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Random assignment, typically seen as the standard in controlled trials, aims to make experimental groups

statistically equivalent before treatment. However, with a small sample, which is a practical reality in many

disciplines, randomized groups are often too dissimilar to be useful. We propose an approach based on

discrete linear optimization to create groups whose discrepancy in their means and variances is several orders

of magnitude smaller than with randomization. We provide theoretical and computational evidence that

groups created by optimization have exponentially lower discrepancy than those created by randomization.
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1. Introduction

Experimentation on groups of subjects, similar in all ways but for the application of an experimental

treatment, is a cornerstone of modern scientific inquiry. In any controlled experiment, the quality,

interpretability, and validity of the measurements and inferences drawn depends upon the degree

to which the groups are similar at the outset.

For close to a century, randomization of subjects into di↵erent groups has been relied upon to

generate statistically equivalent groups. Where group size is large relative to variability, random-

ization robustly generates groups that are well-matched with respect to any statistic. However,

when group sizes are small, the expected discrepancy in any covariate under randomization can be

surprisingly large, hindering inference. This problem is further aggravated as the number of groups

one needs to populate becomes larger.

This is the situation faced in numerous disciplines in which the rarity or expense of subjects makes

assembly of large groups impractical. For example, in the field of oncology research, experimental
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chemotherapy agents are typically tested first in mouse models of cancer, in which tumor-bearing

mice are segregated into groups and dosed with experimental compounds. Since these mouse models

are laborious and expensive, group size is kept small (typically 8-10), while the number of groups

is relatively large, to accommodate comparison of multiple compounds and doses with standard-

of-care compounds and untreated control groups. In this case, it is clear that initial tumor weight

is highly correlated with the post-treatment tumor weight, in which we measure the e↵ect of

treatment. A typical experiment might consist of 40-60 mice segregated into four to six groups of

ten, though experiments using fewer mice per group and many more groups are performed as well.

Given that the implanted tumors grow quite heterogeneously, a coe�cient of variation of 50% or

more in pre-treatment tumor size is not unusual.

In such circumstances, common in nearly all research using animal models of disease as well

as many other endeavors, simple randomization fails to reliably generate statistically equivalent

groups, and therefore fails to generate reliable inference. It is clearly more desirable that experi-

ments be conducted with groups that are similar, in particular in mean and variance of relevant

baseline covariates. Here we treat the composition of small statistically equivalent groups as a

mathematical optimization problem in which the goal is to minimize the maximum di↵erence in

both mean and variance between any two groups. We report one treatment of this problem as well

as a study of the size of the discrepancy when group enrollment is optimized compared to other

common designs including complete randomization.

Block and orthogonal designs (see Fisher (1935)) have been a common way to reduce variability

when baseline covariates are categorical, but do not apply to mixed (discrete and continuous)

covariates, which is the main focus of our work. For such cases, apart from randomization, two

prominent methods are pairwise matching for controlled trials (see Rosenbaum and Rubin (1985)

and Greevy et al. (2004)) and re-randomization as proposed in Morgan and Rubin (2012).1 The

finite selection model (FSM) proposed by Morris (1979) can also be used for this purpose. In

comparisons explored in Section 4, we find that the balance produced by our proposed optimization-

based approach greatly improves on both randomization and these methods.

Pairwise matching is most common in observational studies, where assignment to treatment

cannot be controlled (see Rubin (1979) and Rosenbaum and Rubin (1983) for a thorough discussion

of the application of pairwise matching and other methods to observational studies). A large

impediment to the existing practices is that they are based on subject pairs. When sample sizes

are small and random there will hardly be any well-matched pairs. We will see that such matching

does little to eliminate bias in the statistics that measure the overall average e↵ect size. Instead

1 The work of Morgan and Rubin (2012) can be seen as formalizing and reinterpreting the common informal practice
of cherry-picking from several randomizations as a principled heuristic method for matching.
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Figure 1 Average maximal pairwise discrepancy in means among randomly assigned groups of normal variates.

The vertical axis is in units of standard deviation. The band denotes the average over- and under-shoot:

E [X|X � EX] and E [X|X  EX] where X is maximal pairwise discrepancy.

we consider matching the experimental groups in order to minimize the en-masse discrepancies in

means and variances among groups as formulated in (1).

When discrepancy is minimized, statistics such as the mean di↵erence in subject responses are far

more precise, concentrated tightly around their nominal value, while still being unbiased estimates.

Indeed, under optimization, these statistics will no longer follow their usual distributions, which

are wider, and traditional tests that rely on knowledge of this distribution, like the Student T test,

no longer apply. Beyond estimation, we propose a hypothesis test based on the bootstrap to draw

inferences on the di↵erences between treatments – inferences which experimental evidence shows

are much more powerful than is usually possible.

In this paper, we provide theoretical and computational evidence that groups created by opti-

mization have exponentially lower discrepancy in pre-treatment covariates than those created by

randomization or by existing matching methods.

2. Limitations of Randomization

Three factors can impair successful matching of the independent variable means of groups assembled

using randomization. These are: (a) the group size, (b) the variance of the data and (c) the number

of groups being populated. The specific influence of these three factors is shown graphically in

Figure 1. The plot shows the average maximal pair-wise discrepancy in means between groups

under the conditions indicated for the normal distribution. Average discrepancy is proportional to

standard deviation and is therefore reported in units of standard deviations.

It can be seen from the plot that discrepancy increases with the number of groups involved

and decreases with increasing group size. When all three factors come into play: small group size,

high standard deviation, and numerous groups, the degree of discrepancy can be substantial. For

example, a researcher using randomization to create four groups of ten mice each will be left
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with an average discrepancy of 0.66 standard deviations between some two of the groups. Since

statistical significance is often declared at a mean di↵erence of 1.96 standard deviations (p 0.05),

this introduces enough noise into the experiment to conceal an e↵ect in comparisons between the

mismatched groups or to severely skew the apparent magnitude and statistical significance of a

larger e↵ect. Examination of Figure 1 makes it clear that when multiple groups are involved, even

apparently large group size can still result in a substantial discrepancy in means between some

groups. Doubling the group sizes to twenty each still leaves the researcher with a discrepancy of

0.47 standard deviations.

One solution to this problem is simply to increase group size until discrepancies decrease to

acceptable levels. However, the size of the groups needed to do so can be surprisingly large. To

reduce the expected discrepancy to below 0.1 standard deviations would require more than 400

subjects per group in the above experiment. For 0.01 standard deviations, more than 40,000 subjects

per group would be necessary. With diminishing returns in the reduction of discrepancy with

additional subjects, larger increases in the number of subjects enrolled are needed to conduct

experiments studying subtler e↵ects.

When considering the e↵ects of this on post-treatment measurements such as mean di↵erences

or T statistic, it is clear that a more precise measurement could be made when groups are well-

matched at the onset. As we discuss below, well-matched groups yield a measurement that is much

closer to the nominal (average or mode) measurement of pure randomization. Indeed, that this

distribution of measurements is di↵erent (tighter) means that a näıve application of the Student T

test would result in an underestimate of confidence and power, but that the distribution is tighter

should allow for much more powerful inference.

3. Optimization Approach

Our proposal is to assign subjects so to minimize the discrepancies in centered first and second

moments, where this assignment is gleaned via integer optimization. After assignment, we ran-

domize which group is given which treatment, which ensures unbiased estimation as discussed in

Section 5.

Given pre-treatment values of subjects w

i

, i = 1, . . . , n =mk, we are interested in creating m

groups each containing k subjects in such a way that the discrepancy in means and ⇢ times the

discrepancy in second moments is minimized between any two groups. We first preprocess the full

sample by normalizing it so that it has zero sample mean and unit sample variance. We set

w

0
i

= (w
i

� µ̂)/�̂, where µ̂=
nX

i=1

w

i

/n and �̂

2 =
nX

i=1

(w
i

� µ̂)2/n.
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After construction of k groups, we randomize which treatment is given to which group. Algorith-

mically, we number the treatments and the groups in any way, shu✏e the numbers 1, . . . ,m and

treat the group in position j with treatment number j. This does not a↵ect the objective value.

The parameter ⇢ controls the tradeo↵ between the discrepancy of first moments and of second

moments and is chosen by the researcher. We introduce the decision variable x
ip

= 0 or 1 to denote

the assignment of subject i to group p. Using continuous auxilliary variable d and letting

µ

p

(x) =
1

k

nX

i=1

w

0
i

x

ip

and �

2
p

(x) =
1

k

nX

i=1

(w0
i

)
2
x

ip

,

we formulate the problem as follows:

Z

opt
m

(⇢) =min
x

max
p 6=q

�
|µ

p

(x)�µ

q

(x)|+ ⇢

��
�

2
p

(x)��

2
q

(x)
���

=min
x,d

d (1)

s.t. 8p < q= 1, . . . ,m :

d� µ

p

(x)�µ

q

(x)+ ⇢�

2
p

(x)� ⇢�

2
q

(x)
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(x)+ ⇢�

2
q

(x)� ⇢�
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(x)
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(x)� ⇢�
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q

(x)

d� µ

q

(x)�µ
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2
q

(x)� ⇢�

2
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(x)

x

ip

2 {0,1}
nX

i=1

x

ip

= k 8p= 1, . . . ,m

mX

p=1

x

ip

= 1 8i= 1, . . . , n

x

ip

= 0 8i < p.

As formulated, problem (1) is a mixed integer linear optimization problem with m(1+2n�m)/2

binary variables and 1 continuous variable. The last constraint reduces the redundancy due to

permutation symmetry. Further symmetry reduction in the branch-and-bound process is possible

by methods described in Kaibel et al. (2011), which we included in our implementation. This

symmetry is reintroduced by randomizing which group received which treatment.

We implement this optimization model in IBM ILOG CPLEX v12.5. For values n= 40 and m= 4

problem (1) can be solved to full optimality in under twenty seconds on a personal computer with 8

processor cores. We plot the progress of the branch and bound procedure for one example in Figure

2. For larger instances, CPLEX generally finds a solution with objective value that is near optimal

within a few minutes, while finding the optimum can take longer and proving its optimality even

longer.
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Figure 2 The progress of solving an instance of problem (1) with n= 40, m= 4.

The formulation of optimization problem (1) extends to multiple covariates. Suppose we are

interested in matching the first and second moments in a vector of r covariates where w

is

denotes

the s

th covariate of subject i. Again, we normalize the sample to have zero sample mean and

identity sample covariance by setting w

0
i

= � (w
i

� µ̂), where � is the matrix square root of

the (pseudo-)inverse of the sample covariance ⌃̂=
P

n

i=1 (wi

� µ̂) (w
i

� µ̂)T /n. Given the tradeo↵

parameter ⇢, we rewrite the optimization problem for this case using m(1 + 2n �m)/2 binary

variables and 1+m(m� 1)r(r+3)/4 continuous variables as follows:

min d

s.t. x2 {0,1}n⇥m

, x

ip

= 08i < p, d� 0
nX

i=1

x

ip

= k 8p= 1, . . . ,m

mX

p=1

x

ip

= 1 8i= 1, . . . , n

x

ip

= 0 8i < p
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Figure 3 Discrepancy in means among optimally assigned groups of normal variates with ⇢= 0. The colors are

as in Figure 1. Note the vertical log scale compared to the absolute scale of Figure 1.
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The potential extension to even higher moments is straightforward.

4. Optimization vs. Randomization in Reducing Discrepancies

Using the above optimization model implemented in IBM ILOG CPLEX v12.5, we conducted a

series of simulations comparing the results of group assembly using randomization and optimization.

Our key finding is that optimization is starkly superior to randomization in matching group means

under all circumstances tested.

Figure 3 provides the analogue of Figure 1 for optimization and Figure 4 compares side-by-side

the mismatch achieved in the first two moments by optimization and by randomization. In par-

ticular we show for various numbers of groups and group sizes the achievable range of feasible

matchings as ⇢ varies. For all values of ⇢, the pre-treatment discrepancy is significantly reduced

compared to that seen under randomization, essentially eliminating population variance as a signif-

icant source of noise for all but the most extreme circumstances. Noting that discrepancy in either

moment is minuscule under optimization using any of the values of ⇢ shown, we arbitrarily choose

⇢= 0.5 for all further numerical examples unless otherwise noted. To revisit the example used to

illustrate the limitations of randomization, the researcher assembling four groups of ten mice each

under optimization with ⇢= 0.5 would end up with 0.0005 standard deviations of discrepancy in

first moment (or a twentieth of that for ⇢= 0, not shown in figure), compared with 0.66 standard

deviations under randomization.

There is some theoretical backing to the experimental evidence that optimization eliminates all

discrepancies to such an extreme degree. When ⇢= 0 andm= 2 the problem, scaled by 1/n, reduces
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to the well-studied balanced number partitioning problem (see Karmarkar and Karp (1982)). Let

Z

rand
2 denote the discrepancy in means under randomization. When pre-treatment covariates are

random with variance �

2, we have by Jensen’s inequality that

E
⇥
Z

rand
2

⇤

r
E
h
(Zrand

2 )
2
i
=

r
2

k

�

and if they are normally distributed then

E[Zrand
2 ] =

2p
⇡k

�.

In comparison, an analysis of balanced number partitioning with random weights (see Karmarkar

et al. (1986)) yields that there is a C > 0 such that

median
�
Z

opt
2 (0)

�
 C

22k

and heuristic arguments from spin-glass theory (see Mertens (2001)) provide the prediction

E[Zopt
2 (0)] =

2⇡�

2k
,

which agrees with our experimental results for large k. Comparing the asymptotic orders of Zrand
2

and Z

opt
2 (0), we see an exponential reduction in discrepancies by optimization versus randomization.
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(b)
m=2 groups
n=40 subjects

���

���

��

'LVFUHSDQF\

��� ��� ��� ��� ��� ��� ���� r������

������

������

�����

�����

�����

����

(c)
m=4 groups
n=40 subjects

Figure 4 The range of achievable discrepancies under optimization and under randomization. The upper halves

of the plots correspond to randomization and the lower ones to optimization. Red denotes discrepancy

in mean and blue variance. The bands depict average under- and over-shoot. Notice the log scales and

the break in the vertical axis.
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✏ k

Opt
k

Rand (⇡ kFSM ) k

Pair
k

RR

0.1 3 128 9 4
0.01 5 12833 65 83
0.001 7 1273240 514 8130
0.0001 8 127323955 4354 820143

Table 1 The number of subjects per group needed to guarantee an expected discrepancy no more than ✏� for

m= 2 and ⇢= 0.

Matching done on a subject-pair-wise basis such as caliper matching as done in propensity score

matching (see Rubin (1979)) does not close this gap either even when the sample-based optimal

caliper width is chosen. Consider for simplicity uniformly-distributed pre-treatment covariates so

that any subsequent di↵erence of two nearest neighbors are on average (n+1)�1. If assignment

within each pair is randomized independently a simple calculation then shows that the average

discrepancy is of order k�3/2 whereas if assignment is alternating among the sorted covariates then

the average discrepancy is of order k

�1. The case is worse for normally-distributed covariates as

reported below.

Following the average predictions for the normal distribution, if we want to limit discrepancy to

some fraction of the standard deviation, ✏�, we see a dramatic di↵erence in the necessary number

of subjects per group, k:

k

Opt =

⇠
log2

2⇡

✏

⇡
, k

Rand =

⇠
4

⇡✏

2

⇡
.

In Table 1 we report specific values of kOpt and k

Rand, as well as k

PW corresponding to optimal

pairwise matching and k

RR corresponding to the Mahalanobis-distance re-randomization method of

Morgan and Rubin (2012) with a fixed acceptance probability of 5%.2 This is a clear example of the

power of optimization for experiments hindered by small samples. While pairwise matching and re-

randomization improve upon randomization, they are significantly outperformed by optimization

especially when small discrepancy is desired.

A concern may be that by optimizing only the first two moments and not others those higher

moments may become mismatched. We find, however, that this is not the case even when com-

pared to all the other methods considered above. In Table 2 we tabulate the mismatch in the first

five moments and in the generalized moment of log for the various methods when assigning 2k

subjects with baseline covariates drawn from a standard normal population. In Table 3 we tabu-

late the mistmatch of multivariate moments for the various methods when assigning 2k subjects

with multivariate baseline covariates drawn from a three-dimensional standard normal population.

For pairwise matching we use the Mahalanobis pairwise distance, for re-randomization we use an

2 Simulation is used to glean kopt for these values of ✏, for which the asymptotic predictions yield overestimates.
Simulation also shows that for FSM, kFSM ⇡ kRand.
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k Method 1 2 3 4 5 log

5

Opt 0.0513 0.286 1.43 2.67 9.75 0.498
Rand 0.510 0.689 1.79 3.81 10.3 0.544
Pair 0.184 0.498 1.27 3.29 8.93 0.345

Re-rand 0.047 0.711 1.09 3.88 8.47 0.572
FSM 0.508 0.553 1.76 3.33 10.2 0.440

10

Opt 0.00174 0.0145 0.906 1.47 6.87 0.338
Rand 0.352 0.504 1.30 2.88 7.79 0.399
Pair 0.0839 0.259 0.759 2.09 6.06 0.176

Re-rand 0.0298 0.497 0.764 2.93 6.20 0.389
FSM 0.374 0.334 1.33 2.26 7.90 0.264

20

Opt 1.23e-6 2.34e-6 0.600 1.04 5.23 0.221
Rand 0.258 0.345 0.947 2.13 6.13 0.276
Pair 0.0379 0.140 0.445 1.40 4.24 0.286

Re-rand 0.0207 0.356 0.565 2.16 4.99 0.284
FSM 0.249 0.190 0.896 1.50 5.89 0.146

Table 2 The discrepancy in various moments under di↵erent assignment mechanisms. Column ` corresponds to

the average mismatch in the `th moments between the two groups and the last column corresponds to the mismatch

in the generalized moments in log |w|.

acceptance probability of 5%, for FSM we use the method implied by equation (2.11) of Morris

(1979) with c

i

= 1, T = I, and for our method we use ⇢= 0.5. We notice that optimal assignment

yields superior balance in the moments considered and that all methods result in similar balance

for those moments not directly considered in the optimization problem.

5. Optimization, Randomization, and Bias

Randomization has traditionally been used to address two kinds of bias in experimental design. The

first is investigator bias, or the possibility that an investigator may subconsciously or consciously

construct experimental groups in a manner that biases toward achieving a particular result. As a

fixed, mechanical process, optimization guards against this possibility at least as well as random-

ization. Indeed it does better because any manual manipulation of the optimized results would

make the result less well-matched than the reproducible optimum, which is checkable, whereas no

one grouping can ever be verified to truly be the result of pure randomization.

The second sort of bias is the incidental disproportionate assignment of variables, measured or

hidden, that directly a↵ect the treatment. Randomization, given large enough samples, will tend

to equalize the apportionment of any one factor. However, just as with the measured covariates w
i

,

randomization cannot be counted upon to eliminate discrepancies in hidden factors when samples

are relatively small. Optimization considers the measured covariates w
i

when allocating a subject

to a particular group. For all factors that are independent with this variable, the allocation remains

just as random. Variables that are correlated with the measured covariates in ways such as joint

normality will be just as well balanced as the measured covariates and variables with a higher order
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k Method w1 w

2
1 w1w2 w

3
1 w

2
1w2 w1w2w3

10

Opt 0.0701 0.145 0.183 0.93 0.508 0.337
Rand 0.360 0.492 0.344 1.29 0.58 0.333
Pair 0.179 0.383 0.271 0.964 0.478 0.299

Re-rand 0.141 0.493 0.357 0.883 0.484 0.34
FSM 0.368 0.606 0.503 1.30 0.574 0.340

15

Opt 0.0230 0.0450 0.117 0.718 0.411 0.292
Rand 0.292 0.400 0.286 1.05 0.489 0.289
Pair 0.125 0.290 0.201 0.748 0.38 0.247

Re-rand 0.113 0.409 0.289 0.714 0.414 0.293
FSM 0.289 0.597 0.491 1.05 0.488 0.281

25

Opt 0.00302 0.00497 0.0780 0.547 0.315 0.227
Rand 0.226 0.325 0.222 0.842 0.384 0.227
Pair 0.0849 0.196 0.143 0.547 0.276 0.172

Re-rand 0.0863 0.326 0.230 0.566 0.314 0.220
FSM 0.219 0.592 0.494 0.823 0.388 0.224

Table 3 The discrepancy in various multivariate moments under di↵erent assignment mechanisms. Column

w
1

w
2

, for example, corresponds to the average mismatch in the moments of w
1

w
2

between the two groups, which by

symmetry is the same as that of w
1

w
3

or w
2

w
3

on average.

dependence, such as having a polynomial conditional expectation in w, would be as balanced as

seen in Tables 2 and 3.

In general, as in a randomized experiment, the observed di↵erence in treatment e↵ects will

always be an unbiased estimator of the true population average di↵erence. This is a consequence of

randomizing the identity of treatments so that the assignment of a single subject is marginally inde-

pendent of its potential responses to di↵erent treatments.3 Unbiasedness in estimation means that

were the experiment to be repeated many times and the results recorded, the average result would

coincide with the true value. In particular, there is no omitted variable bias. That is, neglecting to

take into consideration a relevant covariate does not introduce bias in estimation.

6. Optimization vs. Randomization in Making a Conclusion

As we have shown in the previous sections, optimization eliminates nearly all noise due to pre-

treatment covariates. One would then expect that it can also o↵er superior precision in estimating

the di↵erences between treatments and superior power in making statistical inferences on these

di↵erences.

In randomized trials, randomization tests (see Eddington and Onghena (2007)) can be used to

draw inferences based directly on the randomness of assignment without normality assumptions,

which often fail for small samples. However, for optimization the assignment is not random and

this is not applicable. The randomization test can, however, be supplanted by a bootstrap test.

3 The correctness of modeling using potential outcomes is contingent on the stable unit treatment value assumption.
See Rubin (1986).
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Comparing between two treatments, we would like to test the null hypothesis that every subject

i= 1, . . . , n would have had the same response to treatment whether either of the two treatments

were assigned. Let v

i

denote the response measured for subject i after it was administered the

treatment to which it was assigned. Then we propose the following test based on the bootstrap

(see Efron and Tibshirani (1993)). Given subjects with covariates w1, . . . ,wn

:

1. Find an optimal assignment of these to two groups (permuting randomly):

{i1, . . . , in/2} and {i
n/2+1, . . . , in}.

2. Administer treatments and measure responses v
i

.

3. Compute �= 1
k

⇣
v

i

1

+ · · ·+ v

in/2

⌘
� 1

k

⇣
v

in/2+1

+ · · ·+ v

in

⌘
.

4. For b= 1, . . . ,B:

(a) Draw a random sample with replacement w
b,1, . . . ,wb,n

from w1, . . . ,wn

.

(b) Find an optimal assignment of these to two groups (permuting randomly):

{i
b,1, . . . , ib,n/2} and {i

b,n/2+1, . . . , ib,n}.

(c) Compute �

b

= 1
k

⇣
v

ib,1
+ · · ·+ v

ib,n/2

⌘
� 1

k

⇣
v

ib,n/2+1

+ · · ·+ v

ib,n

⌘
.

5. Compute the p-value p= 1
1+B

⇣
1+

P
B

b=1 I [|�b|� |�|]
⌘
.

Then, to test our null hypothesis at a significance of ↵, we only reject it if p ↵. The quantity �

above constitutes our estimate of the di↵erence between the two treatments.

To examine the e↵ect of optimization on making a conclusion about the treatments we consider

again the example of a murine tumor study. We consider two groups, each of k mice, with tumor

weights initially normally distributed with mean 200mg and standard deviation 300mg (truncated

to be nonnegative). Two treatments are considered: a placebo and a proposed treatment. Their

e↵ect on the tumor, allowed to grow for a period of a day, is of interest to the study.

The e↵ects of treatment and placebo are unknown and are to be inferred from the experiment.

We consider a hidden reality where the growth of the tumors are dictated by the Gomp-ex model

of tumor growth (see Wheldon (1988)). That is, growth is governed by the di↵erential equation:

dw

dt

=w(t) (a+max{0, b log (w
c

/w(t))}) ,

where a and b are rate parameters and w

c

is the critical weight that marks the change between

exponential and logistic growth. We arbitrarily choose a= 1 1
day

, b= 5 1
day

, w
c

= 400mg, and t= 1day.

We pretend that tumors under either treatment grow according to this equation but subtract �0

from the final weights for the proposed treatment. We consider �0 being 0mg (no e↵ect), 50mg

(small e↵ect), and 250mg (large e↵ect).
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Figure 5 The distribution of estimates of e↵ect size under optimization (red) and randomization (blue) for k= 20

and e↵ect sizes 0mg, 50mg, and 250mg (dashed lines). The overlap of estimates under randomization

of the nonzero e↵ects and of the zero e↵ect elucidate the low statistical power of randomization in

detecting the nonzero e↵ects.

For various values of k and for several draws of initial weights, we consider assignments produced

by randomization, our optimization approach (⇢= 0.5), pairwise matching, and re-randomization.

We consider both the post-treatment estimate of the e↵ect and the inference drawn on it at a

significance of ↵= 0.05, using our bootstrap test for our method and the standard randomization

test for the others.4 In Figure 5 we plot the resulting estimates for k= 20 and in Figure 6 we plot

the rates at which the null hypothesis is rejected. When there is no e↵ect, this rate should be no

more than the significance ↵= 0.05. When there is an e↵ect, we would want the rate to be as close

to 1 as possible. In a sense, the complement of this rate is the fraction of experiments squandered

in pursuit of an e↵ective drug. The cost-saving benefits of optimization in this case are clear.

The exact improvements in precision and power depend on the nature of treatment e↵ect. How-

ever, comparisons to the existing methods are possible. Morgan and Rubin (2012) study reduction

in variance due to re-randomization only under the additive treatment model, a very restrictive

assumption. In this setting, when setting ⇢= 0, the same analysis as provided in their Theorem 3.2

4 For non-completely-randomized designs, the randomization test draws random re-assignments according to the
method employed at the onset. See Chapter 10 of Eddington and Onghena (2007).
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Figure 6 The probability of rejecting the null hypothesis of no e↵ect for various e↵ect sizes.
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provides that the reduction in variance provided by en-masse optimization is exponentially better

because the reduction in mean mismatch is exponentially better. Nonetheless, treatment e↵ects

usually do depend, albeit perhaps to a lesser extent, on higher orders of the covariates and on their

interactions. In Tables 2 and 3 we saw that optimization balances higher and interaction moments

no worse than other methods (better for second moments).

7. Practical Significance

Here we present evidence that optimization produces groups that are far more similar in mean

and variance than those created by randomization, especially in situations in which group size

is small, data variability is large, and numerous groups are needed for a single experiment. For

each additional subject per group, optimization roughly halves the discrepancy in the covariate,

whereas both randomization and subject-pair matchings o↵er quickly diminishing reductions. Mak-

ing groups similar before treatment allows for statistical power beyond what can normally be hoped

for with small samples.

We propose that optimization protects against experimental biases at least as well as randomiza-

tion and that the advantage of optimized groups over randomized groups is substantial. We believe

that optimization of experimental group composition, implementable on commonplace software

such as Microsoft Excel and on commercial mathematical optimization software, is a practical and

desirable alternative to randomization that can improve experimental power in numerous fields,

such as cancer research, neurobiology, immunology, investment analysis, market research, behav-

ioral research, proof-of-concept clinical trials, and others.
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