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Abstract

This paper presents an analytical model, based on finite capacity queueing network theory, to eval-
uate congestion in protein synthesis networks. These networks are modeled as a set of single server
bufferless queues in a tandem topology. This model proposes a detailed state space formulation,
which provides a fine description of congestion and contributes to a better understanding of how the
protein synthesis rate is deteriorated. The model approximates the marginal stationary distribu-
tions of each queue. It consists of a system of linear and quadratic equations that can be decoupled.
The numerical performance of this method is evaluated for networks with up to 100,000 queues,
considering scenarios with various levels of congestion. It is a computationally efficient and scalable
method that is suitable to evaluate congestion for large-scale networks. Additionally, this paper
generalizes the concept of blocking: blocking events can be triggered by an arbitrary set of queues.
This generalization allows for a variety of blocking phenomena to be modeled.

1 Introduction

To synthesize proteins, the information of an mRNA (messenger RiboNucleic Acid) is translated.
An mRNA consists of a strand of codons. The information of an mRNA is encoded in these codons
(i.e. each codon codes for an amino acid) and is translated to form proteins using ribosomes as
catalysts.

Protein synthesis involves three main phases: initiation, elongation and termination. These are
depicted in Figure 1. This figure presents an mRNA strand that consists of a series of N codons ,
i.e. a set of codons in a tandem topology. Each codon is depicted by a vertical line on the mRNA.
There are four ribosomes on the mRNA. Each ribosome is L codons long.

During the initiation phase, the ribosome binds to the mRNA at the first codon (or start codon).
Then the ribosome advances along the mRNA one codon at a time. At each codon, elongation
takes place. During elongation the corresponding codon (i.e. the underlying amino acid) is added
to the growing protein chain. Termination occurs when the ribosome encounters the last codon (or
termination codon). Both the ribosome and the newly formed protein are released, i.e. they unbind
from the mRNA, and the ribosome is once again available for other translations.

For a given mRNA, the bound ribosomes advance along its codons, and may therefore be blocked
by downstream ribosomes. Since for a given cell there are numerous mRNA’s competing for available
(i.e. non-binding) ribosomes, the blocking of ribosomes on an mRNA strand decreases the protein

1Civil and Environmental Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts

Avenue, Cambridge, MA, 02139, USA, osorioc@mit.edu
2Transport and Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland,

michel.bierlaire@epfl.ch

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78063772?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


L

N

Ribosome mRNA

Initiation TerminationElongation

Figure 1: Ribosomes on an mRNA strand. Adapted from Mehra and Hatzimanikatis (2006).

synthesis rate of that mRNA, and may affect that of other mRNA’s by reducing the probability
that a ribosome is available for translation.

The frequency and effect of ribosome blocking is determined by the codon-specific initiation,
elongation and termination rates, which therefore play an important role in the protein synthesis
rate. Protein synthesis models are developed in order to study how these translation rates induce
ribosome congestion and affect protein synthesis.

The main objectives and contributions of this paper are two-fold. First, to go beyond existing
models by providing a more detailed description of ribosome congestion, which contributes to a bet-
ter understanding of how the protein synthesis rate is deteriorated. Probabilistic protein synthesis
models derive stationary distributions of the location of ribosomes along mRNA strands (see Mehra
and Hatzimanikatis (2006) and references therein). In order to provide a more detailed descrip-
tion of ribosome (and codon) states, we use the blocking notion of finite capacity queueing theory,
along with a detailed state space formulation to distinguish between active ribosomes and blocked
ribosomes. This yields a more detailed quantification of congestion and its effects.

The second contribution is to enable the analysis of large-scale congested protein synthesis
networks. An mRNA strand consists of a sequence of codons. In a small-genome organism the
number of codons is of the order of 400,000 (Mehra and Hatzimanikatis, 2006). The study of protein
synthesis involves large-scale networks. It requires scalable models that remain computationally
efficient under congested conditions. The proposed model consists of a system of linear and quadratic
equations. It is therefore particularly tractable and appropriate to address large-scale problems.

In this paper, we consider the ribosome congestion problem from a novel perspective, that of
finite capacity queueing theory. This formulation is derived from a project in collaboration with
the Laboratory of Computational Systems Biotechnology (LCSB) at Ecole Polytechnique Fédérale
de Lausanne. Probabilistic analytical modeling of other intra-cell processes have been investigated
by authors such as Gelenbe (2007, 2008).

In order to derive stationary distributions of the location of the different ribosomes along
mRNA’s, we proceed as in Mehra and Hatzimanikatis (2006) (hereafter referred to as the MH
model). We describe the location of the ribosomes based on the location of their heads. Recall that
a ribosome occupies L consecutive codons (Figure 1). The head of a ribosome refers to the part of
the ribosome that occupies the most downstream of these L codons. Similarly to the MH model,
we consider each codon and derive the stationary probability that there is a head of a ribosome at
a given codon of an mRNA. Each codon is modeled as a single server bufferless queue. An mRNA
consists of a series of codons, and is therefore modeled as a tandem network of single server bufferless
queues.

This paper presents a general formulation that evaluates the impact of congestion for tandem
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single server bufferless networks. Since such networks are relevant for a variety of application
fields, including manufacturing systems (Papadopoulos and Heavey, 1996; Dallery and Gershwin,
1992), computer systems (Balsamo et al., 2003) and telecommunication systems (Alfa and Liu, 2004;
Artalejo, 1999), the numerical efficiency and scalability of this model is of wide interest.

Additionally, this paper defines a more general blocking concept. Traditionally, blocking at a
given queue is triggered due to the state of the queues directly downstream. We allow blocking
to be caused by the state of an arbitrary set of queues. This generalization allows for a variety of
blocking phenomena to be modeled.

This paper is structured as follows. We review the analytical approaches for tandem networks of
finite capacity queues (Section 2). The queueing model for bufferless single server tandem networks
is presented in Section 3. The protein synthesis model is detailed (Section 4). We then use the model
to evaluate ribosome congestion, and illustrate its performance for large-scale networks (Section 5).

2 Finite capacity queueing networks

In networks with finite capacity queues (i.e. queues with finite buffer sizes) the spread of congestion
is modeled by what is known as blocking. A job is the generic name for the units of interest that flow
through the network. In the application considered in this paper, the jobs are ribosomes. Blocking
occurs when a job cannot proceed to the next queue on its path because that queue is full. The
job is said to be blocked at its current location. Various types of blocking mechanisms have been
defined (Balsamo et al., 2001).

These blocking mechanisms lead to complex between-queue dependencies. Describing this block-
ing phenomenon (i.e. where and how often it occurs, as well as its duration) analytically is chal-
lenging; not to mention the added complexity of deriving a computationally efficient model. The
analytical analysis of finite capacity queueing networks (FCQN) is intricate, and is therefore limited
to the stationary regime.

An introductory book to FCQN is Balsamo et al. (2001). Several reviews and historical overviews
of FCQN methods exist (Perros, 2003; Balsamo et al., 2003; Artalejo, 1999; Papadopoulos and
Heavey, 1996; Perros, 1984). Exact methods to evaluate the stationary performance measures of
FCQN exist only for tandem networks with two queues (e.g. Grassman and Derkic, 2000; Akyildiz
and von Brand, 1994). In order to evaluate the performance of larger networks, approximation
methods are developed.

Approximation methods may be either analytical or simulation-based. Here we consider ana-
lytical models. Dallery and Frein (1993) present a review of analytical approximate methods for
tandem finite capacity networks with exponentially distributed service times. They also propose a
classification of these methods.

In order to reduce the dimensionality and complexity of analytically analyzing FCQN, approx-
imation methods decompose the network into subnetworks. Each subnetwork is then analyzed
independently, yielding performance measures at the subnetwork level. Existing approaches for
tandem networks have decomposed the network into subnetworks of one or two queues.

Decomposing the network into single queues is the most common approach to analyze FCQN.
Methods for tandem networks include Jun and Perros (1990), Altiok (1989) and Altiok (1982). These
three methods present numerical results for networks with up to six queues. A method developed to
address larger tandem networks is presented in Gershwin (1987). The numerical examples include
instances with up to 20 queues. The Expansion Method (Kerbache and Smith, 2000) has been

3



used for tandem networks (Cruz et al., 2005). Considering more general topologies, it has been
used to address larger networks allowing for 70 queues (Kerbache and Smith, 2000). Single queue
decomposition methods have been investigated for feed-forward topologies with up to 630 queues
(Osorio and Bierlaire, 2009), and for tandem topologies with 144 queues (Osorio, 2010).

Two-queue decomposition methods derive stationary performance measures for pairs of queues.
Various two-queue decomposition methods for open tandem networks have been proposed (e.g. van
Vuuren et al., 2005; Alfa and Liu, 2004). Such methods yield marginal distributions for pairs of
queues, rather than single queues, and can therefore lead to more accurate results. Nevertheless,
they are computationally more demanding (Perros, 1994).

Most analytical approximation methods for tandem networks have limited their analysis to net-
works with less than 100 queues. We are interested in large-scale networks, with several thousand
queues. This paper proposes a model for single server bufferless queues in a tandem topology. The
model consists of a computationally tractable set of linear and quadratic equations. Such a formu-
lation is scalable, and enables us to evaluate the performance of large-scale congested networks.

3 Model

The queueing model proposed in this work builds upon the model presented in Osorio and Bierlaire
(2009), which is referred to as the base model. In this section, we introduce the assumptions and
notations of the base model that are of interest for the current framework. We then prove that for
single server tandem bufferless network, the system of equations of the base model is equivalent to a
system of linear and quadratic equations that can be decoupled, leading to a tractable and scalable
model. For a more detailed description and derivation of the base model, we refer the reader to
Osorio and Bierlaire (2009).

3.1 Base model

3.1.1 Describing congestion through blocking

The base model considers a network of multiple-server queues in an arbitrary topology network.
The main feature of the base model is the explicit modeling of the blocking phase. We use the
blocking mechanism known as blocking-after-service, where blocking occurs as follows. A job:

1. arrives to a queue,
2. waits if all the servers are occupied,
3. is served (this is called the active phase),
4. is blocked if the next queue on its path is full (this is called the blocking phase),
5. leaves the queue.

The blocking phase is explicitly modeled via a novel formulation of the state space. The state of
queue i is described by the number of active jobs Ai, blocked jobs Bi and waiting jobs Wi. Thus, the
stationary marginal distribution of queue i is given by the probabilities: P (Ai = a, Bi = b, Wi = w),
for all feasible triplets (a, b, w).

Other finite capacity queueing models derive stationary marginal queue length distributions, i.e.
they yield the probabilities P (Ai+Bi+Wi = a+b+w). The base model derives marginal distributions
that distinguish between active and blocked states. This allows for a detailed description of blocking
and congestion.
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3.1.2 Structural parameters

In order to approximate the stationary marginal distribution of the queues, the base model intro-
duces a set of structural parameters that approximately capture the between-queue interactions.
We first introduce their notation, we then detail their structural interpretation and present the
corresponding equations. The index i refers to a given queue.

γi external arrival rate;
λi total arrival rate;
λeff

i effective arrival rate;
µi service rate;
µ̃i unblocking rate;
µeff

i effective service rate;
Pi probability of being blocked at queue i;
ti probability that queue i is not full.

Arrivals Three types of arrival rates are considered. Arrivals that arise from outside of the network
are called external arrivals, they arise to queue i with rate γi. The total arrival rate, λi,
accounts for both internal arrivals (that arise from upstream queues) and external arrivals. In
the base model, all external arrivals that arrive to queue i while queue i is full are assumed
to be lost. This type of queueing models are known as loss models. This leads to an effective

arrival rate λeff
i , which accounts only for the arrivals that are actually processed, i.e. it excludes

all lost arrivals.

Service, blocking and unblocking Blocking at a given queue i is described by two main param-
eters that approximate its occurrence and its duration. The first is captured by the probability
with which a job at queue i is blocked Pi. The second is captured by the unblocking rate µ̃i.

The probability that a queue is full corresponds to the probability that it will block upstream
jobs. In finite capacity queueing theory, this probability is known as the blocking probability.
Here it is given by 1−ti. Thus, Pi is determined by the blocking probabilities of the downstream
queues of queue i.

A job is served (with rate µi), it is blocked (with probability Pi) and is eventually unblocked
(with rate µ̃i). The effective service rate of queue i, µeff

i , accounts for both service and blocking.

The base model approximates these structural parameters. For instance, the total and the
effective arrival rates to a given queue are a function of upstream arrival rates. Similarly, the effective
service rate takes into account blocking due to downstream queues. These structural parameters
are used, along with the global balance equations, to approximate the marginal distributions.

To ensure tractability, the base model resorts to classical distributional assumptions and ap-
proximations. For each queue, the base model assumes independent and exponentially distributed
service times. The times between successive arrivals and unblockings are approximated as indepen-
dent and exponentially distributed random variables. More details concerning the distributional
assumptions and approximations are given in Osorio (2010).

The base model was validated by comparison with exact results, simulation results and existing
methods on networks with various topologies, including tandem topologies, and varying scenarios,
namely under high intensity traffic (Osorio, 2010; Osorio and Bierlaire, 2009).
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3.2 Arbitrary blocking structure

The traditional concept of blocking, assumes that blocking events at queue i are triggered by queues
that are directly downstream, i.e. by any queue j such that a transition from queue i to queue j
can take place. Recall that a ribosome is L codons long (Figure 1). If there is a head of a ribosome
at a given codon i, then blocking can occur if there is a head of a ribosome L codons downstream.
In order to capture this type of blocking, we generalize the blocking concept captured by the base
model. We allow for blocking events to be triggered due to an arbitrary queue being full. We
introduce the following notation:

Di set of downstream queues of queue i;
Ti set of queues that can trigger blocking at queue i (refered to as trigger queues).

The set of downstream queues, Di, consists of the set of queues from which a transition from
queue i can take place. It is determined by the transition probabilities:

Di = {j, pij > 0}. (1)

For each queue j in Di, the probability that it is chosen is given by pij. Similarly, for a given
queue j in Ti, we denote qij the probability that it is chosen. The elements Di, Ti, (pij) and (qij)
allow us to generalize the blocking concept.

In the traditional blocking concept, a job at queue i can be blocked by its downstream queues,
i.e. the set of trigger queues consists of the set of downstream queues:

{ Ti = Di (2a)

qij = pij , ∀j ∈ Ti. (2b)

In the protein synthesis case, a job at queue i can be blocked if queue i + L is full. This
corresponds to:

Ti = {i + L} (3)

qij =

{

1 if j = i + L,

0 otherwise.
(4)

3.3 Single server networks

We model each codon of an mRNA as a single server queue. The system of equations of the base
model applied to single server queues and allowing for an arbitrary blocking structure is given by:



















































































π(i)g(λi, µi, µ̃i,Pi) = 0 (5a)

λi = λeff
i /ti (5b)

λeff
i = γiti +

∑

j∈Di

pjiλ
eff
j (5c)

1

µeff
i

=
1

µi

+ Pi/µ̃i (5d)

1

µ̃i

=
∑

j∈Ti

∑

k q̃kjλ
eff
k

λeff
i µeff

j

(5e)

Pi =
∑

j∈Ti

qij(1 − tj), (5f)

q̃ij = qij(1 − tj)/Pi, (5g)
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where π(i) represents the stationary marginal distribution of queue i, and (q̃ij) are the trigger
probabilities conditional on a job being blocked at queue i (i.e. given that a job is blocked at queue
i, q̃ij represents the probability that it is blocked by queue j).

We summarize the main features of these equations, and refer the reader to Osorio and Bierlaire
(2009) for a detailed description. Equation (5a) corresponds to the global balance equations, it
determines the marginal distribution for queue i. All other equations approximate the structural
parameters of queue i.

The total and effective arrival rates are given by combining flow conservation with loss model
information (Equations (5b) and (5c)) The effective service rate (Equation (5d)) is approximated
as a function of the service rate, the probability that blocking occurs and the unblocking rate.

Blocking at queue i is described by the probability with which it occurs, as well as the rate with
which it dissipates. The probability with which blocking occurs at queue i, Pi, is determined by
the blocking probabilities of its trigger queues (Equation (5f)). This equation states that a given
trigger queue j is chosen among Ti with probability qij, once chosen it triggers blocking if it is full
with probability 1 − tj . Equation (5e) approximates the unblocking rate µ̃i at queue i. A detailed
description of how this equation is derived is provided in the Appendix.

This system of equations is valid for single server queues with an arbitrary finite capacity, orga-
nized in an arbitrary topology network. For each queue, the exogenous parameters are (pij), (qij), µi

and γi. All other variables are endogenous.

3.4 Tandem network model

Since each mRNA is modeled as a set of queues in a tandem topology, hereafter we consider a
network of N queues in a tandem topology. The queues are indexed 1 to N , where queue 1 is the
most upstream and queue N the most downstream. We assume that external arrivals only arise at
the first queue, and that departures only occur at the last queue. This corresponds to transition
probabilities given by:

pij =

{

1 if i < N and j = i + 1,

0 otherwise.
(6)

In tandem networks with a classical blocking structure, a job is blocked at queue i if upon service
completion queue i + 1 is full. In this paper we consider that a job is blocked at queue i if upon
service completion queue i + L is full. The classical setting can therefore be retrieved by setting L
equal to 1.

Queues that cannot be blocked are referred to as terminal queues, as opposed to non-terminal

queues. Terminal queues correspond to queues such that the set Ti is empty. For the considered
scenario where Ti = {i + L}, the terminal queues are the queues indexed N − L + 1 to N , whereas
all other queues are non-terminal.

In the next two sections, we show how the System of Equations (5) simplifies for tandem topology
networks. We first present the equations for the structural parameters (Equations (5b)-(5g)), we
then detail the global balance equations (Equation (5a)).
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3.4.1 Structural parameters

External arrivals arise only at the first queue with rate γ, i.e.:

γi =

{

γ if i = 1,

0 otherwise.
(7)

Inserting Equations (6) and (7) into (5c) yields:
{

λeff
i = λeff

i−1, ∀i > 1 (8a)

λeff
1 = γt1. (8b)

That is, the effective arrival rate is constant across queues. Equation (5b) yields:

∀i λeff
i = λiti = constant, (9)

where the constant is given by Equation (8b):

∀i λeff
i = λiti = γt1. (10)

We first present the system of equations for the structural parameters, we then detail their
derivation.

Terminal queues

∀i ∈ [N − L + 1, N ],



























λeff
i = γt1 (11a)

µeff
i = µi (11b)
1

µ̃i

= 0 (11c)

Pi = 0 (11d)

Non-terminal queues

∀i ∈ [1, N − L],



























λeff
i = γt1 (12a)
1

µeff
i

=
1

µi

+ (1 − ti+L)
1

µeff
i+L

(12b)

µ̃i = µeff
i+L (12c)

Pi = 1 − ti+L. (12d)

Let us show that the Systems (11)-(12) are equivalent to the system of equations for the struc-
tural parameters of the base model (Equations (5b)-(5g)). Equations (11a) and (12a) result from
Equation (10). The System (11) concerns terminal queues. By definition these queues cannot be
blocked, thus their expected blocked time (Equation (11c)) and their probability of being blocked
(Equation (11d)) are null. Their conditional trigger probabilities are not defined (Equation (5g)).
Inserting Equations (11c) and (11d) in (5d) yields Equation (11b).

For non-terminal queues, inserting Equations (3) and (4) into (5f) yields (12d). By inserting
Equations (3), (4) and (5f) into (5g) leads to:

q̃ij =

{

1 if j = i + L,

0 otherwise.
(13)
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Inserting Equations (3), (10) and (13) into (5e) yields (12c). Equation (12b) is obtained by inserting
Equations (12c) and (12d) into (5d).

3.4.2 Global balance equations

Recall that each codon is modeled as single server queue with no buffer. So far, the assumption
of bufferless queues was not necessary. All previous equations are therefore valid for single server
queues with an arbitrary finite capacity. To simplify the global balance equations, we will use the
bufferless assumption. Hereafter, we assume bufferless queues.

Recall from Section 3.1.1 that the state space of each queue is defined as the sample space of
the triplet of random variables (Ai, Bi, Wi), where Ai, Bi and Wi denote respectively the number of
active, blocked and waiting jobs at queue i.

For single server bufferless queues the state space consists of three states. A queue can be in
one of the following three states:

• empty: (Ai, Bi, Wi) = (0, 0, 0),
• active: (Ai, Bi, Wi) = (1, 0, 0), (i.e. the server of the queue is occupied by an active job),
• blocked: (Ai, Bi, Wi) = (0, 1, 0), (i.e. the server of the queue is occupied by a blocked job).

We denote the probability of these three states as follows:

ti probability that queue i is empty;
yi probability that queue i is blocked;
zi probability that queue i is active.

The marginal distribution of queue i is given by: π(i) = (ti, yi, zi). Note that ti is also the
probability that the queue is not full, whereas the blocking probability (i.e. the probability that the
queue is full) is given by yi+zi. We show that for single server bufferless queues in a tandem topology
the global balance equations given by Equation (5a) lead to the following systems of equations:

Terminal queues

∀i ∈ [N − L + 1, N ],







ti + zi = 1 (14a)

yi = 0 (14b)

µizi = γt1. (14c)

Non-terminal queues

∀i ∈ [1, N − L],







ti + yi + zi = 1 (15a)

yi = (yi+L + zi+L)2 (15b)

µizi = γt1. (15c)

Let us detail how these equations are derived. In the case of terminal queues the global balance
equations are defined by:







ti + zi = 1 (16a)

yi = 0 (16b)

λiti − µizi = 0. (16c)
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Note that Equation (16c) balances arrival and service events, and Equation (16b) states that ter-
minal queues cannot be blocked. Since ∀i λiti = γt1 (Equation (10)), then the Systems of Equa-
tions (14) and (16) are equivalent. In the case of non-terminal queues, the global balance equations
are defined by:







ti + yi + zi = 1 (17a)

−µ̃iyi + Piµizi = 0 (17b)

λiti − µizi = 0. (17c)

Note that Equation (17b) balances blocking and unblocking events, while Equation (17c) balances
arrival and service events. Let us show that the Systems (15) and (17) are equivalent.

As for terminal queues, we use Equation (10) to obtain the equivalence between Equations (15c)
and (17c). Thus, to show that the Systems (15) and (17) are equivalent we need to show the
equivalence between Equations (15b) and (17b). To do so, we use the following lemma.

Lemma 1 Let H(i) denote the hypothesis that Equation (15b) holds for queue i. H(N −L) holds,

and if H(k) holds ∀k ∈ [i + 1, N − L], then H(i) holds.

To prove this lemma we proceed by recursion. The proof is given in the Appendix. Thus, the
global balance equations for single server bufferless queues in a tandem topology are given by the
Systems (14) and (15).

The initial formulation of the global balance equations (Systems (16) and (17)) involves four
structural parameters: λi, µi, µ̃i and Pi. The parameter µi is exogenous, the other three parameters
are endogenous. The equivalent formulation that we have just derived (Systems (14) and (15))
no longer involves any endogenous structural parameters. Thus, the system of equations can be
decoupled. We can solve Systems (14) and (15) to obtain the marginal distributions for each queue,
and if the structural parameters are of interest we can then solve Systems (11) and (12).

The system of equations for the structural parameters consists of 4N − 2L equations, of which
3N −L are linear, and the remaining N −L are quadratic. The global balance equations consist of
3N − L equations, of which 2N are linear and the remaining N − L are quadratic.

4 Protein synthesis network

In this section, we build upon the model for tandem single server bufferless networks of Section 3.4
to derive the protein synthesis network model. The main aspects of protein synthesis that we are
interested in modeling are described in Section 1. For a more detailed description of the protein syn-
thesis process see Mehra and Hatzimanikatis (2006). We follow the same reasoning and assumptions
as the MH protein synthesis model.

4.1 Stationary distributions

The MH model is an analytical codon-scale model of the translation of mRNAs into proteins. This
model explicitly describes the phases of initiation, elongation and termination, and yields stationary
distributions for each codon. A slightly modified version of this model is presented in Mier-y-Teran-
Romero et al. (2009).

As described in Section 1, we proceed similarly to the MH model. We model each codon and
yield the stationary probabilities that it is occupied by the head of a ribosome. Each codon is
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modeled as a bufferless queue with one server. Thus, an mRNA consists of a network of single
server bufferless queues in tandem.

The main novelty of the MH method is to account for the blocking of ribosomes. The MH model
does this by reducing the elongation rates using the conditional probability that codon i+1 is empty
given that codon i is occupied. This conditional probability is used to approximate the blocking
probability.

We provide a more detailed description of ribosome blocking, by considering that each codon
can be in one of three states:

• the codon is occupied by the head of an active ribosome
• the codon is occupied by the head of a blocked ribosome
• the codon is not occupied by the head of a ribosome, i.e. it is either not covered by a ribosome

at all, or it is covered by a part of the ribosome that is not the head.

In other words, given that a codon is occupied by the head of a ribosome, we distinguish between
whether the ribosome is active or blocked.

The marginal stationary distribution is composed of:

ti : the probability that codon i is not occupied by the head of a ribosome;
yi : the probability that codon i is occupied by the head of a blocked ribosome;
zi : the probability that codon i is occupied by the head of an active ribosome.

By modeling the ribosome blocking problem with a finite capacity queueing approach that dis-
tinguishes between active and blocked queues, we provide a finer description of ribosome blocking,
and thus a more detailed quantification of congestion along an mRNA strand. This more disaggre-
gate state space formulation can lead to a better understanding of how ribosome congestion affects
the protein synthesis rate.

4.2 Structural parameters

In this protein synthesis context, there are two differences with the model presented in Section 3.4

1. There is a fixed and limited number of ribosomes that can bind to the mRNAs. The external
arrival rate, γ, is therefore a function of the expected number of available (i.e. non-binding)
ribosomes. It is no longer exogenous. This model therefore assumes a finite population of jobs
(i.e. ribosomes). The approximation for γ is based on that of the MH model:

γ = a0 + a1

N
∑

i=1

(1 − ti). (18)

Equation (18) concerns the external arrival rate, and approximates it as a function of the
number of available (i.e. non-binding) ribosomes and of two exogenous parameters a0 and
a1. The expression is taken from Equations (5) and (6) of Mehra and Hatzimanikatis (2006),
or equivalently from their scaled versions which appear as Equation (11a) in Mier-y-Teran-
Romero et al. (2009).

2. To start the translation process, a ribosome binds to the first codon of the mRNA. If this first
codon is full, the ribosome cannot bind. Since a ribosome covers L consecutive codons, the
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first codon is full if there is a head of a ribosome on any of the first L codons. These first
L codons are called the initiation site. The probability that the first codon is free, i.e. that
the initiation site does not contain a head of a ribosome, is denoted w1. Its approximation is
based on that of the MH model (Equation (5) in that paper), and is given by:

w1 = 1 −
L

∑

i=1

(1 − ti). (19)

The model of Section 3.4 assumes that external arrivals may be lost if the first queue is full. In
this protein synthesis application, we assume that external arrivals may be lost if the initiation
site is full. Thus Equations (11a) and (12a) become:

λeff
i = γw1. (20)

That is, the effective arrival rate is now a function of the probability that the initiation site is
free w1, rather than the probability that the first queue is free t1.

4.3 System of equations

The system of equations is given by:

∀i ∈ [N − L + 1, N ],







ti + zi = 1 (21a)

yi = 0 (21b)

µizi = γw1 (21c)

∀i ∈ [1, N − L],







ti + yi + zi = 1 (22a)

yi = (yi+L + zi+L)2 (22b)

µizi = γw1. (22c)



























w1 = 1 −
L

∑

i=1

(1 − ti) (23a)

γ = a0 + a1

N
∑

i=1

(1 − ti). (23b)

∀i ∈ [N − L + 1, N ],



























λeff
i = γw1 (24a)

µeff
i = µi (24b)
1

µ̃i

= 0 (24c)

Pi = 0 (24d)

∀i ∈ [1, N − L],



























λeff
i = γw1 (25a)
1

µeff
i

=
1

µi

+ (1 − ti+L)
1

µeff
i+L

(25b)

µ̃i = µeff
i+L (25c)

Pi = 1 − ti+L, (25d)
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The Systems (21), (22), (24) and (25) are obtained by combining Equation (20) and the Systems
(11)-(15). The System (23) is given by Equations (18) and (19).

Here, the only exogenous parameter is µi, all other variables are endogenous. These systems
can be decoupled. In particular, if the parameters of interest are the stationary distributions, it
is sufficient to implement Equations (21), (22) and (23). In this case, for a set of N codons, the
system of equations consists of 3N +2 equations. There are N +L+2 linear equations and 2N −L
quadratic equations. Let us compare the main properties of this formulation to that of the MH
model.

Congestion decomposition One of the contributions of the MH model is to acknowledge the
interactions between the initiation, elongation, termination and protein synthesis rates. In
particular, given a set of ribosomes on an mRNA, the model acknowledges that their trans-
lation rate may be deteriorated by the presence of downstream ribosomes, that prevent the
ribosome from advancing (this is captured by the fraction of Equation (8) of the MH model).

We go beyond this by describing these ribosome congestion effects in more detail. By using the
blocking phenomenon of finite capacity queueing theory, and the detailed state space formu-
lation of the finite capacity queueing model, we disaggregate the state “a codon is occupied”
into two states “occupied and blocked” and “occupied and active”. By distinguishing between
active and blocked codons, we provide more detailed distributional estimates. Additionally,
the endogenous parameters of the proposed model provide a fine decomposition of congestion
(e.g. in terms of its sources, frequency, impact).

Computational efficiency To evaluate the stationary distributions of each codon, two procedures
have been used in Mehra and Hatzimanikatis (2006) and in Mier-y-Teran-Romero et al. (2009).
The first solves a bilevel nonlinear optimization problem, the second solves a system of ordinary
differential equations. The procedure proposed in this section consists of a system of linear
and quadratic equations, its implementation is straightforward, and it can be solved with less
complex numerical methods.

Nonetheless, if transient distributions are of interest these can only be derived by the method
of Mier-y-Teran-Romero et al. (2009).

Scalability The number of equations that need to be implemented can be substantially reduced
by identifying the queues that have equal service rates, µi. In this case, Equations (21c) and
(22c) indicate that these queues also have a common value for zi, since

zi = γw1/µi = constant. (26)

If among the N queues there are D distinct service rates, then the number of equations reduces
to 2N −L+D +2. In the case of protein synthesis, this can occur if the codons have common
elongation rates. There are then three distinct service rates: initiation rate, termination rate
and elongation rate, and the number of equations becomes 2N − L + 5.

5 Empirical Analysis

5.1 Ribosome blocking

In this section, we use the protein synthesis model (Equations (21)-(25)) to evaluate ribosome con-
gestion. The exogenous parameters of the queueing model are calibrated based on typical translation
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parameters provided by the members of the Laboratory of Computational Systems Biotechnology.
We consider a single mRNA species with 144 codons, and assume that each ribosome covers 12
codons, i.e. N = 144, L = 12, as in Mier-y-Teran-Romero et al. (2009).

We solve the system of equations for all queues simultaneously, with the Matlab routine for non-
linear systems of equations, fsolve (Mathworks, Inc., 2008). For a given tolerance, tol, convergence
is attained when either the absolute values of all equations are smaller than tol or when both the
sum of squares of the system of equations is smaller than

√
tol and the change of its relative value is

smaller than max(tol2, eps), where eps is the machine precision which is of magnitude 10−16. The
tolerance is chosen as tol = 10−6. This choice is based on the criteria given in Dennis and Schnabel
(1996). The distributions are initialized using uniform distributions.

We consider a set of scenarios with fixed initiation and elongation rates, and increasing termi-
nation rates. In queueing theory terms, this corresponds to the fixed service rates for all but the
most downstream queue (indexed N), and increasing service rate for queue N .

Figure 2 displays for the different scenarios the probability that there is a head of a ribosome for
the most downstream quarter of queues (indexed 109 to 144). For a given codon i, this probability
is given by yi + zi.

The first scenario clearly illustrates how the model captures ribosome blocking. This scenario is
the one with the smallest termination rate. Its probabilities are displayed with crosses. Since the
termination rate is the limiting factor, the probability that a ribosome head remains at codon N
(i.e. codon 144) is high. This leads to blocking L codons upstream, i.e. a high probability for codon
132. This blocking also propagates 2L codons upstream to codon 120.

As the termination rate increases, these probabilities decrease. For scenario 2, the impact of
the termination rate on the occupation of codon 120 is low, yet the occupation of codons 132 and
144 remains high. For scenarios 3-5, the impact on codon 132 decreases. As the termination rate
increases, the occupation probabilities of codons 120, 132 and 144 (i.e. N − 2L, N − L and N)
decreases. For all scenarios, the computation time needed to evaluate the model is less than 0.3
seconds.

110 120 130 140
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0.1

0.2

0.3

0.4

0.5

Codon i

y i+
z i

Probability that there is a head of a ribosome

 

 
scenario 1
scenario 2
scenario 3
scenario 4
scenario 5

Figure 2: Probability that a codon is occupied by the head of a ribosome for scenarios with increasing
termination rates.

We now show how the queueing model disaggregates these codon occupation probabilities, into
“occupied and active” versus “occupied and blocked”. Figure 3 considers the same scenarios and
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codons. The left plot of Figure 3 displays the probabilities that a codon is occupied by the head of
an active ribosome. For a given codon i, this is denoted in the model by zi. This plot shows that
as the termination rate increases, only the probabilities of the last codon are affected, zN .

The right plot presents the probabilities that a codon is occupied by the head of a blocked
ribosome. For a given codon i, this is denoted in the model by yi. This plot shows that the
codons indexed 120 and 134 have large blocking probabilities. These decrease as the termination
rate increases. Note that codons indexed 135 − 144 have null probabilities, since they are terminal
codons and cannot be blocked.
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Figure 3: The left (resp. right) plot displays the probability that a codon is occupied by the head
of an active (resp. blocked) ribosome for scenarios with increasing termination rates.

5.2 Performance on large-scale networks

We evaluate the scalability of the model for general tandem single server bufferless networks (Sys-
tems (14) and (15)). We consider a classical setting where blocking is triggered by the queue directly
downstream being full, i.e. L = 1.

We solve the Systems of Equations (14) and (15) for all queues simultaneously with the procedure
described in Section 5.1. The distributions are initialized with the point: (ti, yi, zi) = (1

2
, 1

4
, 1

4
).

We consider networks with varying number of queues, N . The number of queues varies from
100 to 1000 with a step size of 100 (i.e. 100, 200, 300,...,1000), from 2000 to 10,000 with a step size
of 1000, and from 20,000 to 100,000 with a step size of 10,000. That is we consider a total of 28
network sizes varying from 100 to 100,000 queues.

For each network size, we consider a set of four scenarios with varying levels of congestion, i.e.
we fix the service rate for all queues and vary the external arrival rates. For all four scenarios all
queues have a common service rate equal to 1. The external arrival rates are given in Table 1.
These four scenarios have increasing levels of congestion.

For all four scenarios and all network sizes convergence was reached with either 5 or 6 iterations.
Since the number of iterations is constant across these scenarios, it is not sensitive to the level of
congestion. Furthermore, the number of iterations is also insensitive to the network size. That is,
convergence is reached for large-scale networks with few iterations.

We also evaluate the performance of this method, by analyzing the total time until convergence.
Figures 4, 5 and 6 display the time until convergence for all four scenarios and 28 network sizes.
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Scenario 1 2 3 4
γ 0.5 0.6 0.7 0.8

Table 1: External arrival rate scenarios
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Figure 4: Time until convergence for scenarios
1-4 and small-scale networks
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Figure 5: Time until convergence for scenarios
1-4 and medium-scale networks

Figures 4 and 5 indicate that for small and medium-scale networks (with less than 10, 000 queues)
and for various congestion levels, the time increases linearly, and remains under 0.2 minutes. For
large-scale networks (Figure 6), the time also increases linearly, and is of the order of several minutes.

6 Conclusions

This paper presents an analytical queueing model to evaluate congestion in tandem single server
bufferless networks, and in particular in protein synthesis networks. Each codon of an mRNA is
modeled as a queue. Each mRNA strand is modeled as a tandem network of single server bufferless
queues. The methodology derives a distribution for each codon, that evaluates whether or not there
is a head of a ribosome on that codon, and in particular identifies whether ribosomes are blocked
by downstream ribosomes. This state space formulation leads to a more detailed quantification of
the performance of congested networks. The model generalizes the concept of blocking: blocking
events can be triggered by an arbitrary set of queues.

This approach builds upon the model in Osorio and Bierlaire (2009). The model consists of
a system of linear and quadratic equations, that can be decoupled. We illustrate the use of this
model to evaluate the location of the ribosomes along an mRNA strand, and in particular to quantify
ribosome blocking. We evaluate the scalability of this method, by considering networks with varying
levels of congestion with up to 100, 000 queues. The method is numerically efficient, and is therefore
suitable for large-scale instances.

We are currently working with the Laboratory of Computational Systems Biotechnology to com-
pare the distributional estimates of this approach versus those proposed by other protein synthesis
methods, including that of Mehra and Hatzimanikatis (2006). Given the lack of experimental data,
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Figure 6: Time until convergence for scenarios 1-4 and large-scale networks

it is intricate to draw conclusions from the differences in these estimates. Nevertheless, it is of
interest to investigate their numerical performance and in particular to compare their scalability.
Once the validation phase has been completed, this model will be applied to a more general contexts
considering multiple mRNA species and codon-specific elongation rates. These factors are captured
by the exogenous parameters of our model; taking them into account is therefore straightforward.
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Appendix

Derivation of the unblocking rate for an arbitrary blocking structure

We detail how the unblocking rate is derived when allowing for an arbitrary blocking structure. This
description follows that of Osorio and Bierlaire (2009) (Section 4.2.3.1 in that paper). The scalar
µ̃i denotes the rate at which a trigger queue of queue i unblocks jobs that are blocked at queue i.
We denote by sij, the proportion of jobs blocked by queue j that are blocked at queue i, i.e.

sij = q̃ijλ
eff
i /(

∑

k

q̃kjλ
eff
k ).

Suppose queue j is blocking jobs. It is therefore full and is serving at rate µeff
j . It unblocks jobs that

are blocked at queue i at the rate sijµ
eff
j . By averaging over the possible trigger queues of queue i

we obtain an approximation for µ̃i:
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1

µ̃i

=
∑

j

q̃ij

1

sijµeff
j

=
∑

j∈Ti

∑

k q̃kjλ
eff
k

λeff
i µeff

j

. (27)

Proof of Lemma 1

We first show that H(N − L) holds. Combining Equations (17c) and (10) yields:

µN−LzN−L = γt1. (28)

Inserting this into (17b) gives:

yN−L = (PN−Lγt1)/µ̃N−L. (29)

Hereafter, we denote in brackets the equations used at each step. Since queue N − L is non-
terminal, System (12) applies:

yN−L =
PN−Lγt1

µeff
N

[12c]

=
(1 − tN)γt1

µeff
N

. [12d]

(30)

Since queue N is terminal, Systems (11) and (14) apply:

yN−L =
(1 − tN)γt1

µN

[11b]

=
zNγt1
µN

[14a]

= z2
N [14c]

= (yN + zN )2. [14b]

(31)

This gives H(N − L).
We assume that H(k) holds ∀k ∈ [i + 1, N − L]. Since queue i is non-terminal, we can proceed

as for H(N − L):

yi =
Piµizi

µ̃i

[17b]

=
Piλiti

µ̃i

[17c]

=
Piγt1

µ̃i

[10]

=
Piγt1
µeff

i+L

[12c]

=
(1 − ti+L)γt1

µeff
i+L

. [12d]

(32)
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We distinguish between two cases. Firstly, if queue i + L is terminal we have:

yi =
(1 − ti+L)γt1

µi+L

[11b]

=
zi+Lγt1
µi+L

[14a]

= (zi+L)2 [14c]

= (yi+L + zi+L)2. [14b]

(33)

Secondly, if queue i + L is non-terminal, then:

yi = (1 − ti+L)γt1

(

1

µi+L

+ (1 − ti+2L)
1

µeff
i+2L

)

[12b]

= (1 − ti+L)γt1

(

1

µi+L

+ (1 − ti+2L)
1

µ̃i+L

)

[12c]

= (1 − ti+L)γt1

(

1

µi+L

+ Pi+L

1

µ̃i+L

)

[12d]

= (1 − ti+L)λi+Lti+L

(

1

µi+L

+ Pi+L

1

µ̃i+L

)

[10]

(34)

yi = (1 − ti+L)µi+L zi+L

(

1

µi+L

+ Pi+L

1

µ̃i+L

)

[17c]

= (yi+L + zi+L)

(

zi+L + Pi+L µi+L zi+L

1

µ̃i+L

)

[17a]

= (yi+L + zi+L)(zi+L + yi+L) [17b]

= (yi+L + zi+L)2.

(35)

This concludes the recurrence. �
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