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Abstract

We present a model of unsupervised phono-
logical lexicon discovery—the problem of
simultaneously learning phoneme-like and
word-like units from acoustic input. Our
model builds on earlier models of unsuper-
vised phone-like unit discovery from acous-
tic data (Lee and Glass, 2012), and unsuper-
vised symbolic lexicon discovery using the
Adaptor Grammar framework (Johnson et al.,
2006), integrating these earlier approaches us-
ing a probabilistic model of phonological vari-
ation. We show that the model is competi-
tive with state-of-the-art spoken term discov-
ery systems, and present analyses exploring
the model’s behavior and the kinds of linguis-
tic structures it learns.

1 Introduction

One of the most basic problems of language acqui-
sition is accounting for how children learn the in-
ventory of word forms from speech—phonological
lexicon discovery. In learning a language, children
face a number of challenging, mutually interdepen-
dent inference problems. Words are represented in
terms of phonemes, the basic phonological units of a
language. However, phoneme inventories vary from
language to language, and the underlying phonemes
which make up individual words often have variable
acoustic realizations due to systematic phonetic and
phonological variation, dialect differences, speech
style, environmental noise, and other factors. To
learn the phonological form of words in their lan-
guage children must determine the phoneme inven-
tory of their language, identify which parts of the

acoustic signal correspond to which phonemes—
while discounting surface variation in the realiza-
tion of individual units—and infer which sequences
of phonemes correspond to which words (amongst
other challenges).

Understanding the solution to this complex joint-
learning problem is not only of fundamental sci-
entific interest, but also has important applications
in Spoken Language Processing (SLP). Even set-
ting aside additional grammatical and semantic in-
formation available to child learners, there is still
a sharp contrast between the type of phonological
learning done by humans and current SLP meth-
ods. Tasks that involve recognizing words from
acoustic input—such as automatic speech recogni-
tion and spoken term discovery—only tackle parts of
the overall problem, and typically rely on linguistic
resources such as phoneme inventories, pronuncia-
tion dictionaries, and annotated speech data. Such
resources are unavailable for many languages, and
expensive to create. Thus, a model that can jointly
learn the sound patterns and the lexicon of a lan-
guage would open up the possibility of automati-
cally developing SLP capabilities for any language.

In this paper, we present a first step towards an
unsupervised model of phonological lexicon discov-
ery that is able to jointly learn, from unannotated
speech, an underlying phoneme-like inventory, the
pattern of surface realizations of those units, and a
set of lexical units for a language. Our model builds
on earlier work addressing the unsupervised discov-
ery of phone-like units from acoustic data—in par-
ticular the Dirichlet Process Hidden Markov Model
(DPHMM) of Lee and Glass (2012)—and the un-
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supervised learning of lexicons from unsegmented
symbolic sequences using the Adaptor Grammar
(AG) framework (Johnson et al., 2006; Johnson and
Goldwater, 2009a). We integrate these models with
a component modeling variability in the surface re-
alization of phoneme-like units within lexical units.

In the next section, we give an overview of re-
lated work. Following this, we present our model
and inference algorithms. We then turn to prelimi-
nary evaluations of the model’s performance, show-
ing that the model is competitive with state-of-the-
art single-speaker spoken term discovery systems,
and providing several analyses which examine the
kinds of structures learned by the model. We also
suggest that the ability of the system to successfully
unify multiple acoustic sequences into single lexical
items relies on the phonological-variability (noisy
channel) component of the model—demonstrating
the importance of modeling symbolic variation in
phonological units. We provide preliminary evi-
dence that simultaneously learning sound and lexi-
cal structure leads to synergistic interactions (John-
son, 2008b)—the various components of the model
mutually constrain one another such that the linguis-
tic structures learned by each are more accurate than
if they had been learned independently.

2 Related Work

Previous models of lexical unit discovery have pri-
marily fallen into two classes: models of spoken
term discovery and models of word segmentation.
Both kinds of models have sought to identify lexi-
cal items from input without direct supervision, but
have simplified the joint learning problem discussed
in the introduction in different ways.

Spoken Term Discovery Spoken term discovery
is the problem of using unsupervised pattern discov-
ery methods to find previously unknown keywords
in speech. Most models in this literature have typi-
cally made use of a two-stage procedure: First, sub-
sequences of the input that are similar in an acoustic
feature space are identified, and, then clustered to
discover categories corresponding to lexical items
(Park and Glass, 2008; Zhang and Glass, 2009;
Zhang et al., 2012; Jansen et al., 2010; Aimetti,
2009; McInnes and Goldwater, 2011). This prob-
lem was first examined by Park and Glass (2008)

who used Dynamic Time Warping to identify sim-
ilar acoustic sequences across utterances. The in-
put sequences discovered by this method were then
treated as nodes in a similarity-weighted graph, and
graph clustering algorithms were applied to produce
a number of densely connected groups of acoustic
sequences, corresponding to lexical items. Building
on this work, Zhang and Glass (2009) and Zhang
et al. (2012) proposed robust features that allowed
lexical units to be discovered from spoken docu-
ments generated by different speakers. Jansen et al.
(2010) present a similar framework for finding re-
peated acoustic patterns, based on line-segment de-
tection in dotplots. Other variants of this approach
include McInnes and Goldwater (2011) who com-
pute similarity incrementally, and Aimetti (2009)
who integrates a simplified, symbolic representation
of visual information associated with each utterance.

Word Segmentation In contrast to spoken term
discovery, models of word (or morpheme) segmen-
tation start from unsegmented strings of symbols
and attempt to identify subsequences corresponding
to lexical items. The problem has been the focus
of many years of intense research, and there are a
large variety of proposals in the literature (Harris,
1955; Saffran et al., 1996a; Harris, 1955; Olivier,
1968; Saffran et al., 1996b; Brent, 1999b; Frank et
al., 2010; Frank et al., 2013). Of particular interest
here are models which treat segmentation as a sec-
ondary consequence of discovering a compact lexi-
con which explains the distribution of phoneme se-
quences in the input (Cartwright and Brent, 1994;
Brent, 1999a; Goldsmith, 2001; Argamon et al.,
2004; Goldsmith, 2006; Creutz and Lagus, 2007;
Goldwater et al., 2009; Mochihashi et al., 2009; El-
sner et al., 2013; Neubig et al., 2012; Heymann et
al., 2013; De Marcken, 1996c; De Marcken, 1996a).
Recently, a number of such models have been intro-
duced which make use of Bayesian nonparametric
distributions such as the Dirichlet Process (Fergu-
son, 1973) or its two-parameter generalization, the
Pitman-Yor Process (Pitman, 1992), to define a prior
which favors smaller lexicons with more reusable
lexical items. The first such models were proposed
in Goldwater (2006) and, subsequently, have been
extended in a number of ways (Goldwater et al.,
2009; Neubig et al., 2012; Heymann et al., 2013;
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Mochihashi et al., 2009; Elsner et al., 2013; John-
son et al., 2006; Johnson and Demuth, 2010; John-
son and Goldwater, 2009b; Johnson, 2008a; John-
son, 2008b).

One important lesson that has emerged from this
literature is that models which jointly represent mul-
tiple levels of linguistic structure often benefit from
synergistic interactions (Johnson, 2008b) where dif-
ferent levels of linguistic structure provide mutual
constraints on one another which can be exploited
simultaneously (Goldwater et al., 2009; Johnson et
al., 2006; Johnson and Demuth, 2010; Johnson and
Goldwater, 2009b; Johnson, 2008a; Börschinger
and Johnson, 2014; Johnson, 2008b). For example,
Elsner et al. (2013) show that explicitly modeling
symbolic variation in phoneme realization improves
lexical learning—we use a similar idea in this paper.

An important tool for studying such synergies has
been the Adaptor Grammars framework of John-
son et al. (2006). Adaptor Grammars are a gen-
eralization of Probabilistic Context-free Grammars
(PCFGs) which allow the lexical storage of com-
plete subtrees. Using Adaptor Grammars, it is pos-
sible to learn lexica which contain stored units at
multiple levels of abstraction (e.g., phonemes, on-
sets, codas, syllables, morphemes, words, and multi-
word collocations). A series of studies using the
framework has shown that including such additional
structure can markedly improve lexicon discovery
(Johnson et al., 2006; Johnson and Demuth, 2010;
Johnson and Goldwater, 2009b; Johnson, 2008a;
Börschinger and Johnson, 2014; Johnson, 2008b).

Unsupervised Lexicon Discovery In contrast to
models of spoken term discovery and word segmen-
tation, our model addresses the problem of jointly
inferring phonological and lexical structure directly
from acoustic input. Spoken term discovery sys-
tems only attempt to detect keywords, finding lex-
ical items that are isolated and scattered throughout
the input data. They do not learn any intermediate
levels of linguistic structure between the acoustic in-
put and discovered lexical items. In constrast, our
model attempts to find a complete segmentation of
the input data into units at multiple levels of abstrac-
tion (e.g., phonemes, syllables, words, etc.). Un-
like word segmentation models, our model works
directly from speech input, integrating unsupervised

acoustic modeling with an an approach to symbolic
lexicon discovery based on adaptor grammars.

Although some earlier systems have examined
various parts of the joint learning problem (Bac-
chiani and Ostendorf, 1999; De Marcken, 1996b),
to our knowledge, the only other system which ad-
dresses the entire problem is that of Chung et al.
(2013). There are two main differences between the
approaches. First, in Chung et al. (2013), word-
like units are defined as unique sequences of sub-
word-like units, so that any variability in the real-
ization of word-parts must be accounted for by the
acoustic models. In contrast, we explicitly model
phonetic variability at the symbolic level, allowing
our system to learn low-level units which tightly
predict the acoustic realization of phonemes in par-
ticular contexts, while still ignoring this variabil-
ity when it is irrelevant to distinguishing lexical
items. Second, while Chung et al. (2013) employ
a fixed, two-level representation of linguistic struc-
ture, our use of adaptor grammars to model sym-
bolic lexicon discovery means that we can easily and
flexibly vary our assumptions about the hierarchi-
cal makeup of utterances and lexical items. In this
paper, we employ a simple adaptor grammar with
three-levels of hierarchical constituency (word-like,
sub-word-like, and phone-like units) and with right-
branching structure; future work could explore more
articulated representations along the lines of John-
son (2008b).

3 Model

3.1 Problem Formulation and Model Overview

Given a corpus of spoken utterances, our model aims
to jointly infer the phone-like, sub-lexical, and lex-
ical units in each spoken utterance. To discover
these hierarchical linguistic structures directly from
acoustic signals, we divide the problem into three
sub-tasks: 1) phone-like unit discovery, 2) variabil-
ity modeling, and 3) sub-lexical and lexical unit
learning. Each of the sub-tasks corresponds to cer-
tain latent structures embedded in the speech data
that our model must identify. Here we briefly dis-
cuss the three sub-tasks as well as the latent vari-
ables associated with each, and provide an overview
on the proposed model for each sub-task.
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Figure 1: (a) An overview of the proposed model for inducing hierarchical linguistic structures directly from
acoustic signals. As indicated in the graph, the model leverages partial knowledge learned from each level to
drive discovery in the others. (b) An illustration of an input example, xi, and the associated latent structures
in the acoustic signals di,ui,oi, ~vi, zi. These latent structures can each be discovered by one of the three
components of the model as specified by the red horizontal bars between (a) and (b).

Phone-like unit discovery For this sub-task, the
model converts the speech input xi into a sequence
of Phone-Like Units (PLUs), ~vi, which implic-
itly determines the phone segmentation, zi, in the
speech data as indicated in (iv)-(vi) of Fig 1-(b). We
use xi = {xi,t|xi,t ∈ R39, 1 ≤ t ≤ Ti} to denote
the series of Mel-Frequency Cepstral Coefficients
(MFCCs) representing the ith utterance (Davis and
Mermelstein, 1980), where Ti stands for the total
number of feature frames in utterance i. Each xi

contains 13-dimensional MFCCs and their first- and
second-order time derivatives at a 10 ms frame rate.
Each xi is also associated with a binary variable zi,t,
indicating whether a PLU boundary exists between
xi,t and xi,t+1. The feature vectors with zi,t = 1
are highlighted by the dark blue bars in Fig. 1-(vi),
which correspond to segment boundaries.

Each speech segment is labelled with a PLU id
vi,j,k ∈ L, in which L is a set of integers that rep-
resent the PLU inventory embedded in the speech
corpus. We denote the sequence of PLU ids asso-
ciated with utterance i using ~vi as shown in Fig. 1-
(iv), where ~vi = {vi,j |1 ≤ j ≤ Ji} and vi,j =
{vi,j,k|vi,j,k ∈ L, 1 ≤ k ≤ |vi,j |}. The variable Ji
is defined in the discussion of the second sub-task.
As depicted in Fig. 1-(a), we construct an acoustic
model to approach this sub-problem. The acoustic
model is composed of a set of Hidden Markov Mod-
els (HMMs), π, that are used to infer and model the
PLU inventory from the given data.

Phonological variability modeling In conversa-
tional speech, the phonetic realization of a word can
easily vary because of phonological and phonetic
context, stress pattern, etc. Without a mechanism
that can map these speech production variations into
a unique representation, any model that induces lin-
guistic structures based on phonetic input would fail
to recognize these pronunciations as instances of the
same word type. We exploit a noisy-channel model
to address this problem and design three edit opera-
tions for the noisy-channel model: substitute, split,
and delete. Each of the operations takes a PLU as an
input and is denoted as sub(u), split(u), and del(u)
respectively. We assume that for every inferred se-
quence of PLUs ~vi in Fig. 1-(b)-(iv), there is a cor-
responding series of PLUs, ui = {ui,j |1 ≤ j ≤ Ji},
in which the pronunciations for any repeated word
in ~vi are identical. The variable Ji indicates the
length of ui. By passing each ui,j through the noisy-
channel model, which stochastically chooses an edit
operation oi,j for ui,j , we obtain the noisy phonetic
realization vi,j .1 The relationship among ui, oi, and
~vi is shown in (ii)-(iv) of Fig. 1-(b). For notation
simplicity, we let oi,j encode ui,j and vi,j , which
means we can read ui,j and vi,j directly from oi,j .
We refer to the units that are input to the noisy-
channel model ui as “top-layer” PLUs and the units
that are output from the noisy-channel model ~vi as
“bottom-layer” PLUs.

1We denote vi,j as a vector since if a split operation is cho-
sen for ui,j , the noisy-channel model will output two PLUs.
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Sub-word-like and word-like unit learning With
the standardized phone-like representation ui,
higher-level linguistic structures can be inferred for
each spoken utterance. We employ Adaptor Gram-
mars (AGs) (Johnson et al., 2006) to achieve this
goal, and use di to denote the parse tree that encodes
the hierarchical linguistic structures in Fig. 1-(b)-(i).
We bracket sub-word-like (e.g., syllable) and word-
like units using [·] and (·), respectively.

In summary, our model integrates adaptor gram-
mars with a noisy-channel model of phonetic vari-
ability and an acoustic model to discover hierarchi-
cal linguistic structures directly from acoustic sig-
nals. Even though we have discussed these sub-tasks
in a bottom-up manner, our model provides a joint
learning framework, allowing knowledge learned
from one sub-task to drive discovery in the others.
We now a review the formalization of adaptor gram-
mars and define the noisy-channel and acoustic com-
ponents of our model. We conclude this section
by presenting the generative process implied by the
three components of our model.

3.2 Adaptor Grammars
Adaptor grammars are a non-parametric Bayesian
extension of Probabilistic Context-Free Grammars
(PCFGs). A PCFG can be defined as a quintu-
ple (N,T,R, S, {~θq}q∈N ), which consists of dis-
joint finite sets of non-terminal symbols N and ter-
minal symbols T , a finite set of production rules
R ⊆ {N → (N ∪ T )∗}, a start symbol S ∈ N ,
and vectors of probabilistic distributions {~θq}q∈N .
Each ~θq contains the probabilities associated with
the rules that have the non-terminal q on their left-
hand side. We use θr to indicate the probability of
rule r ∈ R. We adopt a Bayesian approach and im-
pose a Dirichlet prior on each ~θq ∼ Dir(~αq).

Let t denote a complete derivation, which repre-
sents either a tree that expands from a non-terminal
q to its leaves, which contain only terminal symbols,
or a tree that is composed of a single terminal sym-
bol. We define root(t) as a function that returns the
root node of t and denote the k immediate subtrees
of the root node as t̂1, · · · , t̂k. The probability distri-
bution over T q, the set of trees that have q ∈ N ∪ T
as the root, is recursively defined as follows.

Gq
pcfg(t) =

{∑
r∈Rq θr

∏k
i=1 G

root(t̂i)
pcfg (t̂i) root(t) = q ∈ N

1 root(t) = q ∈ T

An adaptor grammar is a sextuple
(N,T,R, S, {~θq}q∈N , {Y q}q∈N ), in which
(N,T,R, S, {~θq}q∈N ) is a PCFG, and {Y q}q∈N is
a set of adaptors for the non-terminals. An adaptor
Y q is a function that maps a base distribution over
T q to a distribution over distributions over T q.
The distribution Gq

ag(t) for q ∈ N of an AG is a
sample from this distribution over distributions.
Specifically,

Gq
ag(t) ∼ Y q(Hq(t))

Hq(t) =
∑

r∈Rq
θr

∏k

i=1
Groot(t̂i)

ag (t̂i),

where Hq(t) denotes the base distribution over T q.
In this paper, following Johnson et al. (2006), we
use adaptors that are based on Pitman-Yor pro-
cesses (Pitman and Yor, 1997). For terminal sym-
bols q ∈ T , we define Gq

ag(t) = 1, which is a
distribution that puts all its probability mass on the
single-node tree labelled q. Conceptually, AGs can
be regarded as PCFGs with memories that cache the
complete derivations of adapted non-terminals, al-
lowing the AG to choose to either reuse the cached
trees or select a production an underlying rule in R
to expand each non-terminal. For a more detailed
description of AGs and their connection to PCFGs,
we refer readers to Johnson et al. (2006) and Chapter
3 of O’Donnell (2015).

To discover the latent hierarchical linguistic struc-
tures in spoken utterances, we employ the following
AG to parse each spoken utterance, where we adopt
the notations of Johnson and Goldwater (2009b) and
use underlines to indicate adapted non-terminals and
employ + to abbreviate right-branching recursive
rules for non-terminals. The last rule shows that
the terminals of this AG are the PLU ids, which are
represented as ui and depicted as the units in the
squares of Fig. 1-(b)-(ii).

Sentence→Word+

Word→ Sub-word+

Sub-word→ Phone+

Phone→ l for l ∈ L
Note that the grammar above only makes use of

right-branching rules and therefore could be sim-
ulated using finite-state infrastructure, rather than
the more complex context-free machinery implicit in
the adaptor grammars framework. We nevertheless
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make use of the formalism for two reasons. First, on
a theoretical level it provides a uniform framework
for expressing many different assumptions about the
symbolic component of segmentation models (Gold-
water et al., 2009; Johnson, 2008b; Börschinger and
Johnson, 2014; Johnson, 2008a; Johnson and Gold-
water, 2009b; Johnson and Demuth, 2010). Using
adaptor grammars to formalize the symbolic compo-
nent our our model thus allows direct comparisons to
this literature as well as transparent extensions fol-
lowing earlier work. Second, on a practical level, us-
ing the framework allowed us to make use of Mark
Johnson’s efficient implementation of the core adap-
tor grammar sampling loop, significantly reducing
model development time.

3.3 Noisy-channel Model

We formulate the noisy-channel model as a PCFG
and encode the substitute, split, and delete opera-
tions as grammar rules. In particular, for l ∈ L,

l→ l′ for l′ ∈ L
l→ 1′1l

′
2 for l′1, l

′
2 ∈ L

l→ ε

(1)

where l ∈ L are the start symbols as well as the non-
terminals of the PCFG. The terminals of this PCFG
are l′ ∈ L, which correspond to bottom-layer PLUs
~vi that are depicted as units in circles in Fig. 1-
(b)-(iv). Note that {l} and {l′} are drawn from the
same inventory of PLUs, and the notation is meant
to signal that {l′} are the terminal symbols of this
grammar. The three sets of rules respectively map to
the sub(·), split(·), and del(·) operations; thus, the
probability of each edit operation is automatically
captured by the corresponding rule probability. Note
that to simultaneously infer a phonetic inventory of
an unknown size and model phonetic variation, we
can use the infinite PCFG (Liang et al., 2007) to
formulate the noisy-channel model. However, for
computational efficiency, in our experiments, we in-
fer the size of the PLU inventory before training the
full model, and impose a Dirichlet prior on the rule
probability distribution associated with each non-
terminal l. We explain how inventory size is deter-
mined in Sec. 5.2.

3.4 Acoustic Model
Finally, we assign each discovered PLU l ∈ L to
an HMM, πl, which is used to model the speech re-
alization of each phonetic unit in the feature space.
In particular, to capture the temporal dynamics of
the features associated with a PLU, each HMM con-
tains three emission states, which roughly corre-
spond to the beginning, middle, and end of a pho-
netic unit (Jelinek, 1976). We model the emission
distribution of each state by using 39-dimensional
diagonal Gaussian Mixture Models (GMMs). The
prior distributions embedded in the HMMs are the
same as those described in (Lee and Glass, 2012).

3.5 Generative Process of the Proposed Model
With the adaptor grammar, the noisy-channel model,
and the acoustic model defined, we summarize the
generative process implied by our model as follows.
For the ith utterance in the corpus, our model

1. Generates a parse tree di from GSentence
ag (·).

2. For each leaf node ui,j of di, samples an edit
rule oi,j from ~θui,j to convert ui,j to vi,j .

3. For vi,j,k ∈ vi,j , 1 ≤ k ≤ |vi,j |, generates the
speech features using πvi,j,k , which determinis-
tically sets the value of zi,t.

Thus, the latent variables our model defines
for each utterance are: di, ui, oi, ~vi, zi, π,
{~θq}q∈Nag∪Nnoisy-channel . In the next section, we de-
rive inference methods for all the latent variables
except for {~θq}q∈Nag∪Nnoisy-channel , which we integrate
out during the inference process.

4 Inference

We exploit Markov chain Monte Carlo algorithms
to generate samples from the posterior distribution
over the latent variables. In particular, we construct
three Markov chain kernels: 1) jointly sampling di,
oi, ui, 2) generating new samples for ~vi, zi, and 3)
updating π. Here, we give an overview of each of
the sampling moves.

4.1 Sampling di, oi, and implicitly ui

We employ the Metropolis-Hastings (MH) algo-
rithm (Chib and Greenberg, 1995) to generate sam-
ples for di and oi, which implicitly determines ui.
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Given d−i,o−i, the current parses and the current
edit operations associated with all the sentences in
the corpus except the ith utterance, we can con-
struct a proposal distribution for d′i and o′i

2 by using
the approximating PCFG described in Johnson et al.
(2006) and the approximated probability of o′i,j in
o′i, which is defined in Eq. 2.

p(o′i,j |o−i; {~α}q) ≈
C−i(u′i,j → v′i,j) + ~α

u′
i,j

u′
i,j→v′

i,j

C−i(u′i,j) +
∑

r∈Ru
′
i,j
~α
u′
i,j

r

(2)
where q ∈ Nnoisy-channel, and C−i(w) denotes the
number of times thatw is used in the analyses for the
corpus, excluding the ith utterance, in which w can
be any countable entity such as a rule or a symbol.

More specifically, we combine the PCFG that
approximates the adaptor grammar with the noisy-
channel PCFG whose rules are weighted as in Eq. 2
to form a new PCFG G′. The new PCFG G′ is thus
a grammar that can be used to parse the terminals
~vi and generate derivations that are rooted at the
start symbol of the AG. Therefore, we transform the
task of sampling d′i and o′i to the task of generat-
ing a parse for ~vi using G′, which can be efficiently
solved by using an variant of the Inside algorithm
for PCFGs (Lari and Young, 1990; Johnson et al.,
2007; Goodman, 1998; Finkel et al., 2006).

4.2 Sampling ~vi and zi
Given the top-layer PLUs ui and the speech data xi,
sampling the boundary variables zi and the bottom-
layer PLUs ~vi is equivalent to sampling an align-
ment between ui and xi. Therefore, we use the
probabilities defined in Eq. 2 and employ the back-
ward message-passing and forward-sampling algo-
rithm described in Lee et al. (2013), designed for
aligning a letter sequence and speech signals, to pro-
pose samples for ~vi and zi. The proposals are then
accepted by using the standard MH criterion.

4.3 Sampling π
Given zi and ~vi of each utterance in the corpus,
generating new samples for the parameters of each
HMM πl for l ∈ L is straightforward. For each PLU
l, we gather all speech segments that are mapped to

2We use di and d′i to denote the current and the proposed
parses. The same relationship is also defined for oi and o′

i.

Lecture topic Duration
Economics 75 mins
Speech processing 85 mins
Clustering 78 mins
Speaker adaptation 74 mins
Physics 51 mins
Linear algebra 47 mins

Table 1: A brief summary of the six lectures used
for the experiments reported in Section 6.

a bottom-layer PLU vi,j,k = l. For every segment in
this set, we use πl to block-sample the state id and
the GMM mixture id for each feature vector. From
the state and mixture assignments, we can collect the
counts that are needed to update the priors for the
transition probability and the emission distribution
of each state in πl. New samples for the parameters
of πl can thus be yielded from the updated priors.

5 Experimental Setup

5.1 Dataset
To the best of our knowledge, there are no standard
corpora for evaluating models of unsupervised lex-
icon discovery. In this paper, we perform experi-
ments on the six lecture recordings used in (Park and
Glass, 2008; Zhang and Glass, 2009), a part of the
MIT Lecture corpus (Glass et al., 2004). A brief
summary of the six lectures is listed in Table 1.

5.2 Systems
Full system We constructed two systems based
on the model described in Sec. 3. These systems,
FullDP and Full50, differ only in the size of the PLU
inventory (K). For FullDP, we set the value of K
to be the number of PLUs discovered for each lec-
ture by the DPHMM framework presented in (Lee
and Glass, 2012). These numbers were: Economics,
99; Speech Processing, 111; Clustering, 91; Speaker
Adaptation, 83; Physics, 90; and Algebra, 79. For
Full50, we used a fixed number of PLUs, K = 50.

The acoustic component of the FullDP system
was initialized by using the output of the DPHMM
model for each lecture. Specifically, we made use of
the HMMs, the phone boundaries, and the PLU that
the DPHMM model found as the initial values for
π, zi, and ~vi of the FullDP system. After initializa-
tion, the training of FullDP proceeds by following
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the three sampling moves described in Sec. 4. Sim-
ilarly, we employ a Hierarchical HMM (HHMM),
which is presented in detail in (Lake et al., 2014), to
find the initial values of π, zi, and ~vi for the Full50
system. The adaptor grammar component of all sys-
tems was initialized following the “batch initializa-
tion” method described in Johnson and Goldwater
(2009b) which independently samples an AG analy-
sis for each utterance. The lesioned systems that are
described in the rest of this section were also initial-
ized in the same manner.

To reduce the inference load on the HMM, we ex-
ploit acoustic cues in the feature space to constrain
phonetic boundaries to occur at a subset of all pos-
sible locations (Lee and Glass, 2012). We follow
the pre-segmentation method described in (Glass,
2003) to achieve the goal. Empirically, this bound-
ary elimination heuristic reduces the computational
complexity of the inference algorithm by roughly an
order of magnitude on clean speech corpora.

No acoustic model We remove the acoustic model
from FullDP and Full50 to obtain the -AM sys-
tems. Since the -AM systems do not have an acous-
tic model, they cannot resegment or relabel the data,
which implies that there is no learning of phonetic
units in the -AM systems, making them similar to
symbolic segmentation models that include a noisy
channel component (Elsner et al., 2013). By com-
paring a -AM system to its full counterpart, we can
investigate the synergies between phonetic and lexi-
cal unit acquisition in the full model.

No noisy-channel To evaluate the importance of
modeling phonetic variability, we remove the noisy-
channel model from the -AM systems to form -
NC systems. A -NC system can be regarded as
a pipeline, whereby utterance phone sequences are
discovered first, and latent higher-level linguistic
structures are learned in the second step and thus is
similar to models such as that of Jansen et al. (2010).

6 Results and Analyses

Training convergence Fig. 2 shows the negative
log posterior probability of the sampled parses d
and edit operations o for each lecture as a function
of iteration generated by the FullDP system. Given
that each lecture consists of roughly only one hour
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Figure 2: The negative log posterior probability of
the latent variables d and o as a function of iteration
obtained by the FullDP model for each lecture.

of speech data, we can see that the model converges
fairly quickly within a couple hundreds of iterations.
In the this section, we report the performance of
each system using the corresponding sample from
the 200th iteration.

Phoneme segmentation We first evaluate our
model on the task of phone segmentation for the
six lectures. We use a speech recognizer to produce
phone forced alignments for each lecture. The phone
segmentation embedded in the forced alignments is
then treated as the gold standard to which we com-
pare the segmentation our model generates. We fol-
low the suggestion of (Scharenborg et al., 2010) and
use a 20-ms tolerance window to compute the F1
score of all proposed phone segmentations.

Table 2 presents the F1 scores achieved by dif-
ferent systems. Because the -AM and -NC systems
do not do inference over acoustic segmentations, we
compare the phoneme-segmentation performance of
each full system to its performance at initialization.
Recall that the Full50 system is initialized using the
output of a Hierarchical HMM (HHMM), and the
FullDP system is initialized using DPHMM.

From Table 2 we can see that the two -AM sys-
tems achieve roughly the same segmentation perfor-
mance for the first four lectures. Aside from using
the boundary elimination method described in (Lee
and Glass, 2012), these two systems are trained in-
dependently. The table shows that the two initializa-
tion systems achieve roughly the same segmentation
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Lecture topic Full50 HHMM FullDP DPHMM
Economics 74.4 74.6 74.6 75.0
Signal processing 76.2 76.0 76.0 76.3
Clustering 76.6 76.6 77.0 76.9
Speaker adaptation 76.5 76.9 76.7 76.9
Physics 75.9 74.9 75.7 75.8
Linear algebra 75.5 73.8 75.5 75.7

Table 2: The F1 scores for the phone segmentation task obtained by the full systems and their corresponding
initialization systems.

Lecture topic Full50 -AM -NC FullDP -AM -NC
Economics 15.4 15.4 14.5 16.1 14.9 13.8
Signal processing 17.5 16.4 12.1 18.3 17.0 14.5
Clustering 16.7 18.1 15.9 18.4 16.9 15.2
Speaker adaptation 17.3 17.4 15.4 18.7 17.6 16.2
Physics 17.7 17.9 15.6 20.0 18.0 15.2
Linear algebra 17.9 17.5 15.4 20.0 17.0 15.6

Table 3: F1 scores for word segmentation obtained by the full systems and their ablated systems.

performance for the first four lectures. Thus, their
narrow performance gap indicates that the two ini-
tialization systems may have already found a near-
optimal segmentation.

Since our model also looks for the best segmenta-
tion in the same hypothesis space, by initializing the
boundary variables around the optimum, our model
should simply maintain the segmentation. In par-
ticular, as shown in Table 2, the full systems also
achieve about the same performance as the -AM
systems for the first four lectures, with the overall
largest performance difference being 0.4%.

It is perhaps more interesting when the initializa-
tion system gets stuck at a local optimum. By com-
paring the performance of the two -AM systems for
the last two lectures, we can see that the initial-
ization of Full50 converges to local optimums for
the two lectures. Nonetheless, as shown in Table 2,
the Full50 system is able to improve the given ini-
tial segmentation and reach a similar performance
to that accomplished by the FullDP and the initial-
ization of the FullDP systems.

Word segmentation In addition to phone segmen-
tation, we also evaluate our model on the task of
word segmentation. Similar to how we generate the
gold standard segmentation for the previous task, we

use a speech recognizer to produce word alignments
and obtain the word segmentation for each lecture.
We then compare the word segmentation that our
systems generate to the gold standard and calculate
the F1 scores by using a 20-ms tolerance window.

By comparing the full systems to their -NC coun-
terparts, we can see that the noisy-channel model
plays an important role for word segmentation,
which resonates with the findings of in (Elsner et al.,
2013). Without the capability of modeling phonetic
variability, it is difficult, or even impossible, for the
-NC systems to recognize word tokens of the same
type but with different phonetic realizations.

We can also observe the advantage of joint learn-
ing both word-level and phone-level representations
by comparing the FullDP system to the correspond-
ing -AM model. On average, the FullDP system out-
performs its -AM ablated counterpart by 1.6% on
the word segmentation task, which indicates that the
top-down word-level information can help refine the
phone-level knowledge that the model has learned.

While similar improvements are only observed in
two lectures for the Full50 and its -AM version, we
believe it’s because the Full50 system does not have
as much flexibility to infer the phonetic embeddings
as the FullDP system. This inflexibility may have
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Lecture topic Full50 -AM -NC FullDP -AM -NC
P&G Zhang
2008 2013

Economics 12 4 2 12 9 6 11 14
Signal processing 16 16 5 20 19 14 15 19
Clustering 18 17 9 17 18 13 16 17
Speaker adaptation 14 14 8 19 17 13 13 19
Physics 20 14 12 20 18 16 17 18
Linear algebra 18 16 11 19 17 7 17 16

Table 4: The number of the 20 target words discovered by each system described in Sec. 5, and by the
baseline (Park and Glass, 2008), and state-of-the-art system (Zhang, 2013). The best performance achieved
for each lecture is shown in bold.

prevented the Full50 system to fully exploit the top-
down information for learning.

Finally, note that even though the F1 scores for
the word segmentation task are low, we find simi-
lar performance reported in Jansen et al. (2013). We
would like to raise the question of whether the con-
ventional word segmentation task is a proper eval-
uation method for an unsupervised model such as
the one described in this paper. Our thought is
two fold. First, correct segmentation is vaguely de-
fined. By choosing different tolerance windows, dif-
ferent segmentation performance is obtained. Sec-
ond, as we show later, many of the units discov-
ered by our model are linguistically meaningful, al-
though they do not always strictly correspond to
words (i.e., the units may be morphemes or collo-
cations, etc.). Since these are linguistically mean-
ingful units which should be identified by an unsu-
pervised lexical discovery model, it is not clear what
advantage would be gained by privileging words in
the evaluation. Nevertheless, we present the word
segmentation performance achieved by our model in
this paper for future references.

Coverage of words with high TFIDF scores To
assess the performance of our model, we evaluate
the degree to which it was able to correctly recover
the vocabulary used in input corpora. To facilitate
comparison with the baseline (Park and Glass, 2008)
and state-of-the-art (Zhang, 2013) spoken term dis-
covery systems, we restrict attention to the top 20
highest TFIDF scoring words for each lecture. Note
that the set of target words of each lecture were orig-
inally chosen in (Park and Glass, 2008) and used
as the evaluation set in both Park and Glass (2008)

and Zhang (2013). To compare our system directly
to previous work, we use the same set of target
words to test our model.3

Table 4 summarizes the coverage achieved by
each variant of our model as well as the two spo-
ken term discovery systems. Note that these two
systems differ only in the acoustic features used to
represent the input: MFCC features versus more ro-
bust Gaussian posteriorgrams, respectively. Both the
FullDP and Full50 systems consistently outperform
the baseline. Both systems also exceed or perform as
well as the state-of-the-art system on most lectures.
Furthermore, they do so using the less robust MFCC
feature-based acoustic representation.

The results in Table 4 also illustrate the syner-
gistic interactions that occur between the acoustic
and symbolic model components. As described in
Sec. 5, the -AM systems are identical to the full
systems, except they do not include the acoustic
model, and, therefore, do not re-segment or relabel
the speech after initialization. As Table 4 shows,
the Full50 and FullDP models both tend to have
coverage which is as good as, or better than, the
corresponding models without an acoustic compo-
nent. This indicates that top-down pressure from the
symbolic component can refine bottom-layer PLUs,
leading, ultimately, to better lexicon discovery.

Finally, the comparison between Full/-AM mod-
els and their -NC components suggests the impor-
tance of modeling variability in the realization of
phonemes. As we will discuss in the next section,
the full model tends to merge multiple sequences of

3For the procedure used to identify the word label for each
lexical unit, we refer the reader to Sec. 3.5.3 of (Lee, 2014) for
detailed explanation.
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Figure 3: The bottom-layer PLUs ~v and the top-layer PLUs u as well as the word-internal structure that the
FullDP system discovered for three instances of the words (a) globalization and (b) collaboration. We also
include phoneme transcriptions (derived by manual inspection of spectrograms), for clarity.

bottom-layer PLUs into single lexical items which
share a single top-layer PLU sequence. The results
in Table 4 confirm this: When the model does not
have the option of collapsing bottom-layer PLU se-
quences, word discovery degrades considerably.

Examples and qualitative analyses To provide
intuition about the model behavior, we present sev-
eral examples and qualitative analyses. Figure 3
illustrates the model’s representation of two words
which appeared frequently in the economics lecture:
globalization and collaboration. The figure shows
(i) the bottom-layer PLUs which the model assigned
to three instances of each word in the training cor-
pus, (ii) the alignments between these bottom-layer
PLUs and the top-layer PLU sequence correspond-
ing the model’s lexical representation of each word,
(iii) the decomposition of each word-like unit into
sub-word-like units, which are denoted as bracketed
sequences of PLUs (e.g., [70 110 3]), and (iv) a hand
annotated phonemic transcription.

The first thing to note is the importance of the
noisy-channel component in normalizing variation
across word tokens. In Figure 3-(a) the model has in-
ferred a different sequence of bottom-layer PLUs for
each spoken instance of globalization. PLUs which
vary between the three instances are highlighted in

red. The model was able to map these units to the
single sequence of top-layer PLUs associated with
the lexical item. Similar remarks hold for the word
collaboration in Figure 3-(b). This suggests that
acoustic variability between segments led the model
to infer different bottom-layer PLUs between word
tokens, but this variability was correctly normalized
by the noisy-channel component.

The second thing to note is the large amount of
variability in the granularity of stored sub-word-like
units (bracketed PLU sequences). The model allows
sub-word-like units to consist of any sequence of
PLUs, without further constraint. Figure 3 shows
that the model makes use of the flexibility, repre-
senting linguistic structure at a variety of different
scales. For example, the initial sub-word-like unit
of collaboration groups together two PLUs corre-
sponding to a single phoneme /k/. Other sub-word-
like units correspond to syllables. Still others cap-
ture morphological structure. For example, the fi-
nal sub-word-like unit in both words (highlighted
in green) corresponds to the combination of suf-
fixes -ation—a highly productive unit in English
(O’Donnell, 2015).4

4The reader may notice that the lexical representations are
missing a final /n/ phoneme. Manual examination of spectro-
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Transcription Discovered lexical units |Word|
/iy l iy/ (really, willy, billion) [35] [31 4] 68
/ey sh ax n/ (innovation, imagination) [6 7 30] [49] 43
/ax bcl ax l/ (able, cable, incredible) [34 18] [38 91] 18
discovered [26] [70 110 3] [9 99] [31] 9
individual [49 146] [34 99] [154] [54 7] [35 48] 7
powerful [50 57 145] [145] [81 39 38] 5
open university [48 91] [4 67] [25 8 99 29] [44 22] [103 4] 4
the arab muslim world [28 32] [41] [67] [25 35] [1 27] [13 173] [8 139] [38 91] 2

Table 5: A subset of the lexical units that the FullDP system discovers for the economics lecture. The
number of independent speech segments that are associated with each lexical unit is denoted as |Word|.

Lexical units also exhibit variability in granular-
ity. Table 5 shows a subset of lexical units discov-
ered by the FullDP system for the economics lecture.
Each entry in the table shows (i) the decomposition
of each word-like unit into sub-word-like units, (ii) a
phonemic transcription of the unit, and (iii) the num-
ber of times each lexical unit was used to label a seg-
ment of speech in the lecture (denoted as |Word|).
The lexical units displayed in the table correspond,
for the most part, to linguistic units. While there are
a few cases, such as /iy l iy/, where the model stored
a sequence of phones which does not map directly
onto a linguistic unit such as a syllable, morpheme,
or word, most stored units do correspond to intu-
itively plausible linguistic constituents.

However, like sub-word-like units, there is vari-
ability in the scale of the linguistic structure which
they capture. On one hand, the model stores a
number of highly reusable smaller-than-word units,
which typically correspond to morphemes or highly
frequent syllables. For example, the sequences /ax
bcl ax l/ and /ey sh ax n/ correspond to the pro-
ductive suffix -able and suffix combination -ation
(O’Donnell, 2015). On the other hand, the model
also stores lexical units which correspond to words
(e.g., powerful) and multi-word collocations (e.g.,
the arab muslim world). Figure 4 shows an analy-
sis of stored lexical units for each lecture, plotting

grams revealed two likely reasons for this. First, the final PLU
30 is likely to be a nasalized variant of /@/, thus encoding some
portion of the following /n/ phoneme. Second, across these
word instances there is a great deal of acoustic variation be-
tween the acoustic realizations of the consonant /n/. It is un-
clear at present whether this variation is systematic (e.g., co-
articulation with the following word), or simply noise.
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Figure 4: The proportions of the word tokens the
FullDP system generates for each lecture that map
to sub-words, single words, and multi-words.

the proportion of stored items which map onto sub-
words, words, and multi-word collocations for each.

Why does the model choose to store some units
and not others? Like many approaches to lexi-
con learning (Goldwater, 2006; De Marcken, 1996c;
Johnson et al., 2006), our model can be understood
as balancing a tradeoff between productivity (i.e.,
computation) and reuse (i.e., storage). The model
attempts to find a set of lexical units which explain
the distribution of forms in the input, subject to two
opposing simplicity biases. The first favors smaller
numbers of stored units. The second favors deriva-
tions of observed utterances which use fewer com-
putational steps (i.e., using small number of lexical
items). These are opposing biases. Storing larger
lexical units, like the arab muslim world, leads to
simpler derivations of individual utterances, but a
larger lexicon. Storing smaller lexical units, like the
suffix -able, leads to a more compact lexicon, but
more complex derivations individual utterances.

400



Smaller units are favored when they are used
across a large variety of relatively infrequent con-
texts. For example, -ation appears in a large number
of input utterances, but often as part of words which
themselves are relatively infrequent (e.g., conversa-
tion, reservation, innovation, and foundation which
appear 2, 3, 4, and 2 times respectively). Larger
units will be favored when a combination of smaller
units appears more frequently than would be pre-
dicted by considering their probabilities in isolation.
For example, the model stores the words globaliza-
tion and collaboration in their entirety, despite also
storing the suffix combination -ation. These words
occur 25 and 21 times respectively in the lecture,
which is a greater number of times than would be
expected merely by considering the words sub-parts.
Thus, the fact that the model stores a variety of lexi-
cal units at different granularities is expected.

7 Conclusion and Future Work

In this paper, we have presented a probabilistic
framework for inferring hierarchical linguistic struc-
tures from acoustic signals. Our approach is for-
mulated as an integration of adaptor grammars, a
noisy-channel model, and an acoustic model. Com-
parison of the model with lesioned counterparts sug-
gested that our model takes advantage of synergis-
tic interactions between phonetic and lexical repre-
sentations. The experimental results also indicate
that modeling phonetic variability may play a crit-
ical role in inferring lexical units from speech.

While the noisy-channel model has demonstrated
an ability to normalize phonetic variations, it has
its limitations. In the future, we plan to investi-
gate alternatives that more accurately capture pho-
netic variation. We also plan to explore grammars
that encode other types of linguistic structures such
as collocation of lexical and morphological units.
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