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ABSTRACT
We report on the MIT Epoch of Reionization (MITEoR) experiment, a pathfinder
low-frequency radio interferometer whose goal is to test technologies that improve the
calibration precision and reduce the cost of the high-sensitivity 3D mapping required
for 21 cm cosmology. MITEoR accomplishes this by using massive baseline redundancy,
which enables both automated precision calibration and correlator cost reduction. We
demonstrate and quantify the power and robustness of redundancy for scalability and
precision. We find that the calibration parameters precisely describe the effect of the
instrument upon our measurements, allowing us to form a model that is consistent
with χ2 per degree of freedom < 1.2 for as much as 80% of the observations. We use
these results to develop an optimal estimator of calibration parameters using Wiener
filtering, and explore the question of how often and how finely in frequency visibilities
must be reliably measured to solve for calibration coefficients. The success of MITEoR
with its 64 dual-polarization elements bodes well for the more ambitious Hydrogen
Epoch of Reionization Array (HERA) project and other next-generation instruments,
which would incorporate many identical or similar technologies.

Key words: Cosmology: Early Universe – Radio Lines: General – Techniques: Inter-
ferometric – Methods: Data Analysis

1 INTRODUCTION

Mapping neutral hydrogen throughout our universe via its
redshifted 21 cm line offers a unique opportunity to probe

? E-mail: jeff z@mit.edu

the cosmic “dark ages,” the formation of the first luminous
objects, and the epoch of reionization (EoR). A suitably
designed instrument with a tenth of a square kilometer of
collecting area will allow tight constraints on the timing
and duration of reionization and the astrophysical processes
that drove it (Pober et al. 2014). Moreover, because it can
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2 H. Zheng, et al.

map a much larger comoving volume of our universe, it has
the potential to overtake the Cosmic Microwave Background
(CMB) as our most sensitive cosmological probe of inflation,
dark matter, dark energy, and neutrino masses. For exam-
ple (Mao et al. 2008), a radio array with a square kilome-
ter of collecting area, maximal sky coverage, and good fore-
ground maps could improve the sensitivity to spatial curva-
ture and neutrino masses by up to two orders of magnitude,
to ∆Ωk ≈ 0.0002 and ∆mν ≈ 0.007 eV, and shed new light
on the early universe by a 4σ detection of the spectral index
running predicted by the simplest inflation models favored
by the BICEP2 experiment (Ade et al. 2014).

Unfortunately, the cosmological 21 cm signal is so faint
that none of the current experiments around the world (LO-
FAR Röttgering 2003, MWA Tingay et al. 2013, PAPER
Parsons et al. 2010, 21CMA Wu 2009, GMRT Paciga et al.
2011) have detected it yet, although increasingly stringent
upper limits have recently been placed (Paciga et al. 2013;
Dillon et al. 2014; Parsons et al. 2014). A second challenge is
that foreground contamination from our galaxy and extra-
galactic sources is perhaps four orders of magnitude larger
than the cosmological hydrogen signal (de Oliveira-Costa
et al. 2008). Any attempt to accurately clean it out from the
data requires even greater sensitivity as well as more accu-
rate calibration and beam modeling than the current state-
of-the-art in radio astronomy (see Furlanetto et al. (2006);
Morales & Wyithe (2010) for reviews).

Large sensitivity requires large collecting area. Since
steerable single dish radio telescopes become prohibitively
expensive beyond a certain size, the aforementioned ex-
periments have all opted for interferometry, combining N
(generally a large number) independent antenna elements
which are (except for GMRT) individually more affordable.
The LOFAR, MWA, PAPER, 21CMA and GMRT experi-
ments currently have comparable N . The problem with scal-
ing interferometers to high N is that all of these experi-
ments use standard hardware cross-correlators whose cost
grows quadratically with N , since they need to correlate all
N(N − 1)/2 ∼ N2/2 pairs of antenna elements. This cost
is reasonable for the current scale N ∼ 102, but will com-
pletely dominate the cost for N ∼> 103, making precision
cosmology arrays with N ∼ 106 as discussed in Mao et al.
(2008) infeasible in the near future, which has motivated
novel correlator approaches such as Morales (2011).

For the particular application of 21 cm cosmology, how-
ever, designs with better cost scaling are possible, as de-
scribed in Tegmark & Zaldarriaga (2009, 2010): by arranging
the antennas in a hierarchical rectangular or hexagonal grid
and performing the correlations using Fast Fourier Trans-
forms (FFTs), thereby cutting the cost scaling to N logN .
This is particularly attractive for science applications requir-
ing exquisite sensitivity at vastly different angular scales,
such as 21 cm cosmology (where short baselines are needed
to probe the cosmological signal1 and long baselines are

1 It has been shown that the 21 cm signal-to-noise ratio (S/N)
per resolution element in the uv-plane (Fourier plane) is � 1 for

all current 21 cm cosmology experiments, and that their cosmo-

logical sensitivity therefore improves by moving their antennas
closer together to focus on the center of the uv-plane and bring-

ing its S/N closer to unity (Morales 2005; Bowman et al. 2006;

McQuinn et al. 2006; Mao et al. 2008; Lidz et al. 2009). Error bars

needed for point source removal). Such hierarchical grids
thus combine the angular resolution advantage of traditional
array layouts with the cost advantage of a rectangular Fast
Fourier Transform Telescope. If the antennas have a broad
spectral response as well and their signals are digitized with
high bandwidth, the cosmological neutral hydrogen gets si-
multaneously imaged in a vast 3D volume covering both
much of the sky and also a vast range of distances (corre-
sponding to different redshifts, i.e., different observed fre-
quencies.) Such low-cost arrays have been called omniscopes
(Tegmark & Zaldarriaga 2009, 2010) for their wide field of
view and broad spectral range.

Of course, producing such scientifically rich maps with
any interferometer depends crucially on our ability to pre-
cisely calibrate the instrument, so that we can truly un-
derstand how our measurements relate to the sky. Tradi-
tional radio telescopes rely on a well-sampled Fourier plane
to perform self-calibration using the positions and fluxes of
a number of bright point sources. At first blush, one might
think that any highly-redundant array would be at a dis-
advantage in its attempt to calibrate the gains and phases
of individual antennas. However, we can use the fact that
redundant baselines should measure the same Fourier com-
ponent of the sky to improve the calibration of the array
dramatically and quantifiably. In fact, we find that the ease
and precision of redundant baseline calibration is a strong
rationale for building a highly-redundant array, in addition
to the improvements in sensitivity and correlator speed.

Redundant calibration is useful both for current gener-
ation redundant arrays like MITEoR and PAPER and for
future large arrays that will need redundancy to cut down
correlator cost. Omniscopes must be calibrated in real time,
because they do not compute and store the visibilities mea-
sured by each pair of antennas, but effectively gain their
speed advantage by averaging redundant baselines in real
time. Individual antennas therefore cannot be calibrated in
post-processing. No calibration scheme used on existing low
frequency radio interferometers has been demonstrated to
meet the speed and precision requirements of omniscopes.
Thus, the main goal of the MIT Epoch of Reionization ex-
periment (MITEoR) and this paper is to demonstrate a suc-
cessful redundant calibration pipeline that can overcome the
calibration challenges faced by current and future generation
instruments by performing automatic precision calibration
in real time.

Building on past redundant baseline calibration meth-
ods by Wieringa (Wieringa 1992) and others, some of us re-
cently developed an algorithm which is both automatic and
statistically unbiased, able to produce precision phase and
gain calibration for all antennas in a hierarchical grid (up to
a handful of degeneracies) without making any assumptions

on the cosmological power spectrum have contributions from both
noise and sample variance, and it is well-known that the total er-

ror bars on a given physical scale (for a fixed experimental cost)

are minimized when both contributions are comparable, which
happens when the S/N ∼ 1 on that scale. This is why more com-

pact 21 cm experiments have been advocated. This is also why

early suborbital CMB experiments focused on small patches of
sky to get S/N ∼ 1 per pixel, and why galaxy redshift surveys

target objects like luminous red galaxies that give S/N ∼ 1 per

3D voxel.
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MITEoR: A Scalable Interferometer for Precision 21 cm Cosmology 3

about the sky signal (Liu et al. 2010). Once obtained, pre-
cision calibration solutions can in turn produce more accu-
rate modeling of the synthesized and primary beams2 (Pober
et al. 2012), which has been shown to improve the quality
of the foreground modeling and removal which is so cru-
cial to 21 cm cosmology. It is therefore timely to develop a
pathfinder instrument that tests how well the latest calibra-
tion ideas works in practice.

MITEoR is such a pathfinder instrument, designed to
test redundant baseline calibration. We developed and suc-
cessfully applied a real-time redundant calibration pipeline
to data we took with our 64 dual-polarization antenna ar-
ray during the summer of 2013 in The Forks, Maine. The
goal of this paper is to describe the design of the MITEoR
instrument, demonstrate the effectiveness of our redundant
baseline calibration and absolute calibration pipelines, and
use the calibration results to obtain an optimal scheme for
estimating calibration parameters as a function of time and
frequency.

This paper is organized as follows. We first describe
in Section 2 the instrument, including the custom devel-
oped analog components, the 8 bit 128 antenna-polarization
correlator, the deployment, and the observation history. In
Section 3, we focus on precision calibration. We explain and
quantitatively evaluate relative redundant calibration, and
address the question of how often calibration coefficients
should be updated. We also examine the absolute calibra-
tion, including breaking the degeneracies in relative calibra-
tion, mapping the primary beam, and measuring the array
orientation. In Section 4, we summarize this work and dis-
cuss implications for future redundant arrays such as HERA
(Pober et al. 2014).

2 THE MITEOR EXPERIMENT

In theory, a very large omniscope can be built following the
generalized architecture in Figure 1. On the other hand, it
is crucial to demonstrate that automatic and precise cali-
bration is possible in real-time using redundant baselines,
since the calibration coefficients for each antenna must be
updated frequently to allow the FFTs to combine the sig-
nals from the different antennas without introducing errors.
In this section, we will present our partial implementation of
this general design, including both the analog and the digi-
tal systems. Because the digital hardware is powerful enough
to allow it, the MITEoR prototype correlates all 128 input
channels with one another, rather than just a small sam-
ple as mentioned in the caption of Figure 1. This provides
additional cross-checks that greatly aid technological devel-
opment, where instrumentation may be particularly prone
to systematics. This also allows us to explore the question of
exactly how often and how finely in frequency we must mea-
sure visibilities to solve for calibration coefficients, a ques-
tion we return to in Section 3. Since we chose to implement a
full correlator, an additional FFT correlator would bring no

2 For tile-based interferometers like the MWA and 21CMA, gain
and phase errors in individual antennas (as opposed to tiles) do

not typically get calibrated in the field, adding a fundamental

uncertainty to the tile sky response.
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Figure 1. Data pipeline for a large omniscope that implements

FFT correlator and redundant baseline calibration. First, a hier-
archical grid of dual-polarization antennas converts the sky signal

into volts, which get amplified and filtered by the analog chain,

transported to a central location, and digitized every few nanosec-
onds. These high-volume digital signals (thick lines) get processed

by field-programmable gate arrays (FPGAs) which perform a

temporal Fourier transform. The FPGAs (or GPUs) then mul-
tiply by complex-valued calibration coefficients that depend on

antenna, polarization and frequency, then spatially Fourier trans-

form, square and accumulate the results, recording integrated sky
snapshots every few seconds and thus reducing the data rate by a

factor ∼ 109. They also cross-correlate a small fraction of all an-

tenna pairs, allowing the redundant baseline calibration software
(Liu et al. 2010; Noorishad et al. 2012) to update the calibra-

tion coefficients in real time and automatically monitor the qual-
ity of calibration solutions for instrumental malfunctions. Finally,
software running on regular computers combine all snapshots of

sufficient quality into a 3D sky ball or “data cube” representing
the sky brightness as a function of angle and frequency in Stokes

(I,Q,U,V) (Tegmark & Zaldarriaga 2010), and subsequent soft-

ware accounts for foregrounds and measures power spectra and
other cosmological observables.

extra information (simply computing the same redundant-
baseline-averaged visibilities faster), so we leave the digi-
tal implementation of an FFT correlator to future work.
In general, our mission is to empirically explore any chal-
lenges that are unique to a massively redundant interferom-
eter array. Once these are known, one can reconfigure the
cross-correlation hardware to perform spatial FFTs, thereby
obtaining an omniscope with N logN correlator scaling.

c© 0000 RAS, MNRAS 000, 000–000



4 H. Zheng, et al.

2.1 The Analog System

MITEoR contains 64 dual-polarization antennas, giving 128
signal channels in total. The signal picked up by the anten-
nas is first amplified by two orders of magnitude in power
by the low noise amplifiers (LNAs) built-in to the anten-
nas. It is then phase switched in the swapper system, which
greatly reduces cross-talk downstream. The signal is then
amplified again by about five orders of magnitude in the line-
drivers before being sent over 50 meter RG6 cables to the
receivers. The receivers perform IQ demodulation on a de-
sired 50 MHz band selected between 100 MHz and 200 MHz,
producing two channels with adjacent 25 MHz bands, and
sends the resulting signals into the digitization boards con-
taining 256 analog-to-digital converters (ADCs) sampling
at 50 MHz. The swappers, line-drivers and receivers we de-
signed are shown in Figure 2.

When designing the components of this system, we
chose to use commercially-available integrated circuits and
filters whenever possible, to allow us to focus on system
design and construction. In some cases (such as with the
amplifiers) the cost of the IC is less than the cost of enough
discrete transistors to implement even a rough approxima-
tion of the same functionality. Less expensive filters could
be made from discrete components, but the characteristics
of purchased modules tend to be better due to custom in-
ductors and shielding. When we needed to produce our own
boards as described below, our approach was to design, pop-
ulate and test them in our laboratory, then have them af-
fordably mass-produced for us by Burns Industries3.

2.1.1 Antennas

The dual-polarization antennas used in MITEoR were orig-
inally developed for the Murchison Widefield Array (Lons-
dale et al. 2009; Tingay et al. 2013), and consist of two
“bow-tie”-shaped arms as can be seen in Figure 8. They
are inexpensive, easy to assemble, and sensitive to the en-
tire band of our interest. The MWA antennas were designed
for the frequency range 80-300 MHz, and have a built-in low
noise amplifier with 20 dB of gain. The noise figure of the
amplifier is 0.2 dB, and the 20 dB of gain means that subse-
quent gain stages do not contribute significantly to the noise
figure4.

2.1.2 Swappers (Phase Switches)

As with many other interferometers, crosstalk within the re-
ceivers, ADCs, and cabling significantly affects signal qual-
ity. We observe the cross-talk to depend strongly on the
physical proximity of channel pairs, reaching as high as
about −30 dB between nearest neighbor receiver channels.
Our swapper system is designed to cancel out crosstalk dur-
ing the correlator’s time averaging by selectively inverting
analog signals using Walsh modulation (Sanchez 2011). The
signal from each antenna-polarization is inverted 50% of

3 http://www.burnsindustriesinc.com
4 In a multi-stage amplifier, the contribution of each stage’s noise

figure is suppressed by a factor that is equal to the total gain of

previous stages.

Figure 2. System diagram of the analog system. The signal

received with an MWA “bow-tie” antenna is first amplified by
the built-in low noise amplifier, then Walsh-modulated in the

swapper module controlled by the swapper system. The signal
is amplified again in the line driver and sent to the processing

rack through 50 m long coaxial cables. In the processing rack, the

signal first goes into the receiver, where it undergoes further am-
plification, frequency down-mixing and I/Q modulation from the

120-180 MHz range to the 0-25 MHz range. The analog chain ends

with digitization on ADC connected to ROACH boards.

the time according to its own Walsh function, by an ana-
log ZMAS-1 phase switch from Mini-Circuits located before
the second amplification stage (line-driver), then appropri-
ately re-inverted after digitization5. We perform the inver-
sion once every millisecond, which is much longer than the
ADC’s 20 ns sample time, and much shorter than the aver-
aging time of a few seconds6. This eliminates all crosstalk
to first order (Sanchez 2011). If crosstalk reduction were the
only concern, the ideal position for the swapper would be
immediately after the antenna, in order to cancel as much
crosstalk as possible. In practice, the swapper introduces a
loss of about 3 dB, so we perform the modulation after the
LNA to avoid adding noise (raising the system tempera-
ture). To evaluate the effectiveness of the swapper modules,
we sent a monotone signal into one single channel of the
receivers while leaving other channels open, and measured
the correlation between the signal channel and each empty
channels with the swapper turned on and off. We then re-
peated this while varying the signal frequency over the full
range of interest. As seen in Figure 4, the swapper system
attenuates crosstalk in the receiver and ADC by as much as
50 dB over the frequency band of interest, typically reducing
it to being of order −80 dB for strongly afflicted signal pairs.

2.1.3 Line-driver

A line-driver (Figure 5) amplifies a single antenna’s signal
from one of its two polarization channels while also power-
ing its LNA. Line-drivers only handle a single channel to re-
duce potential crosstalk from sharing a printed circuit board.
They are placed within a few meters of the antennas in or-
der to reduce resistive losses from powering the antenna at
low voltage. Additional gain that they provide early in the
analog chain helps the signal overpower any noise picked up

5 Since the undesirable crosstalk signal is demodulated with a
different Walsh function than it is modulated with, it will be

averaged out due to orthogonality of Walsh functions.
6 The inversion cannot be too frequent, because we need to dis-
card data during the analog inversion process which takes a few

microseconds. At the same time, the inversion needs to be fre-

quent enough to average out the cross-talk.

c© 0000 RAS, MNRAS 000, 000–000
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MITEoR: A Scalable Interferometer for Precision 21 cm Cosmology 5

Figure 4. Plots of cross-talk power measured in the laboratory. The swapper suppresses crosstalk between channels by as much as

50 dB. To measure these curves we fed a 0 dBm sinusoidal signal into input channel 0 of the receivers and left the other 31 input channels

open. We then measured the correlations between channel 0 and all 31 empty channels, due to crosstalk from channel 0. We repeated
the procedure with input frequencies from 125-150 MHz and obtained the results shown above.

Figure 3. System diagram of our swapper signal system and

physical components of the swapper transceiver (lower left) and
swapper controller (lower right). The swapper is designed to re-

duce crosstalk between neighboring channels.

along the way to the processing hub, and maintains the low
noise figure set up by the LNA. To further reduce potential
radio-frequency interference (RFI), we chose to power the
line-drivers with 58Ah 6V sealed lead acid rechargeable bat-
teries during the final 64-antenna deployment, rather than
120 VAC to 6 VDC adapters (whose unwanted RF-emission
may have caused occasional saturation problems during our
earlier expeditions).

Amplifiers: 19dB x 3

RF
Choke

From 
Antenna/LNA

Regulator
Individual Line Filters

Impedance
Match

DC Input

To
Receiver

Figure 5. System diagram and physical components of the line
drivers. The line driver we designed takes the signal in the 50Ω
coaxial cable from the antenna LNA and amplifies it by 51 dB, in

order to overpower noise picked up in the subsequent 75Ω coaxial
cable and further processing steps up to 50 meters away. It oper-

ates on 5V DC and also provides DC bias power to the antenna’s
LNA through the 50 Ohm cable.

2.1.4 Receiver

Our receivers (Figure 6) take input from the line-drivers,
bandpass filter the incoming signals, amplify their power
level by 23 dB, and IQ-demodulate them. The resulting sig-
nals go directly to an ADC for digitization. Receivers are
placed near the ADCs to which they are connected to reduce
cabling for local oscillator (LO) distribution and ADC con-
nections. IQ demodulation is used, which doubles received
bandwidth for a given ADC frequency at the cost of using
two ADC channels, and has the advantage of requiring only
a single LO and low speed ADCs. The result is 40 MHz of us-

c© 0000 RAS, MNRAS 000, 000–000
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Regulators
Individual Line Filters

Impedance
Match

DC Input

Band-pass Atten Amplifiers IQ
Demodulator

Control

Low-pass

Splitter

From
Line
Driver

To ADC

To ADC

LO Input

Figure 6. System diagram and physical component of the re-

ceiver boards. The boards take the signals arriving from four line
drivers, band-pass filter and amplify them, then use a local os-

cillator to frequency shift them from the band of interest to a

DC-centered signal suitable for input to the ADC.

able bandwidth7 anywhere in the range 110-190 MHz, with
a 2-3 MHz gap centered around the LO frequency due to
bandpass filters. The receiver boards have five pins allowing
their signals to be attenuated by any amount between 0 dB
and 31 dB (in steps of 1 dB) before the second amplification
stage, to avoid saturation and non-linearities from RFI and
to attain signal levels optimal for digitization.

2.2 The Digital System

We designed MITEoR’s digital system (Figure 7) to be
highly compact and portable. The entire system occupies 2
shock-mounted equipment racks on wheels, each measuring
about 1 m on all sides. It takes in data from 256 ADC chan-
nels (64 antennas with I and Q signals for polarizations),
Fourier transforms each channel, reconstructs IQ demodu-
lated channels back to 128 corresponding antenna channels,
computes the cross-correlations of all pairs of the 128 an-
tenna channels with 8 bit precision, and then time-averages
these cross-correlations. Although standard 4 bit correlators
suffice for most astronomical observation tasks, the better
dynamic range of our 8 bit correlator allows us to observe
faint astronomical signals at the same time as 103 times
brighter ORBCOMM satellites, whose enormous signal-to-
noise has proved invaluable in characterizing various aspects
of the system (see Sections 3.2.2, 3.2.3, and 3.3). The digital
hardware is capable of processing an instantaneous band-
width of 12.5 MHz with 49 kHz frequency bins. It averages

7 Due to limitations in our FPGAs’ computing power, only
12.5 MHz of digitized data are correlated and stored at any in-

stant.

Figure 7. The entirety of our 128 antenna-polarization digital

correlator system, packaged in two portable shock mounted racks.
The two black chassis and two silver chassis in the middle of

each rack are F-engines (ROACH) and X-engines (ROACH2),

respectively. Above the ROACHes are 32 receiver boards that
input the signals from 128 line drivers via F-cables. The blue

lit area below the ROACHes contains various clocking devices

responsible for synchronization, whereas the chassis below the
ROACHes on the right hand side is the 8TB data acquisition

server.

those correlations and then writes them to disk every few
seconds (usually either 2.6 or 5.3 seconds).

While one of the advantages of a massively redundant
interferometer array is the ability to reduce costs by per-
forming a spatial FFT rather than a full cross-correlation,
we have not implemented FFT correlation in the current
MITEoR prototype as the hardware is powerful enough to
correlate all antenna pairs in real time (the feasibility of
implementing FFT correlation on the ROACH platform has
been demonstrated by Foster et al. (2014)). Rather, the goal
of MITEoR is to quantify the accuracy that automatic re-
dundant baseline calibration can attain, thereby experimen-
tally characterizing all of the unknowns in the system, such
as unexpected analog chain systematics and other barriers
to finding good calibration solutions.

We adopted the widely-used F-X scheme in MITEoR’s
digital system. We have 4 synchronized F-engines that take
in data from 4 synchronized 64-channel ADC boards, which
run at 12 bits and 50Ms/s. The F-engines perform the FFT
and IQ reconstruction, and distribute the data onto 4 X-
engines through 16 10GbE links. The 4 asynchronous X-
engines each perform full correlation on 4 different frequency
bands on all 128 antenna polarizations, and send the time
averaged results to a computer for data storage.

To implement the computational steps of the MITEoR
design, we used Field Programmable Gate Arrays (FP-
GAs). These devices can be programmed to function as
dedicated pieces of computational hardware. Each F-engine
and X-engine is implemented by one Xilinx FPGA (Virtex-
5 for F-engines and Virtex-6 for X-engines). These FP-
GAs are seated on custom hardware boards developed by
the CASPER collaboration8 (Parsons et al. 2006). We also
use the software tool flow developed by CASPER to design

8 https://casper.berkeley.edu/

c© 0000 RAS, MNRAS 000, 000–000

https://casper.berkeley.edu/


MITEoR: A Scalable Interferometer for Precision 21 cm Cosmology 7

Antenna MWA dual-pol bow-tie

Antenna count 64 × 2 polarizations

Array configuration 8 × 8 grid

ADC 4 × 64-channel 50 Msps

F-engine 4 ROACHes with Virtex-5

X-engine 4 ROACH2s with Virtex-6

Correlator precision 8 bits

Frequency range 110-190 MHz

Instantaneous bandwidth 12.5 MHz (50 MHz digitized)

Frequency resolution 49 kHz

Time resolution > 2.68 s

Table 1. List of MITEoR specifications. We observed with two

different 8 by 8 array configurations, one with 3 m separation and

one with 1.5 m separation. We observed ORBCOMM band with
2.68 s resolution, and we chose a resolution of 5.37 s for other

bands.

the digital system. The CASPER collaboration is dedicated
to building open-source programmable hardware specifically
for applications in astronomy. We currently use two of their
newer devices, the ROACH9 (Reconfigurable Open Archi-
tecture Computing Hardware) for the F-engines, and the
ROACH 210 for the X-engines. The main benefit of using
CASPER hardware is that it facilitates the time-consuming
process of designing and building custom radio interferom-
etry hardware. The CASPER collaboration also offers a
large open-source library of FPGA blocks for commonly
used signal processing structures such as polyphase filter
banks, FIR filters and fast Fourier transform blocks (Par-
sons 2009). However, due to MITEoR’s ambitious architec-
ture, involving both extreme compactness, an 8-bit corre-
lator, and tight inter-ROACH synchronization constraints,
we custom-designed most of the digital FPGA blocks. The
specifications of our latest correlator are listed in Table 1.

2.3 MITEoR Deployment and Data Collection

We deployed MITEoR in The Forks, Maine, which our on-
line research suggested might be one of the most radio
quiet region in the United States at the frequencies of in-
terest11(Bowman & Rogers 2010a). We deployed the first
prototype in September 2010, and performed a successful
suite of test observations with an 8-antenna interferome-
ter. In May 2012, we completed and deployed a major up-
grade of the digital system to fully correlate N = 16 dual-
polarization antennas. With the experience of this successful
deployment, we further upgraded the digital system to ac-
commodate N = 64 dual-polarization antennas, which led
to our latest deployment in July 2013 and the results we
describe in this paper.

9 https://casper.berkeley.edu/wiki/ROACH
10 https://casper.berkeley.edu/wiki/ROACH-2_Revision_2
11 The Forks has also been successfully used to test the EDGES
experiment (Bowman & Rogers 2010b), and we found the RFI
spectrum to be significantly cleaner than at the National Ra-

dio Astronomy Observatory in Green Bank, West Virginia at the
very low (100-200 MHz) frequency range that is our focus: the
entire spectrum at The Forks is below -100 dBm except for one

-89.5 dBm spike at 150MHz.

Figure 8. Part of the MITEoR array during the most recent
deployment in the summer of 2013. 64 dual-polarization antennas

were laid on a 21 m by 21 m regular grid with 3 m separation.

The digital system was housed in the back of a shielded U-Haul
truck (not shown).

The MITEoR experiment was designed to be portable
and easy to assemble. The entire experiment was loaded
into a 17 foot U-Haul truck and driven to The Forks. It
took a crew of 15 people less than 2 days to assemble the
instrument and bring it to full capacity. A skeleton crew of
3 members stayed on site for monitoring and maintenance
for the following two weeks, during which we collected more
than 300 hours of data. Subsequently, a demolition crew of
5 members disassembled and packed up MITEoR in 6 hours
and concluded the successful deployment.

During the deployment, we scanned through the fre-
quency range 123.5-179.5 MHz, with at least 24 consecutive
hours at each frequency. We used two different array layouts
for most of the frequencies we covered. The observation be-
gan with the antennas arranged in a regular 8 by 8 grid, with
3 meter spacing12 between neighboring antennas, which we
later reconfigured to an 8 by 8 regular grid with 1.5 meter
spacing for a more compact layout (which provides better
signal-to-noise ratio on the 21 cm signal). The total volume
of binary data collected was 3.9TB, and in the rest of this
paper, we demonstrate the results of our various calibration
techniques using this data set.

3 CALIBRATION RESULTS

As we have emphasized above, the precision calibration of
an interferometer is essential to its ability to detect the faint
cosmological imprint upon the 21 cm signal, and the key
focus of MITEoR is to determine how well real-time redun-
dant calibration can be made to work in practice. In this
section we describe the calibration scheme that we have de-
signed and implemented and quantify its performance. We
first constrain the relative calibration between antennas, uti-
lizing both per-baseline algorithms and redundant-baseline
calibration algorithms (Liu et al. 2010). We then build on
these relative calibration results to constrain the absolute
calibration of the instrument, including breaking the few
degeneracies inherent to redundant calibration.

12 We aligned the antenna positions using a laser-ranging total
station, and measured their positions with millimeter level pre-
cision. The median deviation from a perfect grid is 2 mm in the

N-S direction, 3 mm E-W, and 28 mm vertical, primarily caused
by the fact that the deployment site had not been leveled.
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Figure 9. Illustration of three stages in the redundant baseline calibration pipeline. Each panel is a complex plane, and each point is a

complex visibility for a specific pair of antennas at 137.1 MHz during the passage of an ORBCOMM satellite. Each unique combination
of color and shape stands for one set of redundant baselines. In an ideal world, all identical symbols, such as all upright red triangles,

should have the same value thus overlap exactly. Due to noise, they should cluster together around the same complex value. In panel
(a) showing raw data, the redundant baselines have almost no clustering visible—for example, red filled circles can be found throughout

the plot. After crude calibration in panel (b), we see most points falling into clustered segments—though the clustering is still far from

exact. Finally in panel (c), after performing log calibration, we see that all points corresponding to each redundant baseline are almost
exactly overlapping, with no visible deviation due to the high signal-to-noise. While the difference is not visible here, linear calibration

can further improve log calibration results, as shown in Figure 11.

3.1 Relative Calibration

3.1.1 Overview

The goal of relative calibration is to calibrate out differ-
ences among antenna elements caused by non-identical ana-
log components, such as variations in amplifier gains and ca-
ble lengths, which may be functions of time and frequency.
We parametrize the calibration solution as a time- and
frequency-dependent multiplicative complex gain gi for each
of the 128 antenna-polarizations. Calibrating the interferom-
eter amounts to solving for the coefficients gi and undoing
their effects on the data. Our calibration scheme revolves
around calibration methods that heavily utilize the redun-
dancy of our array, whose efficacy we aim to demonstrate
with MITEoR. The current redundant calibration pipeline
involves three steps, as illustrated in Figure 9:

(i) Rough calibration computes approximate calibration
phases using knowledge of the sky.

(ii) Logarithmic calibration (“logcal”) decomposes
roughly calibrated data into amplitudes and phases
and computes least square fits for amplitude and phase
separately.

(iii) Linear calibration (“lincal”) takes the relatively pre-
cise but biased results from logcal and computes unbiased
calibration parameters with even higher precision.

Although logcal and lincal have been previously proposed
(Wieringa 1992; Liu et al. 2010; Marthi & Chengalur 2014),
they both fail in their original form if the phases of gi are not

close to 0.13 In practice, the phases of gi can be anywhere in
the interval [0, 2π). To overcome these practical challenges,
we introduced various improvements to these algorithms.
In the following sections, we describe our improvements to
calibration algorithms in detail, and demonstrate the effec-
tiveness of our calibration by obtaining χ2/DoF ≈ 1 for the
majority of our data. We then analyze these calibration pa-
rameters to construct a Wiener filter to optimally average
them over time and frequency, which also tells us how fre-
quently we need to calibrate in time and frequency.

3.1.2 Rough Calibration

The goal of rough calibration is to obtain reliable initial
phase estimates for the calibration parameters to enable the
subsequent more sophisticated algorithms. This step does
not have to involve redundancy, thus it can be done with any
standard calibration techniques, for example self-calibration
(Rau et al. 2009; Braun 2013). The rough calibration al-
gorithm that we describe below is computationally cheap
and can robustly improve upon raw data even when a few
antennas have failed.

At a given time and frequency, we have both the mea-
sured visibilities, vij , and vmodel

ij , a rough model of the true
sky signal14, where indices i and j represent antenna num-
ber. We first compute the phase difference between each

13 Logcal requires phase calibrations close to 0 to avoid phase

wrapping issues, whereas lincal requires phase calibrations close
to 0 to converge.
14 Since we are trying to obtain an initial estimate, the model

does not have to be very accurate.
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measured visibility and its prediction. We then pick one ref-
erence antenna and subtract the phases of its visibilities from
the phases of other visibilities to obtain a list of estimated
phase calibration for each antenna. Finally, we take the me-
dian of these calibration phases to obtain a robust phase
calibration estimator for each antenna. More concretely, we
use the following procedure:

(i) Construct a matrix M of phase differences where
Mij = −Mji = arg(vij/v

model
ij ).

(ii) Define the first antenna as the reference by sub-
tracting the first column of M from all columns to obtain
M ′jk = Mjk −Mj0.

(iii) Obtain rough phase calibration parameters φk ≡
arg(gk) by computing the median angle of column k in M ′,
defined as

φk ≡ arg [medianj{exp(iM ′jk)}]
= arg [medianj{cos(M ′jk)}

+ imedianj{sin(M ′jk)}]. (1)

For stable instruments, the true calibration parameters have
very small variation over days, so we can use one set of rough
calibration parameters from a single snapshot in time for
data from all other times. Thus we pick a snapshot at noon
when each vmodel

ij can be easily computed from position of
the Sun, and use the resulting raw calibration parameters
as the starting point for logcal at all other times.

3.1.3 Log Calibration and Linear Calibration

To explain our redundant calibration procedure, we first
need to briefly reintroduce the formalism developed in Liu
et al. (2010). Suppose the ith antenna measures a signal si
at a given instant. This signal can be expressed in terms of
a complex gain factor gi, the antenna’s instrumental noise
contribution ni, and the true sky signal xi that would be
measured in the limit of perfect gain and no noise:

si = gixi + ni. (2)

Under the standard assumption that the noise is uncorre-
lated with the signal, each baseline’s measured visibility is
the correlation between the two signals from the two anten-
nas:

vij ≡ 〈s∗i sj〉
= g∗i gj〈x∗i xj〉+ g∗i 〈x∗inj〉+ gj〈n∗i xj〉+ 〈n∗inj〉
= g∗i gjyi−j + nres

ij , (3)

where we have denoted the true correlation 〈x∗i xj〉 by yi−j ,
15

the noise from each antenna by ni, the noise for each baseline
by nres

ij , and expectation values (effectively time averages)
by angled brackets 〈. . . 〉. In a maximally redundant array
such as MITEoR, the number of unique baselines is much
smaller than the total number of baselines. Therefore, we can
treat all the gis and the yi−js as unknowns while keeping

15 Following Liu et al. (2010), we use yi−j instead of yij to em-

phasize that in a redundant array, the number of unique baseline
visibilities can be much smaller than number of measured visi-

bilities. The complete expression should be yu(i,j), where u(i, j)

means that baseline ij corresponds to the uth unique baseline.

the system of equations (3) overdetermined, enabling fits for
both despite the presence of instrumental noise.

In Liu et al. (2010), some of us proposed logcal and lin-
cal, and we have implemented both for calibrating MITEoR
data. In log calibration, we take the logarithm of both sides
of Equation 3 and obtain a linearized equation in logarith-
mic space. We then perform a least squares fit for the system
of equations

log vij = log g∗i + log gj + log yi−j , (4)

where we solve for log gi and log yi−j . Because the least
squares fit takes place in log space whereas the noise is ad-
ditive in linear space, the best fit results are biased. Linear
calibration, on the other hand, is unbiased (Liu et al. 2010).
The lincal method performs a Taylor expansion of Equation
3 around initial estimates g0i and y0i−j and obtains a system
of linearized equations

vij = g0∗i g
0
j y

0
i−j + g1∗i g

0
j y

0
i−j + g0∗i g

1
j y

0
i−j + g0∗i g

0
j y

1
i−j , (5)

where we solve for g1i and y1i−j . For a detailed description of
the logcal and lincal algorithms and their noise properties,
we direct the reader to Liu et al. (2010); Marthi & Chengalur
(2014). We now describe some essential improvements to
these algorithms.

Logcal was first thought to be unable to calibrate the
phase component due to phase wrapping, since logcal has
no way to recognize that 0◦ and 360◦ are the same quan-
tity. Consider, for example a pair of redundant baselines
that measure phases of 0.1◦ and 359.9◦ respectively. We can
infer that they each only need a very small phase correc-
tion (±0.1◦) to agree perfectly. However, since logcal treats
the difference between them as 359.8◦ rather than 0.2◦, it
will calibrate by averaging 0.1◦ and 359.9◦ to 180◦, which is
completely wrong.

We made two improvements to the logcal method to
guard against this. The first is to perform rough calibration
beforehand, as described in Section 3.1.2. The second is to
re-wrap the phases of vij . While rough calibration can make
the phase errors relatively small16, that improvement alone
is not sufficient, since 0◦ and 360◦ are still treated as differ-
ent quantities. Thus we need to intelligently wrap the phases
of the input vector before feeding it into logcal. This is done
in two simple steps. For a snapshot of rough calibrated visi-
bilities at given time and frequency, vij , we first estimate the
true phases of each group of redundant baselines, arg(yi−j),
by computing median angles of measured phases using Eq.
1. Then for each measured phase, we add or subtract 2π
until it is within ±π of arg(yi−j). This eliminates the phase
wrapping problem.

Unlike logcal, lincal is an unbiased algorithm, but it re-
lies on a set of initial estimates for the correct calibration
solutions to start with. The output of lincal can be fed back
into the algorithm and it can iteratively improve upon its
own solution. However, the algorithm converges to the right
answer only if the initial estimates are good. In practice, we
find that three iterations of lincal typically produces excel-
lent convergence, because the outputs of logcal are already
decent estimates of the calibration solutions. Thus, by im-
proving logcal, we also greatly improve lincal’s effectiveness.

16 In our experience, they need to be less than about 20 degrees

to ensure that the subsequent calibration steps converge reliably.
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Figure 10. Waterfall plot of χ2/DoF for a day’s data. This demonstrates the stability of our instrument as well as the effectiveness
of using χ2/DoF as a indicator of data quality. We evaluate χ2/DoF every 5.3 seconds and every 49 kHz. For the majority of the night

time data, χ2/DoF is close to 1. We flag all data with χ2 larger than 1.2, which are marked red in this plot and account for 20% of this

data set. The amount of detailed structure in the flagged area (around 18:00 for example) shows the χ2 flagging technique’s sensitivity
to rapidly changing data quality.

Our current calibration pipeline performs all steps of
redundant calibration in less than 1 millisecond on a sin-
gle processor core for a data slice at one time and one
frequency channel, which is an order of magnitude faster
than the rate data is saved onto disk. It is carried out by
our open source Omnical package, coded in C++/Python.17

Thus there should be no computational challenge in per-
forming the above described calibration procedure in real-
time for any array with less than 103 elements. For a future
omniscope that has as many as 106 elements, there are two
ways to reduce the computational cost. The first is to cal-
ibrate less frequently in time and frequency, and we will
discuss in detail the minimal sampling frequency in Section
3.1.5. The other is to adapt a hierarchical redundant cali-
bration scheme, where instead of calibrating all visibilities at
the same time, one can calibrate the array in a hierarchical
fashion whose computational cost scales only linearly with
the number of elements. We discuss more details regarding
hierarchical redundant calibration in Appendix B.

3.1.4 χ2 and Quality of Calibration

One of the many advantages of redundant calibration is it al-
lows for the calculation of a χ2 for every snapshot to quantify
how accurate the estimated visibilities are for each unique
baseline, even without any knowledge of the sky. For a set
of visibilities at a given time and frequency, vij , with cali-
bration results gi and yi−j , we define χ2 as

χ2 =
∑
ij

|vij − yi−jg∗i gj |2

σ2
ij

, (6)

where σ2
ij is the noise contribution to the variance of the

visibility vij . The effective number of degrees of freedom

17 The package supports the miriad file format and is easily

adapted to work with other file formats. To obtain a copy, please

contact jeff z@mit.edu.

(DoF) is

DoF = Nmeasurements −Nparameters

= Nbaselines − (Nantennas +Nunique baselines). (7)

The numerator in Equation 6 represents the deviation of
measured data, vij , from the best fit redundant model,
yi−jg

∗
i gj . Thus χ2/DoF can be interpreted as the non-

redundancy in measured data divided by the expected non-
redundancy from pure noise. If the data agrees perfectly
with the redundant model (with noise) and is free from sys-
tematics, then χ2/DoF is drawn from a χ2 distribution with
mean 1 and variance 2/DoF (Abramowitz & Stegun 1964).

With a smooth model for σij which we describe below,
we compute χ2/DoF for the results of rough calibration,
log calibration, and linear calibration using all of our data.
The χ2 distributions of our calibrations for one day’s data
are shown in Figures 10 and 11. Each calibration algorithm
significantly reduces the χ2/DoF, and lincal’s produces a
distribution of χ2/DoF consistently centered around 1. We
automatically flag any data with χ2/DoF larger than 1.2,
which accounts for about 20% of the data. Among the data
that is not flagged, 85% is accounted for by the theoretical χ2

distribution. The 15% in the right tail is mostly attributable
to a slightly optimistic noise model designed to avoid un-
derestimating χ2. This close agreement between predicted
and observed χ2-distributions for the lincal results suggests
that except during periods that get automatically flagged,
our instrument and analysis pipeline is free from significant
systematic errors. The fully automatic nature of our cali-
bration pipeline and data quality assessment is encouraging
for future instruments with data volume too large for direct
human intervention.

Calculating χ2/DoF for flagging and data quality as-
sessment requires an accurate model of noise in the mea-
sured visibilities. To compute the noise σij , we approximate
σ2
ij by 〈σ2〉, where the average is over all baselines. This as-

sumption that all antennas have the same noise properties
drastically deceases the computational cost of calculating
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Figure 11. Histograms of the distributions of χ2/DoF of logcal
results (mean 1.31) and lincal results (mean 1.05, median 1.01),

together with the theoretical distribution of χ2/DoF (mean 1).

They contain one night of data in a 12.5MHz frequency band
(21:00-5:00 in Figure 10). We evaluate χ2/DoF for every 5.3 sec-

onds and every 49 kHz. We set the flagging threshold to χ2 = 1.2,
and 80% of the lincal result is below the threshold (majority of

the 20% flagged data have χ2 much larger than 2, thus not shown

in this figure). Among the data that is not flagged, 85% is ac-
counted for by the theoretical χ2 distribution. The right tail in

lincal’s distribution is due to the noise model sometimes under-

estimating the noise in order to minimize false negatives in the
flagging process. The fact that χ2/DoF for lincal is so close to

the theoretical distribution means that both the instrument and

the calibration algorithms are working exactly as we expect.

χ2/DoF. Because we have 103 baselines, and the variation
of σij between baselines is less than 20% (due to slightly
different amplifier gains), this approximation should cause
only about a 1% error in the final χ2/DoF.

To compute 〈σ2〉, we perform linear regression on each
visibility vij over one minute to obtain its estimated vari-
ance σ2

ij , and then average all σ2
ij to obtain σ2. Thus we have

〈σ2〉 at all frequencies every minute. Before we plug 〈σ2〉 into
Equation 6, we model it as a smooth and separable function:
〈σ2〉(f, t) = F (f)T (t), where F (f) and T (t) are polynomials.
The smooth model has three advantages. The first is that
it is physically motivated to model thermal fluctuation as
a smooth and separable function. Secondly, a smooth noise
model makes the χ2/DoF a much more sensitive flagging
device. Theoretically, χ2/DoF should not rise above 1 when
unwanted radio events such as radio frequency interference
(RFI) occur, because they are far field signals that do not vi-
olate any redundancy. However, since RFI events make both
the signal and noise stronger, by demanding a smooth noise
model, the 〈σ2〉 we use will underestimate the noise during
RFI events and give abnormally high χ2/DoF, which can
then be successfully flagged with the χ2/DoF< 1.2 thresh-
old. Thirdly, seasonal changes aside, the noise model is ex-
pected to largely repeat itself from day to day, so for future
experiments that will operate for years, it suffices to use the
same model repeatedly without recomputing σij in situ for
all the data. Thus, by using a smooth noise model, one can
drastically reduce the occurrence of false negatives (since it
is better to flag good data than it is to fail to flag bad data)
as well as the computational cost of calculating χ2/DoF.

3.1.5 Optimal Filtering of Calibration Parameters

While the above-mentioned estimates of the calibration pa-
rameters that we obtain from redundant baseline calibra-
tion vary over time and frequency, much of that variation
is due to the noise in raw data. To minimize the effect of
instrumental noise on the calibration parameters, we would
like to optimally average information from nearby times and
frequencies to estimate the calibration parameters for any
particular measurement.

As we will show below, the optimal method for per-
forming this averaging is Wiener filtering. In the rest of this
section, we first measure the power spectrum of the cali-
bration parameters over time and frequency, and make a
determination of how to decompose this into contributions
from signal (true calibration changes) and noise. We then
weight the Fourier components in a way that is informed by
their signal-to-noise ratio, and quantify how this Wiener fil-
tering procedure improves upon more naive averaging over
time and/or frequency. Finally, we discuss the implications
for how regularly (in time and frequency) we should cali-
brate. It is important to note that while these methods are
applied only to MITEoR below, they are applicable to any
current or future experiment.

We model the measured calibration parameter gi(f, t)
for the ith antenna as the sum of a true calibration parameter
si(f, t) (the “signal”) and uncorrelated noise ni(f, t):

gi(f, t) = si(f, t) + ni(f, t). (8)

We choose our estimator ĝi(f, t) of the true calibration pa-
rameter si(f, t) to be a linear combination of the observed
calibration parameters gi at different times and frequencies:

ĝi(f, t) ≡
∫ ∫

W (f, t, f ′, t′)gi(f
′, t′)df ′dt′ (9)

for some weight function W . We optimize the estimator
ĝi by choosing the weight function W that minimizes the
mean-squared estimation error 〈|ĝi(f, t)−si(f, t)|2〉. Assum-
ing that the statistical properties of the signal and noise fluc-
tuations are stationary over time18, all correlation functions
become diagonal in Fourier space:

〈s̃i(τ, ν)∗s̃i(τ
′, ν′)〉 = (2π)2δ(τ ′ − τ)δ(ν′ − ν)S(τ, ν),

〈ñi(τ, ν)∗ñi(τ
′, ν′)〉 = (2π)2δ(τ ′ − τ)δ(ν′ − ν)N(τ, ν),

〈s̃i(τ, ν)∗ñi(τ
′, ν′)〉 = 0, (10)

where tildes denote Fourier transforms and S and N are
the power spectra of signal and noise, respectively. This
means that the optimal filter becomes a simple multiplica-
tion ˆ̃g = W̃ g̃ in Fourier space, corresponding to the weight-
ing function W̃ (τ, ν) that minimizes the mean-squared error

〈|W̃ (τ, ν)g̃i(τ, ν)− s̃i(τ, ν)|2〉. (11)

Requiring the derivative of this with respect to W̃ to vanish
gives the Wiener filter (Wiener 1942)

W̃ (τ, ν) =
S(τ, ν)

S(τ, ν) +N(τ, ν)
. (12)

18 We perform this analysis on data over 12 MHz and two hours,

where the signal and noise power are empirically found to be

approximately time-independent.
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Since S and N are to a reasonable approximation indepen-
dent of the antenna number i, we have dropped all subscripts
i for simplicity. Back in real space, the optimal estimator ĝi
for the ith calibration parameter is thus gi convolved with
the 2D inverse Fourier transform of W̃ .

To demonstrate this technique, we show the above pro-
cess carried out in the time dimension in Figure 12. In
practice we perform the analysis on time and frequency
dimensions simultaneously through a 2D FFT. The noise
power spectrum N(ν) is seen to be constant to an excellent
approximation, corresponding to white noise (uncorrelated
noise in each sample). The signal power spectrum S(ν) is
seen to be well fit by a combination of two power laws:
S(ν) ≈ (ν/2.9 × 10−5 Hz)−2.7 + (ν/4.8 × 10−17 Hz)−0.46.
The optimal convolution kernel W is seen to perform a
weighted average of the data on the timescale of roughly
200 s and frequency scale of 0.15 MHz, giving the great-
est weight to nearby times and frequencies, resulting in an
order-of-magnitude noise reduction.

To quantify the effectiveness of the obtained filter com-
pared to naive “boxcar” averages, we use the 2D power spec-
trum and noise floor of the calibration parameters obtained
from real data to simulate many realizations of calibration
parameters g(f, t) = s(f, t) + n(f, t), apply various aver-
aging/convolution schemes W (f, t) on the simulated data,
and compare their effectiveness by computing the RMS er-
ror 〈|(W ? g)(f, t) − s(f, t)|2〉 normalized by 〈|n|2〉. Due to
our limited frequency bandwidth as well as frequent RFI
contamination, power spectrum modeling in the frequency
dimension is very challenging, so the frequency Wiener filter
appears to be less effective than the time filter. In Table 2
we list the normalized noise powers using frequency Wiener
filter, time Wiener filter, 2D Wiener filter, as well as tradi-
tional boxcar averaging, and the 2D Wiener filter produces
results three times less noisy than that of the traditional
boxcar averaging.

We have described how to optimally average calibration
parameters when we calibrate very regularly in time and fre-
quency. For a future instrument such as an omniscope with
106 antennas, calibration will pose a serious computational
challenge, so it is important to know what the minimal fre-
quency one needs to calibrate the instrument. The above
analysis conveniently provides an answer to this question.
As shown in the second panel of Figure 12, the signal19 is
band limited. By the Nyquist theorem, one needs to sam-
ple with at least double the frequency of signal bandwidth,
so in our case we could measure the calibration parameters
without aliasing problems as long as we calibrate once per
minute. Calibrating more frequently than this simply helps
average down the noise. Although this one-minute timescale
depends on the temporal stability characteristics of the am-
plifiers and other components used in our particular exper-
iment, it provides a useful lower bound on what to expect
from future experiments whose analog chains are even more
stable.

19 We only show results for amplitude calibration parameters

for brevity, as the phase calibration results have nearly identi-

cal power spectrum.

Figure 12. Illustration of 1D Wiener filtering of calibration
parameters at different times. Panel (a) shows the amplitude of

calibration parameters measured for one antenna over two hours.
Panel (b) shows that the average power spectrum across all an-

tennas (blue dots) is well fit by a white noise floor (red horizontal
line) plus a sum of two power laws (green curve). Panel (c) shows
the Wiener filter in frequency domain computed using Eq. 3.1.5
and the power spectra from panel (b). Panel (d) shows the Wiener
convolution kernel in the time domain, the Fourier transform of

the filter in Panel (c). Panel (e) shows the best estimates of the
true calibration amplitude. The effectiveness of this filter is com-
pared with that of other filters in Table 2.
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Averaging method Relative noise power

No average 1

Frequency Wiener filter 0.33

Time Wiener filter 0.12

Time and frequency Wiener filter 0.09

Time and frequency boxcar average 0.32

Table 2. Wiener filtering reduces the noise contribution to the

calibration parameters by an order of magnitude. This table lists

residual noise power (normalized by original noise power) after
applying various filters to average the amplitude calibration pa-

rameters in time and/or frequency. The optimal two-dimensional

Wiener filter indeed performed the best, lowering the noise power
by an order of magnitude. In comparison, the naive boxcar av-

erage, using the characteristic scales of the optimal Wiener filter

(200 s and 0.15 MHz), has more than 3 times residual noise power
than the Wiener filtered result.

3.2 Absolute Calibration

The absolute calibration of the array involves two separate
tasks. One is to find the overall gain and to break phase
degeneracies that redundant baseline calibration is unable
to resolve, and the other to calibrate fixed properties of the
instrument such as the orientation of the array and shape of
the primary beam. The former is done by comparing the
data to a sky model comprised of the global sky model
(GSM) (de Oliveira-Costa et al. 2008) and published astro-
nomical catalogs (see Jacobs et al. 2013 for example). The
latter is done using bright point sources with known posi-
tions. While we can take advantage of the extremely high
signal-to-noise data in the ORBCOMM channels (around
137 MHz), thanks to the dynamic range provided by our 8
bit correlator, it is important to note that all the algorithms
described here are applicable to astronomical point sources
as well.

This section is divided into three parts. The first part
describes how we use prior knowledge of the sky to break the
degeneracies in redundant calibration results, a vital step to
obtain usable data products. The second and third part each
describe one aspect of absolute calibration using satellite
data: primary beam measurement and array orientation.

3.2.1 Breaking Degeneracies in Redundant Calibration

Redundant calibration alone cannot produce directly usable
data products, due to the degeneracies intrinsic to the al-
gorithms. There is one degeneracy in the amplitude of the
calibration coefficients gi, since scaling the amplitude of ev-
erything up by a common factor does not violate any redun-
dancy (the degeneracies discussed here are per frequency
and per time, as are the calibration solutions). There are
three degeneracies in phase, corresponding to three degrees
of freedom in a two dimensional linear field (see Appendix A
for a detailed discussion). In general, breaking these degen-
eracies requires prior knowledge of the sky. In this section,
we briefly describe our algorithm that uses the global sky
model (GSM) of de Oliveira-Costa et al. (2008) to remove
these degeneracies. Doing so requires efficiently simulating
the response of the instrument to the GSM; we summarize a
fast algorithm for doing so in Appendix C. We defer detailed
comparison of our data and the GSM to a future publication.

Our degeneracy removal procedure is an iterative loop

that repeats two steps. The first step is to fit for the am-
plitude degeneracy factor. The knowledge of the GSM and
bright point sources give us a set of model visibilities, ma

ij ,
where index a denotes different modeled components such
as the GSM or Cygnus A. A linear combination of these
models should be able to fit our measurements20. Thus we
fit for the weights wa of the models by minimizing∣∣∣∣∣vij −∑

a

wam
a
ij

∣∣∣∣∣
2

. (13)

The second step is to break the degeneracy in redundant
phase calibration by fitting for the degeneracy vector Φ and
the constant ψ defined in Appendix A. We assume that the
error in the first step’s fitting is mostly due to the phase
degeneracies, so we take the wa from step one and fit for Φ
and ψ by minimizing∣∣∣∣∣arg(vij)− arg

(∑
a

wam
a
ij

)
− di−j ·Φ− ψ

∣∣∣∣∣
2

, (14)

where di−j is the position vector for baseline i− j.
Note that the two fitting processes described above are

not independent of one another, so we repeat these steps
until convergence is reached. We find that in practice, the
errors converge within two iterations. Our preliminary result
is illustrated in Figure 13, which shows that the data agree
very well with current models.

3.2.2 Beam Measurement Using ORBCOMM Satellites

In general, in situ measurements of antenna primary beams
over large fields of view pose a challenge to 21 cm cosmol-
ogy, as primary beam uncertainties are intimately related to
calibration, imaging, and catalog flux uncertainties (Jacobs
et al. 2013). Motivated by these difficulties, Pober et al.
(2012) present a solution that uses celestial point sources
and assumes reflection symmetry of the beam, whereas
Neben, Bradley, and Hewitt (in preparation) demonstrate
high dynamic range beam measurement using the constel-
lation of ORBCOMM satellites. Here, we present in situ
primary beam measurements of the MWA bow-tie antennas
using the ORBCOMM constellation. We take advantage of
both the high signal-to-noise ratio of ORBCOMM signals,
and of our full cross-correlation measurements (rather than
auto-correlations alone) to determine the beam.

In order to measure their primary beam profile Bmwa(r̂),
we compare measurements with MWA antennas to simulta-
neous measurements with simple center-fed dipoles, whose
beam pattern Bdipole is known analytically. When there is a
single extremely bright point source in the sky, such as an
ORBCOMM satellite, we can compute the ratio of the visi-
bilities of select baselines to obtain the ratio of the MWA an-
tenna beam to the analytically known dipole antenna beam
— thus determining the MWA antenna beam itself. To per-
form this analysis, two dipole antennas, one orientated along
the x-polarization axis of the array and the other along
the y-polarization axis, are added to the array and cross-
correlated with all other MWA antennas.

20 We allow each model to have a separate weight to guard

against potential calibration offsets between existing models.
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Figure 13. Waterfall plots of phases on the 6 m E-W baseline. These show that our absolute calibration successfully matches the data
(panel (a)) with a linear combination of global sky model and known point sources, including the Sun (panel (b)). Panel (c) shows the

global sky model alone. The white areas are flagged out using χ2 criterion described in Figure 10. Each plot is stitched together using

four independently measured and calibrated frequency bands, aligning local sidereal time. Thus the discontinuities between hours 4 and
12 are due to the Sun rising at different local sidereal times on different days of our observing expedition.

The rationale behind this technique is as follows. At
an angular frequency ω, the electric field from a sky signal
at the position of a receiving antenna can be encoded in
the Jones vector S(k̂), where k̂ is the position vector of the
source (Collett 2005). With a primary beam matrix Bj(k̂),
the signal measured by the jth antenna at position rj is

sj =

∫
e−i[k·rj+ωt]Bj(k̂)S(k̂) dΩ. (15)

When a single ORBCOMM satellite is above the horizon21,
its signal strength is so dominant at its transmit frequency

21 There is typically more than one ORBCOMM satellite above

the horizon at any one time, but they are coordinated so that

they do not transmit in the same frequency band simultaneously.

that S(k̂) becomes well-approximated by a point source at
the satellite’s location. The measured signal can then be
written as:

sj ≈ e−i[ks·rj+ωt]Bj(k̂s)Ss, (16)

where ks is the wave vector of the satellite signal, and Ss is
the Jones vector encoding the satellite signal strength.

If we limit our attention to either x-polarization or y-
polarization and approximate the off diagonal terms of B(k̂)
as zero, the visibility for two antennas can be written as

vjk ≈ S2Bj(k̂s)
∗Bk(k̂s)e

−iks·(rk−rj). (17)

If we take one visibility vij formed by correlating a simple
center-fed dipole with an MWA bow-tie antenna and an-
other visibility vkl for the same baseline vector formed by

c© 0000 RAS, MNRAS 000, 000–000
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Figure 14. Projected trajectories of 248 passes of ORBCOMM

satellites over 40 hours. With these passes we obtain sufficiently

dense sampling of the MWA antennas primary beam that we can
robustly map its response, especially at high elevations where the

response is strongest. With a map of the southern half of the pri-

mary beam, we can use the reflection symmetry of the antennas
to infer the entire beam at the ORBCOMM transmission frequen-

cies. Each curve is a satellite pass projected onto the x-y plane,

and the different colors specify sets of data taken at different
times.

correlating two MWA antennas, then their ratio is simply

|vij |
|vkl|

≈ |Bmwa(k̂s)|
|Bdipole(k̂s)|

, (18)

because the satellite intensity S and one MWA beam factor
Bmwa all cancel out, and the phase factor e−iks·(rj−ri) is
removed due to taking absolute values of the visibilities. This
means that when a single point source dominates the sky,
the ratio of visibility amplitudes is simply the ratio of the
antenna beams at the direction of the point source. Since we
already know the beam Bdipole of a center-fed dipole over a
ground screen, we can directly infer the magnitude of MWA
primary beam |Bmwa(k̂s)|.

In order to fully map out the MWA primary beam, we
need to take data during many satellite passes until we have
direction vectors that densely cover the entire sky. Satel-
lite signals from 27 ORBCOMM satellites at 5 frequencies
in the range of 137.2-137.8 MHz were identified. Their or-
bital elements are publicly available22, so we can calculate
k̂s(t) straightforwardly. With 40 hours of data taken at the
frequencies of interest, we were able to obtain 248 satellite
passes, shown in Figure 14.

We compared our measurements of the MWA primary
beam using Equation 18 to numerical calculations using the
FEKO electromagnetic modeling software package. Fixing

22 We obtained the TLE files from CelesTrak, a company that

archives TLEs of many civil satellites.

Figure 15. Measured MWA primary beam patterns compared to
those obtained from numerical modeling. The two panels show the

predictions (curves) and measurements (points) of the primary

beam for the x-polarized and y-polarized MWA antennas. Each
curve shows how the primary beam changes with the polar angle

θ for a fixed azimuth angle φ. To reduce noise, the measurements

have been averaged in 10 square degree bins.

an azimuth angle φ, we can plot and compare the simulated
and measured beam at different polar angles θ (the angle
between the direction vector and zenith). Figure 15 shows
how the beam changes with θ for four different φ-values,
where φ = 0 correspond to North and increases clockwise.
Our measurements of the MWA beams are seen to agree
well with the numerical predictions for both polarizations.
The small differences between the predicted and measured
beams are larger than the statistical noise, implying that the
main limitation is not noise but one or more of the above-
mentioned approximations, or approximations in the elec-
tromagnetic antenna modeling.

3.2.3 Calibrating Array Orientation Using ORBCOMM
Satellites and the Sun

The orientation of the array is very important, because the
degeneracy removal process relies on the predicted measure-
ment for each unique baseline, which in turn relies on precise
knowledge of the baselines’ orientations. Although we mea-
sured the relative position of each antenna to millimeter level
precision with a laser-ranging total station, we did not mea-
sure the absolute orientation of the array to better than the
∼ 1◦ accuracy obtainable with a handheld compass. To im-
prove upon this crude measurement, we make use of both the
known positions of both ORBCOMM satellites and the Sun.
As we show in Figure 16, the exceptional signal-to-noise in
the ORBCOMM data allows us to fit for a small array rota-
tion as a first order correction to a model based on our crude
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Figure 16. Illustration of using the high signal-to-noise ORB-

COMM data to calculate any small rotation in the array relative

to the field-measured orientation. Panel (a) shows the rapidly
wrapping phase of the raw data (black) from one baseline at the

ORBCOMM frequency during the peak three minutes of a sin-

gle satellite pass. In green, we see the predicted values computed
with the field-measured array orientation and publicly available

satellite positions. The residual between the model and the data

is plotted in red points in panel (b). Finally, the cyan curve shows
the best fit using small angle rotations of the array. In practice

we use hundreds of satellite passes and all the baselines to obtain
a single accurate fit for the true orientation of the array.

measurement. Our method for finding the true orientation of
the array is as follows. For a given baseline during the peak
few minutes of an ORBCOMM satellite pass at frequency
ν, we measure a phase φ(t). We also know the satellite’s po-
sition vector k(t). However, we only have crude knowledge
of baseline vector d0 in units of wavelength, where vectors
are in horizontal coordinates with x, y, z that correspond to
south, east and up. We can therefore only compute a crude
prediction of the phase measurement

φ0(t) = 2πk(t) · d0. (19)

We assume that the difference between the measurement
φ(t) and our crude prediction φ0(t) is due to a small an-
gle rotation of the baseline vector d0 around the axis θθθ =
(θx, θy, θz) by an angle θ = |θθθ|, ignoring a constant cable

length delay.23 In the small θ regime, we have that

φ(t)− φ0(t) = 2πk(t) · (R(θθθ) · d0 − d0)

≈ 2πk(t) · (θθθ × d0)

= 2π(d0 × k(t)) · θθθ, (20)

where R(θθθ) is the rotation matrix. Since we have a set of
equations each representing a different time, the problem of
finding θθθ can be reduced to that of finding a least squares
fit. With 117 satellite passes, we obtained the following best
fit for the array rotation around the vertical axis:

θsatz = 0.66◦ ± 0.0005◦stat ± 0.07◦sys.

While this method is very precise for solving the main
problem we were worried about—the direction of North
(θz) which we approximated in the field with a handheld
compass—it is less useful for measuring rotations of the ar-
ray in the other two directions. Our instrument’s absolute
timing precision is only ∼ 0.5 seconds, which makes it hard
to distinguish rotations about the North-South axis from
timing errors, as most ORBCOMM passes are East-West.
This issue can of course be easily addressed in future exper-
iments; for our experiment, we solve it using a more slowly
moving bright point source: the Sun.

By using one day of solar data at 139.3 MHz, we ob-
tained

(θx, θy, θz)
� =(−0.08◦,−0.12◦, 0.672◦)

±(0.01◦, 0.03◦, 0.004◦)stat

±(0.04◦, 0.003◦, 0.005◦)sys.

Although solar data is noisier, in part because the Sun is not
as bright as the ORBCOMM satellites in a given channel,
timing errors are no longer important. These results agree
with and complement the satellite-based results and allow us
to confidently pin down the orientation of the array and thus
improve the quality of the calibration of all of our data. The
excellent agreement between the independent measurements
θsatz ≈ 0.66◦ and θ�z ≈ 0.67◦ provides encouraging validation
of both the satellite and solar calibration techniques.

3.3 Systematics

As we discussed in section 3.1.4, most of our data are well-
calibrated with χ2/DoF < 1.2, which means that any sys-
tematic effects should lie well below the level of the thermal
noise. In this section we aim to identify all the systematic
effects present in the system, and describe our efforts to
quantify and, whenever possible, remove them. The system-
atics can be categorized into two groups:

(i) Signal-dependent systematics that grow as the signal
becomes stronger, such as cross-talk, antenna position errors
and antenna orientation errors.

(ii) Signal-independent systematics, such as radio fre-
quency interference (RFI) from outside or inside the instru-
ment.

23 Here it is important to use data before redundant baseline

calibration to avoid phase degeneracy. We remove the phase delay
from cables by allowing a constant offset that matches φ(tM )

with the crude prediction at time tM when the satellite has the

strongest signal during the pass.
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Below we find a strict upper bound of 0.15% for the signal-
dependent component, as well as a signal-independent com-
ponent which is easy to remove.

To quantify signal-dependent systematics, we again use
ORBCOMM satellite data. Because the ORBCOMM sig-
nals are 103 times brighter than astronomical signals, and
we know that any signal-independent systematics must be
weaker than the astronomical signals (otherwise they would
have been blatantly apparent in the data), any signal-
independent systematics must be negligible compared to
the ORBCOMM signal. We therefore investigate how the
discrepancies between calibrated visibilities and the mod-
els for each unique baseline depend on ORBCOMM signal
strength. We define the average fitting error per baseline at
a given time and frequency to be

ε = 〈|vij − yi−jg∗i gj |〉, (21)

which is a combination of antenna noise and systematic er-
rors. If we compute ε at different times with different signal
strength and compute its signal dependence, we can derive
an upper bound on the signal dependence of systematic er-
rors. To do this, we take all data at the ORBCOMM satellite
frequency over a day and compute ε after performing redun-
dant calibration. We then bin the ε-values according to the
average signal strength s = 〈|yi−j |〉, and obtain the results
shown in Figure 1724. The result is seen to be well fit by
a constant noise floor plus a straight line ε ≈ 0.0015s. This
slope implies that the combined effect of all signal-dependent
systematic effects is at most 0.15%. This is merely an up-
per bound on the systematics, since it is possible that the
increase in ε is mainly due not to systematics but to an in-
crease in instrumental noise caused by an increase in the
system temperature during the ORBCOMM passes.

There is one signal-dependent systematic that is not
included in the above analysis: deviation from redundancy
caused by imperfect positioning of antenna elements. This
is because the data we used to derive the upper bound is
always dominated by a single point source, the ORBCOMM
satellite, and redundant calibration cannot detect any de-
viation of antenna position when the sky is dominated by
a single point source25. We have two ways to quantify the
error in our data due to antenna position errors. Firstly,
the laser-ranging measurements of antenna positions in the
field indicate an average of 0.037 m deviation from perfect
redundancy, which translates to about 2% average error in
phase on each visibility. Since the deviations are in random
directions, the variance of phase error in the unique baseline
fits should be brought down by a factor equal to the num-
ber of redundant baselines, resulting in phase errors much

24 Another way of describing these data points is that, if we look

at the third panel in Figure 9, we are plotting the average small
spread in each unique baseline group versus the radius of the

circle, and as the satellites pass over, both the circle size and the

amount of average spread change over time, forming the data set
in question.
25 This is because for any arbitrary position deviation ∆ri for

antenna i, one can add a phase equal to k ·∆ri to the calibration
parameter gi to perfectly “mask” this deviation. Note that this

“mask phase” depends on k and thus changes rapidly over time

when the ORBCOMM satellite moves across the sky.

Figure 17. Signal-dependent systematic error and its linear
fit. By comparing the modeled and calibrated visibilities during

ORBCOMM satellite passes, we conclude that signal-dependent
systematic effects account for no more than 0.15% of our mea-

surement. We calculate the average fitting error per baseline

ε = 〈|vij−yi−jg∗i gj |〉 and the average signal strength s = 〈|yi−j |〉
binned over one day’s data (blue points). The green line fits the

data points above the noise floor. While many systematic errors,

such as cross-talk, can contribute to the fitting error in addition
to thermal noise, the best-fit slope of 0.0015 puts an upper bound

on the sum of all signal-dependent errors. Since the ORBCOMM

signal is so strong, any signal-independent systematic errors are
negligible in this analysis. The high noise floor of ∼ 0.01 pW is

due to our digital tuning in the ORBCOMM frequency channels

to maximize dynamic range.

less than 1% for most of the unique baselines. Secondly, al-
though satellite calibration cannot detect position error in
a given snapshot, over time the position errors would create
very rapidly changing calibration parameters, which we do
not observe in our data. Lastly, a formalism exists (Liu et al.
2010) to treat errors in antenna placement as small pertur-
bations when redundantly calibrating, although though we
did not need to take advantage of this technique for the
present paper.

We first identified a signal-independent systematic
when we obtained consistent χ2/DoF ∼ 4 for much of our
data26, which means that the fitting error was on average
twice as large as the thermal noise in each visibility. This
implies a systematic (or a combination of systematics) at
the level of 10−6 pW/kHz, about 10% of the total astro-
nomical signal. Given the above analysis, we can exclude
the possibility of any signal-dependent explanations such as
cross-talk between channels or antennas. While we are un-
able to offer any conclusive explanation of this systematic,
it appears consistent with persistent near-field RFI, perhaps
originating from our electronics. Fortunately, we found this
additive signal to vary only very slowly over time, typically
remaining roughly constant over 5-minute periods, which
made it easy to remove. After calibrating the data with log-
cal, we average the fitting errors εij = 〈vij − yi−jg∗i gj〉t over
time and subtract them from the data before we run logcal

26 This was before we obtained a consistent χ2/DoF ∼ 1 in Sec-

tion 3.1.4, which occurred after we were able to remove the sys-
tematic described here.
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again. We perform the averaging over 5 minute segments,
corresponding to 112 independent time samples, and iterate
the calibration-subtraction process three times. This corre-
sponds to less than a 1% increase in the number of effec-
tive calibration parameters we fit for during logcal. Because
many baselines probe the same unique baseline, the proce-
dure described above exploits the redundancy of the array
to robustly remove this slowly varying, signal-independent
systematic, leaving us with χ2/DoF ∼ 1.

4 SUMMARY AND OUTLOOK

We have described the MITEoR experiment, a pathfinder
“omniscope” radio interferometer with 64 dual-polarization
antennas in a highly redundant configuration. We have
demonstrated a real-time precision calibration pipeline with
automatic data quality monitoring that uses χ2/DoF as
a data quality metric to ensure that redundant baselines
are truly seeing the same sky. We have also implemented
various instrumental calibration techniques that utilize the
ORBCOMM constellation of satellites to measure the pri-
mary beam and precise orientation of the array. Our success
bodes well for future attempts to perform such calibration
in real-time instead of in post-processing, and thus clears
the way for FFT correlation that will make interferometers
with & 103 antennas cost-efficient by reducing the compu-
tational cost of correlating N antennas from an N2 scaling
to an N logN scaling. It also suggests that the extreme cali-
bration precision required to reap the full potential of 21 cm
cosmology is within reach.

The various calibration techniques that MITEoR suc-
cessfully demonstrates are now being incorporated into the
much more ambitious HERA project27 (Pober et al. 2014),
a broad-based collaboration among US radio astronomers
from the PAPER, MWA, and MITEoR experiments. Our
results are also pertinent to the design of the SKA low-
frequency aperture array28. HERA plans to deploy around
331 14-meter dishes in a close-packed hexagonal array in
South Africa, giving a collecting area of more than 0.05 km2,
virtually guaranteeing not only a solid detection of the elu-
sive cosmological 21 signal but also interesting new clues
about our cosmos.
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APPENDIX A: PHASE DEGENERACY IN
REDUNDANT CALIBRATION

Both of our redundant baseline calibration algorithms, log-
cal and lincal (see Section 3.1.3), have the same set of
phase degeneracies that require additional absolute calibra-
tion that must incorporate knowledge of the sky. When cal-
ibrating a given unique baseline, the quantity that logcal
minimizes is∑

jk

|(θj−k − φj + φk)− arg(vjk)|2, (A1)

where we define θj−k ≡ arg(yj−k), φj ≡ arg(gj). Similarly,
lincal minimizes∑

jk

|(yj−kg∗j gk)− vjk|2

=
∑
jk

∣∣|yj−kg∗j gk| exp [i(θj−k − φj + φk)]− vjk
∣∣2 . (A2)

Unfortunately, for all values of θj−k and φk, one can add
any linear field Φ · rj + ψ to the φj across the entire array
while subtracting Φ ·dj from the θj−k without changing the
minimized quantities:

θ′j−k − φ′j + φ′k ≡(θj−k −Φ · dj−k)− (φj +Φ · rj + ψ)

+ (φk +Φ · rk + ψ)

=θj−k − φj + φk. (A3)

Here rj is the position vector of antenna j and dj−k ≡
rk − rj is the baseline vector for the unique baseline with
best-fit visibility yj−k. Thus, the quantities in expressions
A1 and A2 that the calibrations minimize are degenerate
with changes to the linear phase field Φ and the scalar ψ.
This means that there are, in general, 4 degenerate phase
parameters that need absolute calibration: one overall phase
ψ and three related to the three degrees of freedom of the
linear function Φ (which reduces to two for a planar array).

In an ideal instrument, the measured visibilities for a
given unique baseline would be

yi−j =

∫
kx,ky

eik·di−jSB(kx, ky)dkxdky, (A4)

where k = (kx, ky, kz) is the wave vector of incoming radia-
tion and SB(kx, ky) is the product of the incoming signal in-
tensity and the primary beam in the direction k̂ normalized
by kkz (which comes from the Jacobian of the coordinate
transformation from spherical coordinates; see Tegmark &
Zaldarriaga 2009). When the array is coplanar, we can take
an inverse Fourier transform of yi−j and obtain an image of
SB(kx, ky). Above we saw that the best fit yi−j computed
by logcal and lincal is multiplied by an unknown linearly
varying phase Φ · di−j . Since multiplication in uv space is a
convolution in image space, this means that the image gen-
erated using these yi−j is the true image convolved with a
Dirac delta function centered at Φ, which corresponds to
a simple shift by the unknown vector Φ in the SB(kx, ky)
image space.

To calibrate these last few overall phase factors, one can
either make sure that bright radio sources line up properly
in the image, or match phases between measured visibil-
ities and predicted visibilities, as we described in Section
3.2.1. However, there may be another complementary way
to remove this phase degeneracy without any reference to

c© 0000 RAS, MNRAS 000, 000–000



20 H. Zheng, et al.

Figure A1. Illustration of phase degeneracies shifting the sky

image where the sky disk is demarcated. The linear phase degen-
eracy, which takes the form Φ · ri in each antenna for any Φ,

corresponds to a shift of the reconstructed image. These simu-
lated images demonstrate shifts of fiducial sky image at 160 MHz

caused by four different Φ, where the fiducial array’s shortest

baseline is 0.2 m. Panel (a) shows the image obtained from visi-
bilities with no Φ, and the sky image is centered at 0. In the other

three panels, the sky image is shifted by amount Φ. Even if one

has no knowledge of what the true sky is, it is still possible to
determine Φ from where the sky image is centered.

the sky. We know that physically the true image SB(kx, ky)
is only non-zero within the disk |k2x + k2y|1/2 6 k centered
around the origin, and a shift caused by Φ would move this
circle off center. This suggests that we should be able to re-
verse engineer Φ by looking at how much the image circle
has been shifted, without knowing what SB(kx, ky) is. Fig-
ure A1 demonstrates how the image is shifted by Φ using
simulated data.

Unfortunately, this simple approach to identifying and
removing the effect of Φ suffers from a few complications.
By far the most important one is the requirement of very
short baselines. In the example in Figure A1, the shortest
separation between antennas is 0.21λ, and it is easy to show
that the sky disk is only clearly demarcated when the short-
est separation is less than 0.5λ29. This sets a limit on the
physical size of each element, which makes achieving a given
collecting area proportionately more difficult. As Figure A2
shows, the deployed configuration of MITEoR cannot be
used to reverse engineer the degeneracy vector Φ without
knowledge of the true sky.

29 This is the 2D imaging counterpart of the well-known fact
that, in signal processing, one must sample with a time interval

shorter than 0.5ν−1 to avoid aliasing in the spectrum of maximum
frequency ν.

Figure A2. Illustration of phase degeneracies shifting the sky
image where the sky disk is not demarcated. With any practical

array configuration, including that of MITEoR, distinguishing im-

age shifts caused by the Φ-degeneracy becomes significantly more
difficult. These images demonstrate shifts of fiducial sky image at

160 MHz just as in Figure A1, but with MITEoR’s compact con-

figuration where the shortest baseline is 1.5 m. In the left panel,
the image is obtained from visibilities with Φ = (0, 0), and in the

right panel the sky image is shifted by and amount Φ = (0, 0.3k).

Because the shortest baseline is too long (0.8λ), the Fourier trans-
form of the visibilities only cover up to about 0.7 in kx and ky ,

so in contrast with Figure A1, it is impossible to determine Φ by
merely looking at where the sky image is centered without prior

knowledge of the sky.

APPENDIX B: A HIERARCHICAL
REDUNDANT CALIBRATION SCHEME WITH
O(N) SCALING

One of the major advantages of an omniscope is its N logN
cost scaling where N is the number of antennas. However,
existing calibration techniques, including the ones presented
in this paper, require all of the visibilities to compute the
calibration parameters. Since the cost for computing the vis-
ibilities alone scales as N2, this is a lower bound to the com-
putational cost of existing calibration schemes regardless of
the actual algorithm. While current instruments with less
than 103 elements can afford full N2 cross-correlation, such
computation will be extremely demanding for a future om-
niscope with 104 or more elements. Thus, to take advantage
of the N logN scaling of an omniscope with large N , it is
necessary to have a calibration method whose cost scaling
is less than N logN . In this section, we describe a such a
method using a hierarchical approach, and show that its
computational cost scales only linearly with the number of
antennas.

Figure B1 illustrates the hierarchical calibration
method for an example with a 256 antennas in a 16 × 16
regular grid, viewed as a 2-level hierarchy of 4 × 4 grids.
More generally, consider an n-level hierarchy with m sub-
arrays at each level, containing a total of N = mn antennas;
the example in Figure B1 corresponds to m = 16, n = 2
and N = 256.30 Let Bm denote the computational cost of
calibrating a basic m-antenna array31 Let Cn denote the
computational cost of calibrating the entire n-level hierarchy

30 It is easy to see that for a regular grid of N antennas, N need
not an exact power of m to obtain the scaling that we will derive.
31 Bm includes the cost to compute cross-correlations between

the m antennas, as well as both relative and absolute calibra-
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Figure B1. Example of the hierarchical calibration method for
256 antennas (marked by +-symbols) viewed as a 2-level hierarchy

of 4× 4 arrays (m = 16, n = 2). Our method first calibrates each

sub-array independently with both relative and absolute calibra-
tions. This produces calibration parameters for every antenna, up

to one phase degeneracy ψ per sub-array. We can remove these

16 phase degeneracies among sub-arrays by choosing one antenna
out of each sub-array (marked red and thick) and performing

calibration on these 16 antennas. Thus we have calibrated the
whole 256 antenna array by performing 16-antenna calibration

16+1=17 times. This can be generalized to a hierarchy with more

levels by placing 16 such 256-antenna arrays in a 4 × 4 grid to
get a 4096-antenna array, and then repeating to obtain arrays of

exponentially increasing size. As shown in the text, the compu-

tational cost for this calibration method scales only linearly with
the number of antennas.

containing all N antennas. We have C1 = Bm by definition
and

Cn+1 = mCn +Bm (B1)

since, as explained in the caption of Figure B1, we can cal-
ibrate the m sub-arrays at cost Cn each and then calibrate
the m reference antennas (one from each sub-array) at cost
Bm. Solving this recursion relation gives

Cn = Bm(1 +m(1 +m(1 +m(1 +· · ·))))

= Bm

n−1∑
k=0

mk =
mn − 1

m− 1
Bm

=
N − 1

m− 1
Bm = O(N). (B2)

Eq. B2 implies that for a fixed m, the computational
cost for calibrating a 105 antenna array will be 10 times
that of a 104 antenna array. Intuitively, the cost reduction
comes from not computing cross-correlations among most
pairs of antennas. In the simple case in Figure B1, only one

tions. The cost Bm is unimportant for the scaling as long as it is

independent of n.

visibility is computed between each pair of sub-arrays, rather
than 256 visibilities in a full correlation scheme. Because
of the reduced number of cross-correlations computed, we
expect the quality of calibration parameters to be worse than
that in the full correlation case. Since both the precision of
calibration parameters and the computational cost depend
on m, one can tune the value of m to achieve an optimal
balance between precision and computational cost.

APPENDIX C: FAST ALGORITHM TO
SIMULATE VISIBILITIES USING GLOBAL SKY
MODEL

For both traditional self-calibration and the absolute cali-
bration described in this paper, it is crucial to have accu-
rate predictions for the visibilities. This requires simulation
of both the contributions of bright point sources and diffuse
emission, which can be added together due to the linearity
of visibilities. While it is computationally easy to compute
the contributions of point sources of known flux, it is much
harder to compute visibilities from diffuse emission such as
that modeled by the global sky model (GSM, de Oliveira-
Costa et al. 2008). Dominated by Galactic synchrotron ra-
diation, this diffuse emission is especially important for the
low frequencies and angular resolutions typical of current
21 cm experiments.

In general, we want to compute visibilities

yu(f, t) =

∫
s(k̂, f, t)B(k̂, f)eik·dudΩk, (C1)

where s(k̂, f, t) is the magnitude squared of the global sky
model at time t in horizontal coordinates, and B(k̂, f) the
magnitude squared of the primary beam at a given fre-
quency. Performing the integral by summing over all npix

pixels in the GSM takesO(npixnbnfnt) computational steps,
where nb is the number of unique baselines one simulates,
nf is the number of frequency bins, and nt is the number of
visibilities one simulates for one sidereal day.

The faster algorithm we describe here takes only
O(npixnbnf ) steps, by taking advantage of the smoothness
of the primary beam as well as the diurnal periodicity in
Earth’s rotation. It applies only to drift-scanning instru-
ments, so B(k, f, t) = B(k, f) in horizontal coordinates,
and is similar in spirit to the ideas proposed by Shaw et al.
(2014).

The key idea is to decompose Equation C1 as follows:

yu(f, t) =
∑
`,m

af`mB
uf
`me

imφ(t), (C2)

where each af`m is a spherical harmonic component of the

GSM at a given frequency, and each Buf`m is a spherical har-

monic component of B(k̂, f)eik·du , both in equatorial co-
ordinates. In this appendix, we describe precisely how to
perform this decomposition and why it decreases the com-
putational cost of calculating visibilities from the GSM.

C1 Spherical Harmonic Transform of the GSM

The GSM of de Oliveira-Costa et al. (2008) is composed
of three HEALPIX maps of size nside describing different
frequency-independent sky principal components sc(k̂) and
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the relative weights of each component wc(f) that encode
the frequency dependence. We can decompose the spatial
dependence into spherical harmonics,

ac`m =

∫
Y ∗`m(k̂)sc(k̂)dΩk (C3)

in O(n
3
2
pix) steps, due to the advantage of HEALPIX for-

mat (Górski et al. 2005). The frequency dependence of the
spherical harmonic coefficients of the sky is given by

af`m =
∑
c

ac`mw
c(f), (C4)

and the total complexity of computing the coefficients af`m

is O(n
3
2
pix) +O(nf ).

C2 Spherical Harmonic Transform of the Beam
and Phase Factors

Next, we would like to compute the spherical harmonics
components of B(k̂, f)eik·du :

Buf`m =

∫
Y ∗`m(k̂)B(k̂, f)eik·dudΩk. (C5)

Substituting the spherical harmonic decompositions of
B(k̂, f) and eik·du gives

Buf`m =

∫
Y ∗`m(k̂)

∑
`′m′

Bf`′,m′Y`′m′(k̂)

×
∑
`′′m′′

4πi`
′′
j`′′

(
2πf

c
du

)
Y ∗`′′m′′(d̂u)Y`′′m′′(k̂)dΩk

=
∑
`′m′

∑
`′′m′′

4πi`
′′
j`′′

(
2πf

c
du

)
Bf`′m′Y

∗
`′′m′′(d̂u)

×
∫
Y ∗`m(k̂)Y`′m′(k̂)Y`′′m′′(k̂)dΩk

=
∑
`′m′

∑
`′′m′′

4πi`
′′
j`′′

(
2πf

c
du

)
Bf`′m′Y

∗
`′′m′′(d̂u)

×
√

(2`+ 1) (2`′ + 1) (2`′′ + 1)

4π

× (−1)m
(

` `′ `′′

0 0 0

)(
` `′ `′′

−m m′ m′′

)
,

(C6)

where j`(x) is the spherical Bessel function, `′m′ represent
quantum numbers when expanding the primary beam, `′′m′′

represent quantum numbers when expanding eik·du , and the
Wigner-3j symbols are results of integrating the product of
three spherical harmonics. Because the Wigner-3j symbols
vanish unless ` − `′ 6 `′′ 6 ` + `′ and −m + m′ + m′′ = 0,
the above sum simplifies to

Buf`m =
∑
`′m′

`+`′∑
`′′=`−`′

4πi`
′′
j`′′

(
2πf

c
du

)
Bf`′m′Y

∗
`′′m′′(d̂u)

×
√

(2`+ 1) (2`′ + 1) (2`′′ + 1)

4π

× (−1)m
(

` `′ `′′

0 0 0

)(
` `′ `′′

−m m′ m′′

)
, (C7)

where m′′ = m −m′. Note that `′, m′ and `′′ in this sum
are all limited to the range of `-values where the spherical

harmonics components for the primary beam are non-zero,

so the complexity for this triple sum is n
3
2
Bpix, where nBpix is

the number of non-zero spherical harmonics components for

the primary beam. Since the cost for each Buf`m is n
3
2
Bpix, and

there are nbnfnpix of them, the computational complexity of

calculating all Buf`m-coefficients scales like O(nbnfnpixn
3
2
Bpix).

C3 Computing Visibilities

By performing a coordinate transformation on Equation
C1 from horizontal coordinates (corresponding to the local
Horizon at the observing site) to equatorial coordinates, the
time dependence of s(k̂) is transferred to B(k̂) and du. We
can now calculate yu(f, t) by computing

yu(f, t) =

∫
s(k̂)Bft(k̂)eik·du(t)dΩk

=
∑
`m

a∗`mBuft`m . (C8)

Since the time dependence of Buft`m is a constant rotation
along the azimuthal direction, we can write the above as

yu(f, t) =
∑
`m

a∗`mBuf`me
imφ(t) =

∑
m

cufm eimφ(t), (C9)

where we have defined

cufm ≡
∑
`

a∗`mBuf`m, (C10)

which can be computed in O(nbnfnpix) steps. Given cufm ,
it is clear that we can evaluate Equation C9 using a fast
Fourier Transform (FFT), whose cost is

O(nbnfntlog(nt)). (C11)

Note that this FFT in Equation C9 has no npix dependence,
because we always need to zero-pad cm to length nt before
the FFT. In summary, the total complexity of all of the
above steps is

O
(
n

3
2
pix

)
+O(nf ) +O

(
nbnfnpixn

3
2
Bpix

)
+O (nbnfnpix) +O(nbnfntlg(nt))

≈O
(
nbnfnpixn

3
2
Bpix

)
. (C12)

This does not scale with nt, unlike the naive integration’s
O(nbnfnpixnt). Thus with a spatially smooth beam whose

nBpix � n
2
3
t , the algorithm described here is much faster

than the naive numerical integration approach described at
the beginning of this Appendix.
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