accessibilities in a scoring function similar to LTHREADER, confining the search space to
within 5 residues of the secondary structure identified as the putative interaction core. In the
three cases where iWRAP performs worse than any of the three previous methods, the
overall sequence similarity is rather high giving these methods a slight advantage. Following
on this observation, for whole genome scans, we combine DBLRAP with iWRAP.

Interfaces predicted by iWRAP are closer to true interfaces than those predicted by
DBLRAP. Below we focus on comparing iWRAP and DBLRAP, since their contact
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accuracies are much better than that of MUSCLE and LTHREADER (see SI Fig S4B,C). As
an example, Figure 2 illustrates the case of the interface formed in the PDB structure 1upc
(Fig 2A) between chains A(12-195) and B(375-573). The template used for threading these
two sequences is shown in Fig 2B, with the interface residues highlighted in green.
DBLRAP completely misses the correct interface region as a result of poor alignment of
chain B (Fig 2C), giving a contact accuracy of 0%. In contrast, iWRAP produces an initial
interface closer to the true one, with a contact accuracy of 27% (Fig 2D). On further
refinement of the contact map (see Materials and Methods: Contact map optimization),
iWRAP's predicted interface (Fig 2E) is much closer to the true interface (Fig 2A), with
46% contact accuracy. The predicted structure of the true interface is shown in Fig 2F. It
was constructed by mapping true interface residues (magenta, Fig 2A) to the template (Fig
2B) using alignments computed by iWRAP. iWRAP aligns the true interface residues to the
interface of the template and is thus able to correctly identify the interacting residues. To
emphasize the fact that iWRAP is an interface threading approach, rather than a full-
complex approach, the rest of the structure is colored in light-gray. Additionally, the higher
statistical significance of iWRAP's predicted interface energy (z-score=2.7), calculated by
randomizing the interfacial contacts, as compared to DBLRAP's (z-score=-0.1), is further
indicative of the improved interface prediction. The higher contact accuracies and associated
z-scores enable iWRAP to improve PPI prediction over DBLRAP. A second example
demonstrating iWRAP's improved interface prediction over DBLRAP is given in SI Fig S3.

More generally, iWRAP outperforms other sequence-based and threading methods at
correctly predicting interfacial contacts across all template-query pairs in the test set, except
for a few very small interfaces (see Fig 3A). We find that iWRAP improves over DBLRAP
in predicting interfacial contacts when the number of true contacts is greater than 25-30 (see
Fig 3A, right of the solid vertical line). Even when DBLRAP fails to account for 10% of the
contacts, iWRAP can predict 20-30% of the contacts (see SI Fig S4A).

We investigated the variation of contact accuracy with sequence similarity at the interface
for the alignments in the cross-validation set. For sequence identities between 0.2 and 0.4,
iWRAP significantly improves contact prediction (Fig 3B, right of the solid vertical line).
However, when the sequence identity between the template and query becomes less than
0.15, there is no consistent improvement over DBLRAP (Fig 3B, left of the solid vertical
line). We have also observed that other features of the interface, namely information content
and iracc (see Materials and Methods: Training and test sets), do not significantly influence
the contact predictions (see SI Fig S4D and S4E).

We sought to further investigate iWRAP's superior performance on medium to large contact
maps (>25 contacts). We hypothesize this improvement is due to the localized character of
our interface profiles. We evaluated the contact density for both methods on contact maps
with greater than 25 contacts, where we presume iWRAP's profiles are aiding in its superior
performance (Fig 3A). Following the contact-map mining techniques of Hu et al.[49], we
characterized each contact by the pattern of contacts in a 5×5 residue neighborhood around
it, where the average density is the number of contacts divided by 25. We observe that
iWRAP contact predictions have a higher density (0.26) on average than DBLRAP
predictions (0.22), on both the training and test sets (see SI for details). Furthermore, when
the interface is small, there are many feasible alignments for the interface region; this makes
it difficult for iWRAP to get accurate alignments without using restraints from the whole
complex. Based on this analysis, we conclude that size and density are factors in the
improved performance of iWRAP, and thus may be responsible for the decreased
performance in the case of fewer than 20-25 contacts.
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iWRAP consistently gives lower interface energies (normalized by the number of predicted
contacts) as compared to DBLRAP (Fig 3C). To predict protein interactions iWRAP and
DBLRAP use the residue-level statistical potential developed by Lu et al.[30] to score
putative interactions. The interaction score (energy) is obtained by summing over all the
contacts in the putative interface.

We also evaluated alignments using the conventional metric of interface RMSD and
confirmed that iWRAP alignments have similar or lower RMSD than DBLRAP's (see Fig
3D). Thus iWRAP improvements in alignment and contact accuracy do not affect the
RMSD of the predicted interface. Note that while optimizing the parameters, RMSD was not
optimized for the threading alignments.

Cross-validation across SCOPPI families—In addition to cross-validation tests
within the same SCOPPI family we have tested the ability of iWRAP to accurately predict
interfaces when threaded complexes are from SCOPPI family pairs sharing only one SCOP
family (e.g. b.47.1.2_g.3.15.1 and b.47.1.2_g.68.1.1). For these across-family threading
tests, we restricted ourselves to alignments having a high iracc score (> 0.75, see Materials
and Methods: Training and test sets), thereby ensuring similar binding patterns. Successful
threading of across-family pairs allows us to address PPI predictions when a template
complex for the same SCOPPI family does not exist. However, in such cases, it is possible
that the interaction can be predicted using a similar interface for another PPI. It is known
that despite lack of overall structural similarity some proteins interact with different protein
partner using a very similar interface; for example, interaction mimicry has been observed in
host-pathogen interactions[50].

Most threading methods rely on a template database, which might not be completely
representative and might not have an appropriate template for every query sequence. While
traditional cross-validation strategies do not perform across-family tests, we do so in order
to try to address the problem of the limited number of templates available for genome-wide
PPI predictions.

For across-family predictions iWRAP predicts the interacting residues more accurately than
DBLRAP for 75% of SCOPPI family pairs (see SI Table S2) in the cross-validation test.
Despite the high iracc score (>0.75) for such alignments, the binding patterns might be
relatively different, leading to a poorer overall prediction by DBLRAP. However, for cases
when DBLRAP fails to predict even 10% of contacts, iWRAP can account for nearly
20-30% of the true contacts (see Fig 3E). This suggests that using iWRAP for PPI prediction
with templates of complexes sharing one SCOP family can increase the coverage of
predictions.

2.3. PPI Prediction: yeast genome
We have applied iWRAP for genome-scale analysis to predict the yeast interaction network.
In cross-validation tests above, we used templates in the training set to thread query
sequences in the test set. For the yeast genome scan we use a single sequence threader,
RAPTOR, to identify suitable templates for each sequence in the query pair using z-score >
3.0. If we do not have an interface template for a SCOPPI family composed of the SCOP
families corresponding to any combination of these templates, we use DBLRAP to thread
the two sequences onto a conventional full-complex template (see SI for details). Once the
putative interface is determined, we use interface-specific scores to predict the interaction
between the proteins (stage 4). See Materials and Methods for a detailed description of the
classifier employed to predict an interaction.
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In order to evaluate our predictions, we compute a receiver operating characteric (ROC)
curve by varying the probability cutoff for predicting an interaction. When comparing ROC
curves against other homology/structure-based PPI predictors, we find that iWRAP
consistently outperforms HOMCOS, Multiprospector and DBLRAP. Multiprospector
reports a sensitivity of 20% at a specificity of 80%, whereas iWRAP achieves a sensitivity
of 56% at 80% specificity (see Fig 4). HOMCOS reports a recall of 80% with a precision of
10%. In contrast, iWRAP achieves a precision of 27% at the 80% recall level (see SI Fig
S6). Struct2Net[8,31] uses the DBLRAP threading program for prediction of interactions
from structural data. When comparing against Struct2Net (only yeast predictions), we find
that iWRAP dominates Struct2Net at all accuracy levels (see Fig 4).

Interface threading requires multiple structural data for an interaction, which is not always
available. By using interface threading in conjunction with DBLRAP, our method, i.e.
iWRAP+DBLRAP(boost), achieves a coverage of 13% for the yeast interactome. This is
close to a 50% increase in coverage over previous methods[31], without any compromise in
sensitivity (Fig 4). Here, coverage is defined as the percentage of high-confidence
interactions in Biogrid[51] for which a method can make a prediction. iWRAP makes
predictions for 9752 high-confidence interactions in Biogrid (involving around 3400
proteins), whereas DBLRAP makes predictions for 5832 interactions (involving around
2700 proteins). 3920 are unique to iWRAP's interface threading predictions; this results in
close to a 50% increase in coverage compared to DBLRAP. In addition, iWRAP predicts
about 100,000 novel interactions in the yeast genome; the cutoff (= 0.9) for identifying a
positive interaction is chosen based on the distribution of interaction probabilities (see SI Fig
S7). We note that around 60% of our predictions come from across family threading– that's
not surprising given the limited template database; it is more likely to have a good match to
one sequence of the query, than to both of them.

To further analyze iWRAP's performance, we looked at the 640 proteins involved in the
high-confidence interactions from Biogrid uniquely predicted by iWRAP. One finding from
a GO term enrichment analysis using Amigo[52] revealed that this set was enriched for
proteins functioning as structural constituents of the ribosome (GO: 0003735, P-value < 10e
– 6). Additionally, iWRAP makes predictions for proteins within functional complexes
involving nuclear proteins such as the ‘U5 snRNP complex’ and ‘SAS complex’. Amongst
the type of functional complexes that both iWRAP and DBLRAP predict, we find that
iWRAP's predictions are significantly enriched for the following complexes (> 6 fold over
DBLRAP): ‘Rtt109p/Vps75p complex’ (12 fold over DBLRAP), ‘signal peptidase complex’
(11 fold) and ‘GPI-anchor transamidase complex’ (9 fold). The full list of such complexes
and complexes unique to iWRAP predictions is given in SI Genomic Predictions. The
annotation of these complexes, including their memberships, were taken from a manually-
curated dataset compiled by Pu et al.[53]. Finally, we investigated the templates selected for
the unique predictions made by iWRAP. Table 2 gives a summary of the most frequent
templates used for predicting these interactions. While DBLRAP selects one representative
complex for each SCOPPI family, multiple templates can be selected by iWRAP from
within a family. This contributes to iWRAP's improved prediction accuracy as features for
only the most significant interface are considered for PPI prediction. Furthermore, as noted
earlier in cross-validation tests (Fig 3A), size of the interface template is correlated with
iWRAP's accuracy: larger interfaces lead to more confident predictions. From Table 2, the
average probability computed by iWRAP for interface templates of size less than 20
contacts (mean=0.20, std.dev=0.13) is half of the average probability computed for
templates greater than 20 (mean=0.40, std.dev=0.20).
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2.4. iWRAP predicts novel cancer-related interactions
We demonstrate that iWRAP can be used to identify important targets for experimental
investigation through an application to yeast homologs of human cancer-related genes. We
integrate enrichment and functional analysis to enumerate bona fide candidates for further
investigation (Fig 5). Recently, a large scale double-mutant study has revealed a genetic
interaction map for yeast[41]. However, the set of interesting genes for any detailed study of
a disease (e.g. cancer) is still large. In contrast to this approach, we use iWRAP predictions
to identify the most important targets for further study. It has been shown that structure-
based scores are one of the most significant predictors, as compared to co-localization, co-
expression and GO term enrichment, for general PPI prediction[54,8]. We employ these
criteria to prioritize and validate our targets (Fig 5A). For the set of yeast genes related to
cancer identified in CYGD[55], we first filter the predicted interactions based on co-
localization. iWRAP identifies 727 interactions for the disease genes (out of ~54000
possible interactions). After discarding predictions between proteins that are not co-
localized; 301 putative interactions remain for further analysis. We then identify genes
enriched for GO processes, with the genetic interaction set as the background. Note that this
is a much more stringent criterion than using the whole genome as the background; the latter
yields many more putative interacting genes. We used AmiGO[52] to filter genes based on a
p-value cutoff of 0.01 (corrected for multiple hypothesis testing). The enrichment analysis
narrows down the list of candidate genes to 28. Note that we are using both co-localization
and enrichment as filters to select the most important candidate genes; we treat both of them
as equally important. For genes that were significantly enriched (~4 fold, see SI Table S3),
we used IsoBase[56] to identify their human funtional orthologs. To exploit the more
comprehensive yeast genome annotation, we carried out the enrichment on the yeast
predictions before mapping them onto the human genome. We found that these enriched
genes are differentially expressed in cancer-vs-normal tissues[57]. Furthermore, using
BLAST we were able to identify similar proteins (E-value < 10) in a database of cancer-
related proteins[58]. We hypothesize that these novel interactions are directly involved in
cancer-related pathways, and should be investigated further (Fig 5B).

Amongst the genes predicted by iWRAP as interacting with known cancer promoting genes,
particularly interesting are genes coding for ribosomal proteins associated with either the
small (RPS) or large (RPL) subunit (Fig 5B). Mutations in several of these proteins,
including RPS17 and RPL5 identified by iWRAP, have been very recently implicated in
congenital abnormalities and predisposition to cancer, known as Diamond Blackfan Anemia
(DBA)[59]. The expression disregulation of RPS and RPL genes have also been observed in
pancreatic cancer and stromal displasia[60] and in colorectal cancer[61]. In addition, there
are two (human DEAD box) helicases DDX23 and DDX55 (Fig 5B) in the set of putative
interactions. Even though there is limited research on various human helicases they are
believed to be involved in embryogenesis and cell growth and have recently been shown to
be involved in tumorigenesis[62]. Furthermore, iWRAP predicts an interaction between
XPA (RAD14) and SMARCA5; the latter has been shown to be critical for regulating the
genetic program required for normal differentiation[63].

3. Discussion
We introduce the program iWRAP and show that integrating interface profiles into a
localized scoring scheme aids in interfacial contact prediction. We introduce the use of
across-family templates to mitigate the limited number of templates, and also capture
convergently evolved interface motifs. We apply our approach to predict interacting proteins
encoded by the entire yeast genome. Furthermore, by integrating our predictions in a
combined functional and enrichment study of cancer related genes in yeast, we show that
iWRAP can uncover novel, biologically relevant interactions.
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While we have optimized the two new parameters (α and ωgap) in our threading scoring
function specific to interface predictions (see Materials and Methods), it would be
interesting to see if simultaneously optimizing the other parameters, already optimized
separately in the fold recognition score of RAPTOR, improves accuracies even further. In
particular, we expect the sequence profile and secondary structure scores to be the most
important for very low sequence identities; as we have shown in Fig 3B, the interface
profiles may not be sufficient to pinpoint the exact interaction core in such cases. As noted
in Cross-validation within SCOPPI families, for sparse contacts and small interfaces in long
sequences, the localized nature of iWRAP can miss the interaction core, thus identifying an
incorrect interacting surface. In such cases, a pre-processing step with DBLRAP to roughly
identify the interface region could be beneficial before using the localized threading
algorithm.

In this paper, we have focused on SCOPPI families having more than three complexes in a
binding mode. In addition, we have not considered complexes formed by domains in the
same SCOP family, which rules out homodimers (as handled by HOMCOS). Combining
interface threading with DBLRAP effectively addresses limitations of small number of
SCOPPI-derived interface templates. Furthermore, for families having only one solved
complex, we plan to utilize interface profiles computed from PSI-BLAST as input to our
localized algorithm. We believe that an expanded template database and a full optimization
of the scoring function parameters will improve iWRAP's predictive abilities even further.

Our program iWRAP makes accurate PPI predictions that are independent of all the non-
structure-based approaches and may thus be combined with any of them. iWRAP is
designed to handle template-query pairs having low sequence similarity, making it
complementary to other PPI databases like MODBase[23]. A key advantage of iWRAP is
that, apart from the PDB data used for constructing templates, the prediction algorithm only
requires protein sequence data as input. It can thus be applied to proteins for which no
functional data is available.

4. Materials and Methods
4.1. Stage 1: Template construction

We utilize the SCOPPI classification of protein-protein interfaces to construct interface
profiles. SCOPPI classifies interfaces based on sequence and structural similarity of the
interface[40]. In addition, for each interacting SCOP family pair, SCOPPI provides a
sequence alignment of other interfaces in the same SCOP family pair. Here we use this
classification of interfaces to construct our own multiple interface alignments for each
SCOP family pair using CMAPi[36]. CMAPi employs a contact-map representation to
efficiently align multiple interfaces and thereby improves alignments, as compared with
SCOPPI and other sequence/structure-based alignment programs, especially in cases where
the sequence identity between aligned structures is low[36]. A contact map is a binary
matrix representation of the residue-residue interactions between two proteins. If the
distance between any two heavy atoms of the two residues is less than 4.5Å, the
corresponding entry in the contact map is one, and zero otherwise.

We construct interface profiles from these interface alignments by computing a unique set of
consensus environment classes, one for each interface alignment position (see SI Fig S2).
An environment class is a combination of a secondary structure (SS) class, an amino acid
class and average solvent accessibility (across the alignment at that position). We use the
classification as defined by Rice et al. (1997), which, briefly, consists of three SS classes,
two solvent accessibility classes and seven amino acid classes. Rice et al. also provide a
table, H3P2, which provides amino acid/SS preferences for these environmental classes. The
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profiles computed from a multiple interface alignment represent the environment
information at the interface across the multiple structures in the alignment. Since the
consensus contact map constructed by CMAPi includes all contacts across the aligned
complexes, our interface profiles are robust to small variations in inter-residue distances.

4.2. Stage 2: Aligning query sequences to templates
The goal in this stage is to align query sequence profiles to interface template profiles,
constructed in stage 1. We obtain query sequence profiles from PSIBLAST[47] and query
secondary structure (SS) predictions from PSIPred[64]. Once we identify a suitable
template, we score individual query-template alignments using Rice et al.'s H3P2 table (see
above), which, in the context of single structure alignment, quantifies the preference of
aligning a query sequence/SS profile to a template profile. However, since our query SS's
are predicted, we instead use H3P2 scores weighted by the PSIPred SS probability
distribution at a query sequence position.

(1)

Here t is the template position, s(t) is the query sequence position aligned to template
position t, ss is C(coil), H(helix) or E(beta strand), P(ss) is the probability of a secondary
structure class at position s(t) given by PSIPred and H3P2(s(t), ss, t) is the H3P2 table score
of aligning query s(t) having ss to the template position t. While Eq. 1 represents the score
for one aligned position, the total alignment score is calculated by summing over all aligned
positions. Note that we utilize only one state ‘C’ to model loops. We currently do not
distinguish between coil and other structural loops such as beta turns or tight turns.

4.3. Stage 3: Interface scoring
The goal in this stage is to integrate the interface profile scoring scheme from stage 2 into a
general threading approach to obtain a score for a putative interaction. Our solution employs
a LP strategy motivated by that used by RAPTOR for single-domain threading. We begin by
constructing our objective function. For each sequence in the query pair, in addition to the
RAPTOR single-domain threading score, we include the interface profile score (see stages
1,2 above) of aligning the query sequence, s, with the interface template profile:

(2)

(3)

(4)

EiWRAP is the interface threading energy function (scoring function); ECMAPi is the interface
profile score; H3P2score is the alignment score from the H3P2 table (see stage 2, Eq 1); and
GAPRAP is the total gap (opening+extension) score used by RAPTOR. ERAP is the threading
score employed by RAPTOR. This includes environment fitness score Es based on solvent
accessibility, secondary structure compatibility score Ess, sequence profile scores calculated
from PSI-BLAST Em, an affine gap penalty Eg and a pairwise within-domain interaction
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score Ep[45] . To score an alignment to an interface template position represented by a gap
state, we use the mean negative score in the H3P2 table (i.e. mean of the unfavorable
alignment scores). To take into account possible gaps at the interface, we add a weighted
negative penalty (ωgapGAPRAP) to the score. Note that parameters α and ωgap are optimized
independently based on our training set, as described in Training and test sets. To obtain the
alignment, the EiWRAP score is minimized independently for each of the two query
sequences using the implementation of RAPTOR, which utilizes an open-source
optimization library (COIN)[65] (Fig 6, left).

Contact map optimization—From the independent interface threading above, we
produce an initial query contact map (Fig 6, right). We further refine this contact map by
incorporating residue-residue interaction specificity and optimizing similarity of the binding
patterns in query and template. We carry out optimization in the neighborhood of interacting
residues using a residue-residue interaction score[30]. A 10×10 sub-matrix in the contact
map around an interacting pair defines this local neighborhood. For each contact (S1, S2) in
the initial contact map, we maximize the Hadamard product between two matrices: one, a
sub-matrix around the predicted contact in the query contact map (Qcmap) and two, a sub-
matrix around the corresponding template contact in the template contact map (Tcmap). If
(T1, T2) is the corresponding template contact, then this optimization can be written as:

(5)

where ‘A’ represents the set of possible contacts that maximize the Hadamard product, δ is
the kronecker-delta function and d1, d2 are the sub-matrix indices. This optimization
maximizes (around each contact) the similarity of binding patterns in the template and query
contact maps. For residues aligned to gaps, we allow the alignment to shift so that the
nearest non-gapped position is used in the Hadamard product optimization. Since each
Hadamard optimization is performed independently, one template contact could be mapped
to multiple contacts in the query contact map. To avoid one to many mappings, for each
template contact, we rank the possible predicted contacts using the quasi-chemical residue-
residue interaction scoring potential of Lu et al.[30] (‘Epwqc’) and choose the top ranking
unique one:

(6)

The final contact map is the set of these optimizedContacts (Fig 6, right). Additionally, the
significance of the predicted interaction score is measured by calculating a z-score with
respect to a distribution generated by randomizing the interfacial contacts. The total score
(energy) of the interface and the associated z-score are used in predicting interactions in
stage 4.

4.4. Stage 4: PPI prediction
The goal in this stage is to predict whether the two query proteins interact based on the
interface score computed in stage 3. Since only a few protein pairs interact in vivo, the main
challenge here is to discriminate true interactions from false ones. To achieve this goal, we
extract a vector of scores ‘XInterface’ that quantifies the quality of the predicted interface[8]
and feed this vector to a boosting classifier, which computes a probability ‘p’ of the
interaction:
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(7)

(8)

We extract the following features, i.e. ‘XInterface’, from the putative interface: template
sequence lengths (tA, tB), query sequence lengths (sA, sB), predicted number of contacts
(cmap), total interface energy computed from the pairwise potential (E = Σc ε optimizedContacts
Epwqc(c)), normalized interface energy (e), z-scores for the threading alignments (zA, zB)
and z-score for the interface energy (z_e). In addition, we use the features sum of threading
z-scores (tZ), square root of the product of sequence lengths (piAB), total interface energy
normalized by piAB (E_pi) and number of contacts normalized by piAB (cmap_pi).

We train a boosting classifier on known high-confidence interactions from Biogrid to learn
an accurate function ‘f’. Our method is based on AdaBoost, which involves improving the
overall classification by appropriately weighting outputs of a series of rules of thumb, or
base classifiers; we use classification trees as the base classifiers[39] (see SI for details).
Using this trained model a probability of interaction is computed, which indicates iWRAP's
confidence in predicting an interaction between the query proteins: 1 indicates maximum
confidence and 0 indicates no confidence. Note that this stage is used only for our genome
scans, where we have no a priori knowledge of interaction between the query proteins.

4.5. Training and test sets
For each SCOPPI family (i.e. SCOP family pair), the set of complexes is divided into a
training set and a test set; a leave-one-out cross-validation (LOOC) procedure is employed
to optimize the parameters. A complex in the test set has an interface sequence identity less
than 40% with each of the complexes in the training set. The complexes from the training set
are used in constructing the multiple interface alignments with CMAPi, and subsequently
the interface profiles. We use the training set to optimize the two parameters in the scoring
function, α and ωgap from Eqn 2. The parameters are varied alternatively to maximize the
alignment accuracy of the threading alignments, where CMAPi alignments are used as the
gold-standard. At each iteration, α is varied in intervals of 5, and ωgap is varied in intervals
of 0.1. The parameter value which gives the maximum alignment accuracy is chosen at each
iteration. After an initial broad sweep for α, the parameters typically converge within 20
iterations.

In addition to LOOC testing within a SCOPPI family, we consider the performance of
iWRAP on complexes having similar binding patterns (as given by an iracc of greater than
0.75) across families. Interacting residue accuracy (iracc) gives a measure of similarity in
binding patterns between two interfaces: an iracc of one indicates very similar interfaces,
and zero highly dissimilar interfaces[32]. For across-family cross-validation, we restrict
ourselves to SCOPPI family pairs sharing one SCOP family. Notice that the parameter
optimization has been carried out independently for each SCOPPI family, and hence
alignments across SCOPPI family pairs are independent of the training process.

In order to train the classifier in stage 4 for our genomic scans, we constructed the set of
training examples as in Struct2Net[8,31]. Briefly, the set of positive examples was taken as
the high-confidence interactions in Biogrid[51]. Any two proteins separated by at least three
edges in the interaction network constructed from Biogrid were considered as non-
interacting, and included in the negative set. For our predictions on yeast, the training set
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consisted of 3500 positive and 16000 negative examples. Our test set had 720 positive and
3000 negative examples.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic of the iWRAP algorithm
Interface profiles are constructed from a multiple contact map alignment in Stage 1.
Individual interfaces are represented as colored contact maps, and the aligned interface is
shown at the bottom in black and white (Stage 1, top). Query profiles consisting of the
sequence and secondary structure propensities (Stage 2) is threaded onto the interface
template (Stage 3; query1 is shown in red, query2 in blue, interface residues in yellow).
From the putative interface in Stage 3, a number of features of the interface are used in
predicting an interaction in Stage 4 (for only the yeast genome scan).
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Figure 2. Example of improved contact predictions by iWRAP in within-family cross-validation
PDB 1upc chains A(12-195) and B(375-573) are threaded to the template 1qpbAB. A) The
true interface computed from the PDB structure of 1upc has roughly 50 contacts. The
interface residues are shown as purple spheres, chain B is shown in red and chain A in blue.
B) The template (1qpbAB) used for threading the query sequences; the interface residues are
shown in green. C) The interface residues (yellow spheres) predicted by DBLRAP.
DBLRAP fails to align the interface region of one interacting partner due to low sequence
homology between the query and template (contact accuracy = 0%). D) Initial interface
(yellow spheres) predicted by iWRAP after threading (contact accuracy = 27%). iWRAP
uses interface profiles constructed from a multiple alignment of the interfaces 1mczHG,
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1jscAB, 1ozhDC and 1qpbAB; the profiles are then mapped onto the template 1qpbAB. E)
Final interface (yellow spheres) predicted by iWRAP after contact map optimization. This
step refines the contact map, resulting in contacts closer to the true interface. The final
contact map is closer to the true contact map (contact accuracy = 46%). F) Predicted
interface structure obtained by mapping true interface residues from A onto the template
structure in B using iWRAP alignments.
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Figure 3. Interface alignment and contact validation
Panels A, B, C and D are cross-validation results on within SCOPPI family threading.
Δ(contact accuracy |δ|=2) is the difference in contact accuracies (|δ|=2) between iWRAP and
DBLRAP. A) Contact accuracy improvement of iWRAP relative to DBLRAP as a function
of number of true contacts at the interface. B) Contact accuracy improvement of iWRAP
relative to DBLRAP as a function of sequence identity at the interface. C) iWRAP
consistently achieves lower average interface energies as compared to DBLRAP. D) RMSD
comparison between iWRAP and DBLRAP- better contact prediction by iWRAP does not
affect RMSD of the predicted interface. E) Cross-validation results for interfaces sharing
only one SCOP family (see Cross-validation across SCOPPI families). See SI for
calculation of contact accuracies and interface energy.
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Figure 4. Results on the yeast genome
Sensitivity vs specificity for Multiprospector, iWRAP, Struct2Net and iWRAP+DBLRAP
(combined method). In the combined method, DBLRAP threading results are boosted and
combined with iWRAP predictions. Here sensitivity = (true positives)/(true positives + false
negatives) and specificity= (true negatives)/(true negatives + false positives).
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Figure 5. iWRAP predicts novel, bona fide interactions
A) Enrichment analysis was carried out to identify high-confidence interactions. Genes
filtered by co-localization and significantly enriched compared to the genetic interaction set
were validated using the Oncomine and HCPIN databases. Number of genes remaining after
each stage are indicated in parantheses. B) The analysis in A reveals a set of high-
confidence genes (green) predicted to be interacting with yeast homologs of cancer related
genes (purple). Human orthologs of genes for which there is literature providing evidence of
implication in cancer have been indicated in parentheses. Genes interacting with only one
“cancer” (purple) gene are in the outermost circle, whereas those interacting with more are
in the innermost circle. Genes which are not significantly enriched are colored in grey,
however, these predicted interactions could also reveal novel biological insights. The figure
was created using Cytoscape[66].
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Figure 6. Schematic of interface threading and contact optimization
For the example shown in Figure 2, the query proteins are individually aligned to the
template (left) using a local alignment to the interface (dashed lines). For scoring this
alignment, we use the interface profiles computed from the multiple-interface alignments,
predicted secondary structure for the query pair and the single-domain threading score of
RAPTOR. Minimizing this alignment score produces an initial contact map, ‘iWRAP
initial’, which is further refined using Hadamard product optimization and quasi-chemical
pairwise residue potentials to produce ‘iWRAP final’ (right).
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Table 2
The most frequent templates used by iWRAP for threading sequences involved in high-
confidence interactions in Biogrid unique to iWRAP

The most frequent templates used by iWRAP for threading sequences involved in high-confidence interactions
in Biogrid, which are unique to iWRAP. Column 2 gives the size of the interface template (i.e. number of
contacts), column 3 the number of threaded pairs in the test set, and column 4 the average predicted
probability of interaction in the test set. A template id ‘1v55B2-1v55A2’ represents the interface formed by
SCOP domains in chain B and chain A in the PDB complex ‘1v55’.

SCOPPI Family Template Size of Interface Number of interactions in test set Average Probability

f.17.2.1_f.24.1.1 1m56H30-1m56G14 135 40 0.297

f.17.2.1_f.24.1.1 1qleB1-1qleA17 132 23 0.398

f.17.2.1_f.24.1.1 1v55B2-1v55A2 124 33 0.481

f.17.2.1_f.24.1.1 1fftG27-1fftF52 96 18 0.183

b.40.4.1_d.104.1.1 1asyA68-1asyB205 63 5 0.400

b.40.4.1_d.104.1.1 1b8aB1001-1b8aA104 51 16 0.624

b.40.4.1_d.104.1.1 1g51A1-1g51B1105 46 9 0.667

b.40.4.1_d.104.1.1 1n9wB1-1n9wA111 43 14 0.428

a.56.1.1_d.133.1.1 1jrpE85-1jrpF124 61 8 0.000

c.55.1.1_d.109.1.1 1yagA147-1yagG1 45 8 0.732

c.55.1.1_d.109.1.1 1h1vA147-1h1vG412 32 7 0.281

b.40.2.2_d.19.1.1 1d5mC2-1d5mA4 41 12 0.180

d.185.1.1_f.23.12.1 1bgyM234-1bgyQ1 22 24 0.333

d.185.1.1_f.23.12.1 1bccA233-1bccE1 22 16 0.499

a.39.1.5_c.37.1.9 1dfkZ3-1dfkA6 19 32 0.258

a.39.1.5_c.37.1.9 1dflX4-1dflB5 14 23 0.277

a.80.1.1_c.37.1.20 1sxjA548-1sxjB7 16 18 0.397

a.80.1.1_c.37.1.20 1iqpC233-1iqpD2 15 10 0.100

a.80.1.1_c.37.1.20 1jr3B243-1jr3E1 10 10 0.300

d.185.1.1_f.23.12.1 1kb9A240-1kb9E31 7 6 0.000
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