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Abstract

An analytical Mason equivalent circuit is derived for a circular, clamped plate piezoelectric micro-machined
ultrasonic transducer (pMUT) design in 31 mode considering an arbitrary electrode configuration at any axisymmetric
vibration mode. The explicit definition of lumped parameters based entirely on geometry, material properties and
defined constants enables straightforward and wide ranging model implementation for future pMUT design and
optimization. Beyond pMUTs, the acoustic impedance model is developed for universal application to any clamped,
circular plate system and operating regimes including relevant simplifications are identified via the wave number-radius
product ka. For the single electrode fundamental vibration mode case, sol-gel Pb (Zr0.52)T i0.48O3 (PZT) pMUT
cells are micro-fabricated with varying electrode size to confirm the derived circuit model with electrical impedance
measurements. For the first time, experiment and finite element simulation results are successfully applied to validate
extensive electrical, mechanical and acoustic analytical modeling of a pMUT cell for wide ranging applications
including medical ultrasound, non-destructive testing, and range finding.

I. INTRODUCTION

In recent years, thin film piezoelectric micro-machined ultrasonic transducers (pMUTs) have garnered attention
for a wide variety of applications including range finding [1], non-destructive testing (NDT), object detection [2],
and medical applications [3], [4]. Although significant advances have been achieved with bulk systems, the labor
intensive manufacturing process restrains the realization of cost effective, small form factor and 2D arrays for
advanced imaging [5]. As an alternative, micro-electromechanical system (MEMS) based designs show promise
for cost-effective manufacturability at large volume of miniaturized elements and improved performance via novel
actuation and sensing mechanisms made possible by small length scales.

In medical imaging, capacitive micro-machined transducer (cMUT) technology has garnered well-deserved
attention for ≈ 100% yield, > 100% bandwidth, and small form factor elements that have successfully been
integrated with CMOS integrated circuits into fully operational 3D real time imaging systems [6]–[8]. Compared
to traditional bulk transducer technology, cMUTs have already demonstrated significant resolution improvements
for superficial imaging; however, low acoustic power results in diminished performance with increased depth [9].
Unfortunately, requirements for electrostatic actuation including small gap height, large bias voltage, and inherent
non-linear transduction [10] act to reduce potential acoustic power, create safety concerns, and introduce significant
circuit design challenges, respectively.

For high acoustic pressure output, the high energy density of piezoelectrics compared to other MEMS transduction
mechanisms [11] makes piezoelectric MUTs a viable MEMS based alternative for increasingly sensitive, high depth
ultrasound. Despite achievements in pMUT research [1], [3], [4], [12]–[18], predictive modeling and optimization
capabilities are limited in improving reduced effective electromechanical coupling k2eff and bandwidth in fabricated
devices. In the most mature recent projects, fabricated pMUT designs are based heavily on geometry specific
finite element models [19] with analytical models commonly limited to resonant frequency determination [4], [16],
[20], [21]. A lack of available models leading to performance shortcomings demonstrate a need for more robust,
fundamental understanding of pMUT performance.

Some work has begun to address the analytical model gap by focusing on the development of plate theory
based electromechanical models [1], [3], [13], [22]–[28]. In [3], [22], explicit analytical equations for effective
electromechanical coupling k2eff are defined based on material constants and geometric parameters enabling



optimized design for high k2eff . More comprehensive approaches [1], [13], [23]–[27] expand model capabilities
to include definitions of lumped mechanical and electrical impedance parameters of the Mason equivalent circuit.
Although accurate, most of these models are complicated or implicitly defined making the full scale circuit model
difficult to practically implement [13], [23], [24].

With developed analytical models, electrode size optimization performed for high k2eff and deflection [3], [26],
[28], [29] demonstrates the usefulness of analytical approaches for more flexible, straight-forward performance
optimization via tailored geometry. In support of some analytical modeling endeavors, finite element models have
been successfully implemented [22]–[27]. However, analytical approaches have yet to be proven by experiment
because of discrepancies commonly attributed to residual stress [1], [3], [25], [29]. For an analytical model useful
to future pMUT design, the model must be extensively confirmed with experimental results and use relevantly
simplified lumped parameters for ease of use in design optimization. For practicality, analytical models should
focus on the Mason model equivalent circuit, which directly sets bandwidth, k2eff , transmit and receive sensitivity,
and power amplification circuit requirements [30].

Building on a previously discussed Green’s function deflection model for a 31 mode unimorph pMUT [28],
we present a general, analytical Mason equivalent circuit model of an arbitrary electrode and axisymmetric mode
system. The model explicitly defines electrical, mechanical and acoustic domain parameters based on geometry,
material properties, and defined mode constants. For the first time, measurements from fabricated PZT thin film
based pMUTs and finite element model data are employed to comprehensively validate the analytical Mason
equivalent circuit model. In experiment, plate-mode vibration of pMUT devices is demonstrated through mode shape
measurements, an accurate method for extracting the piezoelectric constant based on static deflection is introduced,
and a direct, iterative fit technique for electrical impedance measurements is implemented. Using these developed
tools, experimental results and simulation data strongly validate the air loaded lumped parameters applicable to
NDT and range finding applications. Further, finite element simulation supported results are discussed for expansion
to fluid loaded systems relevant to medical ultrasound. Finally, appropriate lumped parameter simplifications are
introduced based on average values and limiting cases of the physical system to facilitate future design optimization.

NOMENCLATURE

2β motional impedance angle
εσ33 dielectric constant measured at constant stress
ε0 vacuum permittivity
γ frequency dependent plate vibration parameter
γ0n axisymmetric vibration mode constant normalized to plate radius
λ wavelength
Λ0n deflection profile constant
λ0n axisymmetric vibration mode constant
µ angular coordinate in acoustic radiation
νi poisson ratio of layer i
ω angular frequency
Ψ0n characteristic shape profile at axisymmetric mode n
Ψavg,11 shape profile averaged over single electrode area
ρ density of fluid medium
εrr,εθθ tensor strain in polar coordinates
a plate radius
a′′k outer radius of electrode k
a′k inner radius of electrode k
ae single electrode outer radius
A0n deflection amplitude at axisymmetric mode n
aexp experimental plate radius
Bnk dimensionless coupling between electrode k and axisymmetric vibration mode n
bn axisymmetric mode n depedent mechanical impedance constant
C total mechanical compliance
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c speed of sound in fluid medium
Cp parasitic capacitance
C0,k fixed, shunt capacitance at electrode k
Cf,k free capacitance at electrode k
Cm,n mechanical compliance at axisymmetric vibration mode n
D flexural rigidity
D3 out of plane electrical displacement
d31 piezoelectric constant
E3 electric field in z
e31,f transverse piezoelectric constant
F out of plane force
f frequency
f ′, f ′′ half power frequencies
f0 resonant frequency of fundamental mode
fa anti-resonant frequency
f0,n resonant frequency of higher order axisymmetric modes
G0 static piezoelectric conductance
g0n Hankel transform of shape profile function related to beam pattern at axisymmetric vibration mode n
hi thickness of ith layer
i material layer index
I0 surface density
I3 out of plane current
Ink out of plane current at electrode k and axisymmetric mode n
j

√
−1

k electrode index
k wave number
k231 planar material electromechanical coupling
Kn directivity at axisymmetric mode n
k2eff effective electromechanical coupling constant
Km,Mason mechanical stiffness approximation by Mason
Km,n mechanical stiffness at axisymmetric vibration mode n
Krp directivity of rigid piston
ka dimensionless acoustic parameter
L total mechanical and acoustic inductance
Lm,Mason mechanical inductance approximation by Mason
Lm,n mechanical inductance at axisymmetric vibration mode n
Lr,n acoustic radiation inductance at axisymmetric vibration mode n
M static deflection slope
Mp piezoelectrically induced bending moment
MLR empirical mechanical loss ratio
N total number of electrodes or total transformation ratio
n axisymmetric vibration mode index
N ′ total transformation ratio normalized to transverse piezoelectric constant
Nn electromechanical transformation ratio at axisymmetric vibration mode n
p piezoelectric layer index
Pω applied pressure
q total number of material layers
Qm mechanical quality factor
R total electrical resistance or total mechanical and acoustic resistance
Re static electrical resistance
Rm,n acoustic radiation resistance at axisymmetric vibration mode n
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rr,n dimensionless radiation resistance at axisymmetric mode n
unk average out of plane plate velocity at electrode k and axisymmetric vibration mode n
V Voltage
W deflection in z
Wavg,11 deflection averaged over single electrode area
Wnk radially dependent out of plane deflection at electrode k and axisymmetric mode n
X total electrical reactance
Xe static electrical reactance
xr,n dimensionless radiation reactance at axisymmetric mode n
Yi Young’s modulus of layer i
Ze neutral plane under applied electric field
zi material stack thickness at ith layer
zN neutral plane
Zp piezoelectric moment arm
zm,n mechanical impedance at axisymmetric mode n
Zr,n acoustic radiation impedance at axisymmetric mode n

II. MODEL

Previously, we derived an analytical solution for the deflection of a unimorph piezoelectric micro-machined
transducer plate design [28] using a Green’s function approach. The structure of unimorph pMUT is the 31
piezoelectric mode: the electrical field is applied perpendicular to the surface across the thickness of the PZT
film between a top and grounded bottom electrode to generate in-plane stress to deflect the diaphragm as shown in
Figure 1.

Fig. 1. Single electrode, first axisymmetric vibration mode in transmit case. Rendered image of fabricated single electrode pMUT cell with
electrical routing showing 31-mode actuation mechanism. Alternating current electric field applied in the 3-direction creates transverse stress
e31,fE3 at a distance Zp from the neutral plane zN inducing a bending moment Mp that causes plate mode vibrations. Fabricated dimensions
shown in Table I and fabrication process discussed in Section IV.
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TABLE I
MEASURED DIMENSIONS OF FABRICATED PMUTS

Layer* Thickness h (µm)

1: Buried Oxide 1
2: Si 3.5
3: Thermal Oxide 0.2
4: Ti 0.03
5: Pt 0.2
6 (p): PZT 0.275
7: Ti 0.03
8: Au 0.175

*Numbering of material layers corresponds to notation in Figure 2b.

Fig. 2. Top (a) and cross-section (b) schematic of N electrode pMUT consisting of q material layers. Stack thickness zi determined by
thickness of ith layer hi and preceding layers according to Appendix A.

For a plate excited by an alternating current source of angular frequency ω = 2πf , the governing plate vibration
equation dependent on the the amplitude of pressure Pω , piezoelectric moment Mp and deflection W in z is given
by: (

∇4 − γ4
)
W =

1

D

(
∇2Mp + Pω

)
(1)

where D, the flexural rigidity of the plate, represents a stiffness term [28]. Here, γ is frequency dependent parameter
related to mass and stiffness as:

γ4 =
ω2I0
D

(2)

where I0 is the surface density or mass per unit area (see Appendix A).
Plate vibrations are induced via the applied piezoelectric moment Mp resulting from a voltage Vk applied across

electrode k with inner radius a′k and outer radius a′′k :

Mp = e31,fZp

N∑
k=1

Vk (H (r − a′k)−H (r − a′′k)) (3)
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where e31,f is the modified transverse piezoelectric constant. A schematic of the general multiple circular/ring
pMUT system is shown in Figure 2. The piezoelectric moment is applied at a distance Zp referencing the neutral
plane zN as depicted in Figure 1b and defined in Equation 11.

Under no applied moment or force in the homogeneous solution case, the characteristic function that defines the
deflection profile at axisymmetric mode (0, n):

Ψ0n (r) = J0 (γ0nr)−
J0 (γ0na)

I0 (γ0na)
I0 (γ0nr) (4)

To satisfy the clamped plate boundary condition, the solution depends on γ0n, which is conventionally defined as
the axisymmetric mode constant λ0n normalized to the plate radius a [31]:

γ0n =
λ0n
a

(5)

The mode shape constant along with material parameters also sets the resonant frequency:

f0,n =
λ20n

2πa2

√
D

I0
(6)

Since resonant frequency is an easily measured property, the definition in Equation 6 is useful for verifying that
the material and thickness parameters used for calculating D and I0 before input into the deflection model.

In the previous derivation [28], the externally applied pressure was neglected; however, for the equivalent circuit,
this applied force term is necessary to determine coupling between the electrical and mechanical domain. As such,
an updated Green’s function based solution is constructed piece-wise from the previously derived piezoelectric
moment dependent form and the pressure dependent term:

W (r0) =
e31,fZp
D

∑
n

N∑
k=1

Vk
Λ0n (γ40n − γ4)

Ψ (r0)Bnk +
Pω
D

∑
n

N∑
k=1

1

Λ0n (γ40n − γ4)

[
2aJ1 (λ0n)

λ0n

]
Ψ (r0) (7)

represented by the first and second terms of Equation 7, respectively (see Appendix B for more detail on Green’s
function approach). Here, the design dependent constant Bnk is introduced as:

Bnk = γ0n

[
a′k

(
J1 (γ0na

′
k) +

J0 (λ0n)

I0 (λ0n)
I1 (γ0na

′
k)

)
− a′′k

(
J1 (γ0na

′′
k) +

J0 (λ0n)

I0 (λ0n)
I1 (γ0na

′′
k)

)]
(8)

Bnk is a dimensionless measure of the coupling between electrode k and axisymmetric vibration mode n and
typically varies between 0 and 1. For maximized deflection, electrode coverage should be optimized to most
effectively couple with the vibration mode of interest. In our previous work [28], deflection was maximized through
a single electrode with radial coverage of ≈ 60%. A plot of the coupling constant B11 shown in Figure 3 agrees
with this approach, showing that the ≈ 60% radial coverage is ideal for coupling between a single electrode and
the first axisymmetric vibration mode.

III. EQUIVALENT CIRCUIT

In linearized equivalent circuit network form, the Mason model is commonly used to represent transducer systems
[32]. The most general theoretical representation for a 31 mode pMUT resonating near axisymmetric mode n excited
by a voltage applied at electrode k is shown in Figure 4 and based on the form presented in [33]. For application to
experiment, the specific case of a single electrode at the fundamental resonant mode is provided in Figure 5a and
shows non-idealities in a real system including dielectric loss, mechanical damping, and parasitic capacitance. For
equivalent circuit model fitting, the Mason equivalent circuit is further lumped to take the form of the Butterworth
Van Dyke (BVD) circuit as shown in Figure 5b.

5

Katie
Highlight



Fig. 3. Dimensionless electrode radial coverage plotted against the coupling constant B11. For one electrode, coupling between electrode
size and the first axisymmetric vibration mode is maximized for electrode radius of ≈ 60%. Simulations of a pMUT device at resonance in
oil confirm the scaling of output pressure with deflection. Non-dimensionalized experimental and simulated values of pressure and deflection
follow B11 prediction. Experimental B11 determined from static deflection as described in Section V-B. Insets show raw surface profilometer
data for a = 139.5± 0.2µm devices at VDC = 7V with area used for deflection averaging outlined.

Fig. 4. General Mason equivalent circuit of arbitrary circular/ring N electrode structure excited at axisymmetric mode n. Voltage Vk applied
at electrode k. Lumped mechanical capacitance Cm = 1/Km.

Fig. 5. Single electrode, first axisymmetric vibration mode transmit case equivalent circuit including static conductance G0 and parasitic
capacitance Cp with Mason model in (a) and Butterworth Van Dyke representation in (b). Parameters defined as C0 = C0,1, N = N1B11,
L = Lm,1 + Lr,1, C = Cm,1, and R = Rm,1 +Rr,1 for simplified notation. G0 and Cp considered negligible. Outlined section of Mason
model in (a) shows parameters lumped into BVD model in (b).
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TABLE II
SUMMARY OF ANALYTICAL EQUIVALENT CIRCUIT PARAMETERS

General: N electrodes Single Electrode e
Parameter Electrode k, mode (0, n) mode (0, 1) Approximation

C0
εσ33π(a”2k−a

′
k
2)

hp

(
1− k231

) εσ33πa
2
e

hp

(
1− k231

)
N

[
πλ0n

2J1(λ0n)

]
e31,fZp 19.127e31,fZp

Km = 1
Cm

[
λ4
0n
2

(
λ0nJ0(λ0n)
2J1(λ0n)

)2] πD
a2

197.526πD
a2

192πD
a2

[32]

Lm

[
1
2

(
λ0nJ0(λ0n)
2J1(λ0n)

)2]
πa2I0 1.891πa2I0

9
5
πa2I0 [32]

Lr
ρcπa2

ω
(ka)

∫∞
k

Kn (µa) J1 (µa) dµ√
k2−µ2

ka < 1: ρcπa2 ka
ω

Rr ρcπa2 (ka)
∫ k
0
Kn (µa) J1 (µa) dµ√

k2−µ2
ka < 1: ρcπa2 (ka)2

2

Rm air: Rr × (MLR+ 1)
oil: Rr >> Rm, Rm ≈ 0

The significance of electrode size optimization follows from an electromechanical viewpoint as the coupling factor
Bnk directly affects the transformation between the electrical and mechanical domain. For appropriate pMUT design,
electrodes should be patterned to maintain Bnk close to 1 otherwise a reduction in the transformation factor will
result in decreased electromechanical transformation leading to reduced sensitivity.

For convenience, Table II summarizes the findings of the following sections, and presents relevant approximations
from literature [32] and limiting cases based on physical system parameters and non-dimensionalized constants.

A. Electric Current and k231
In the transmit case, when a plate is excited by a sinusoidal external voltage, the electric field results in an

electrically induced bending moment applied about the conventionally defined neutral plane zN (see Appendix A).
Therefore in transmit conditions, the electrical neutral plane ze must be defined as the plane where zero bending
moment is present in conditions with an externally applied electric field and is related to the conventionally defined
neutral axis zN via [34]:

ze = zN −

(
h2p

12Zp
+ Zp

)
(9)

where the neutral plane with applied electric field Ze is determined from the distance between the zN and the
center of the piezoelectric layer:

Ze = −

(
h2p

12Zp
+ Zp

)
(10)

Zp is length of the moment arm determined by the distance between the zN and the center of the piezoelectric
layer zp − hp/2:

Zp = zp −
hp
2
− zN (11)

In the piezoelectric layer, the out of plane electrical displacement D3 is determined by the dielectric constant
measured at constant stress εσ33 and electric field E3 = V/hp both in the z direction, and the in-plane plate strains
εrr,p and εθθ,p that generate charge via 31 mode actuation:

D3 = e31,f (εrr,p + εθθ,p) +
εσ33V

hp
(12)

Further input of the plate strain equations from [28] yields:

D3 = e31,f (Zp − Ze)
(

1

r

∂W

∂r
+
∂2W

∂r2

)
+
εσ33V

hp
(13)
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Electrical current is generated via the bending moment induced by the moment arm between the electrical neutral
axis and center of the piezoelectric layer. In [34], it is demonstrated that:

e31,fZe

(
1

r

∂W

∂r
+
∂2W

∂r2

)
=

2d231YpV

hp (1− νp)
(14)

enabling the separation of the electrical displacement into voltage and deflection dependent components:

D3 = e31,fZp

(
1

r

∂W

∂r
+
∂2W

∂r2

)
+

(
−2d231Yp
hp (1− νp)

+
εσ33
hp

)
V (15)

By definition, the electrical current I3 is the time dependent derivative of the electrical displacement integrated over
the plate area:

I3 = jω

∫ 2π

0

∫ a

0

D3 (r) rdrdθ (16)

which in reduced, electrode dependent form becomes [34]:

Ink = jω

(
2πe31,fZp

[
r
∂Wnk

∂r

]a′′k
r=a′

k

+ C0,kVk

)
(17)

where by definition [30] the clamped capacitance C0 is:

C0,k =
(
1− k231

)
Cf,k (18)

and the free capacitance Cf is given by:

Cf,k =
εσ33π

(
a′′2k − a′2k

)
hp

(19)

with coupling coefficient k231:

k231 =
2d231Yp

εσ33 (1− νp)
(20)

Consistent with other piezoelectric transducer systems [30], the derived coupling coefficient is equivalent to
the material planar coupling coefficient for thin film piezoelectric layer in 31 mode. For piezoelectric transducer
operation in 31 mode, the limiting value of the effective coupling is determined by the PZT material coupling
k231 ≈ 20% [35].

B. Mechanical Impedance

The solutions for current and deflection with dependency on applied pressure and voltage form the fundamental
building blocks for the governing transduction equations and equivalent circuit representation. For consistency with
common mechanical domain modeling, the field and flow variables of force F and velocity u are selected. Since
the plate deflection varies across the surface, a velocity must be chosen that will effectively characterize the plate
motion. Based on common approaches in transduction literature [30], the average velocity computed over the entire
plate surface is selected to characterize the deflection behavior. The average velocity is given as:

unk =
jω

πa2

∫ 2π

0

∫ a

0

Wnk (r) rdr (21)

with simplification:

unk = jω

[
2π

DΛ0n (γ40n − γ4)

[
e31,fZp

(
2J1 (λ0n)

πλ0n

)
BnkVk +

(
2J1 (λ0n)

πλ0n

)2

Pω

]]
(22)

Similarly, the force is the pressure integrated over the plate area. Assuming the pressure force is constant over the
plate surface, the force is simply:

F = πa2Pω (23)
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By using an approach similar to [33], admittance values are determined from Equations 7 and 17. Beginning with
the electrical portion of the admittance matrix, expansion of Equation 17 by substitution using Equation 7 yields:

Ink = jω

[
2πe31,fZp

(
Bnk

DΛ0n (γ40n − γ4)

)(
e31,fZpBnkVk +

2J1 (λ0n)

πλ0n
Pω

)
+ C0,kVk

]
(24)

From the governing equations for transducers, the electrical portion of the admittance is known to take the form
[33]:

∂Ink
∂Vk

= jωC0,k +
∂Ink
∂F

NnBnk (25)

Differentiating Equation 24 with respect to Vk and fitting it to the form of Equation 25 yields:

∂Ink
∂F

= jω

[
2πe31,fZp

(
Bnk

DΛ0n (γ40n − γ4)

)(
2J1 (λ0n)

πλ0n

)]
(26)

and mode dependent transformation ratio Nn:

Nn =

[
πλ0n

2J1 (λ0n)

]
e31,fZp (27)

For piezoelectric transducers, transduction is linear and reciprocal; therefore, reciprocity must be satisfied with
the chosen field and flow variables:

∂Ink
∂F

=
∂unk
∂Vk

(28)

As a reciprocity check, differentiation of Equation 22 with respect to Vk yields:

∂unk
∂Vk

= jω

[
2πe31,fZp

(
Bnk

DΛ0n (γ40n − γ4)

)(
2J1 (λ0n)

πλ0n

)]
(29)

which is equivalent to ∂Ink
∂F in Equation 26.

The mechanical impedance is then determined through substitution of Equation 72 for Λ0n and Equation 2 for
γ:

zm,n =
∂F

∂unk
=

(
Dγ40n
jω

+ jωI0

)[
1

2π

(
γ0nJ0 (λ0n)

2J1 (λ0n)

)2
]

(30)

where the first and second terms represent stiffness Km,n and mass Lm,n contributions, respectively.
Final modification and simplification of the lumped parameters yields each component in symbolic form:

Km,n = bn
λ40nπD

a2
(31)

Lm,n = bnπa
2I0 (32)

where bn is:

bn =

[
1

2

(
λ0nJ0 (λ0n)

2J1 (λ0n)

)2
]

(33)

Conveniently, the bracketed term in Equation 27 and b0n are constants determined by the boundary condition mode
shape constant λ0n and derived from the characteristic shape profile solution. Therefore, for any clamp plate 31
mode piezoelectric transducer, the constant values will not change and the above equations are valid for equivalent
circuit representation.

Using the characteristic variables for electromechanical systems system, the piezoelectric governing transduction
equations can now be given as [30]:

F = zm,nunk −NnBnkVk
Ink = NnBnkunk + Y0,kVk

(34)

where the purely electrical component of the electrical admittance is Y0,k = jωC0,k.
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With the evaluation of constants at the first axisymmetric vibration mode, Equations 27,31, and 32 are written:

N1
∼= 19.127

Ypd31Zp
1− νp

(35)

Km,1
∼= 197.526

πD

a2
(36)

Lm,1 ∼= 1.891πa2I0 (37)

Previously, Mason employed a similar approach to determine mechanical impedance of a vibrating plate [32].
Although Mason’s approach is derived for a single material plate, generalization of the governing plate vibration
equation through the lumping mechanical terms into flexural rigidity and surface density allows for comparison
between Mason’s approach and the current model. For low frequency values, Mason used a power series expansion
of the Bessel functions to approximate the stiffness and mass yielding:

Km,Mason ≈ 192
πD

a2
(38)

Lm,Mason ≈
9

5
πa2I0 (39)

Mason’s approximate mass and stiffness in Equations 31 and 32 are in good agreement with the first mode derived
equations.

The electical and mechanical circuit parameters have now been fully defined with proven transduction reciprocity.
Further construction of the equivalent circuit requires a shift in focus to acoustic domain modeling, which requires
a separate solution technique. As a result, the acoustic domain model is independent of the electromechanical
transduction scheme and thus acoustic models are applicable to any clamped, vibrating circular plate system.

C. Acoustic Radiation Impedance

Applying the solution technique derived by Morse and Ingard [31], the vibrating diaphragm is placed along the
surface of the infinitely rigid baffle centered at the origin as shown in Figure 6. The pressure at a distance R from
the diaphragm center is determined by integrating the pressure gradient source strength and Green’s function for
infinite baffle wave propagation [31]:

Pω (r, φ, z) = jρck

∫ ∫
uω (x0, y0)Gω (r, φ, z|r0, φ0, 0) dx0dy0 (40)

where the Green’s function for the axisymmetric case in cylindrical coordinates is given by:

Gω (r, φ, z|r0, φ0, 0) =
j

2π

∫
J0 (µr) J0 (µr0)

µdµ√
k2 − µ2

(41)

with [31]:
µ = ksinθ (42)

For a clamped plate with radius a, the deflection is determined by an amplitude constant related to the vibration
mode A0n and the characteristic shape profile Ψ0n (r0) from Equation 4:

W (r0) =
∑
n

A0nΨ0n (r0) (43)

Substituting Equation 41 into 40 and re-writing in cylindrical coordinates yields the finalized form of the pressure
integral:

Pω,n (r) = jωρcka2A0n

∫ ∞
0

J0 (µr) g0n (µa)
µdµ√
k2 − µ2

(44)
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Fig. 6. Coordinate system for diaphragm in an infinite rigid baffle. r0 denotes coordinates pertaining to the pressure source and r represents
coordinates for measured pressure.

where the inner integral g0n (µa) is:

g0n (µa) =
1

(µa)
2 − λ20n

(µaJ1 (µa) J0 (λ0n)− λ0nJ1 (λ0n) J0 (µa))

− J0 (λ0n)

I0 (λ0n)

1

(µa)
2

+ λ20n
(λ0nI1 (λ0n) J0 (µa) + µaI0 (λ0n) J1 (µa)) (45)

In the pressure integral expression, g0n (µa) is the zeroth order Hankel transform of the shape profile function
Ψ (r0). Generally, the zeroth order Hankel transform represents the two-dimensional Fourier-Bessel tranform in polar
coordinates. Therefore, g0n (µa) and shape profile function Ψ (r0) form Hankel transform pairs - the cylindrical
two-dimensional analog of the Fourier transform pairs.

Since the pressure loading varies in the near field, integration of Equation 44 over the diaphragm surface area is
necessary to determine the overall force:

Fn = 2π

∫ a

0

Pω,n (r) rdr = jω2πρcka3A0n

∫ k+j∞

0

g0n (µa) J1 (µa)
dµ√
k2 − µ2

(46)

From the pressure force and with substitution of Equation 43 into Equation 21, the radiation impedance is determined
with the average velocity as the flow variable:

Zr,n =
Fn
〈unk〉

= πa2ρc (ka)
λ0n

2J1 (λ0n)

[∫ k

0

g0n (µa) J1 (µa)
dµ√
k2 − µ2

+j

∫ ∞
k

g0n (µa) J1 (µa)
dµ√
k2 − µ2

]
(47)

where dimensionless resistance rr,n and reactance xr,n terms are extracted as:

Zr,n = πa2ρc (rr,n + jxr,n) (48)

For the lumped parameter model, the resistive and inductive acoustic terms are further defined as:

Rr,n = πa2ρcrr,n (49)
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and
Lr,n = πa2ρc

xr,n
ω

(50)

The integral in Equation 47 is difficult to solve analytically, so a numerical integration using the integral function
in Matlab is used to generate the solution curves in Figure 7 and discrete values in Table III. A similar integral,
that for the rigid piston model provided in [31], was computed using the same integral function and compared with
the available analytical solution to confirm function accuracy.

Since the physical system is similar and the solution approach is the same in both cases, the impedance in
the rigid piston and plate vibration models should behave similarly with differences attributed to the variation in
velocity across the plate surface. The validity of the plate vibration model is assessed drawing comparison to the
rigid piston case and through understanding of the limiting cases of the physical system. In the ka >> 1 regime,
the wavelength λ << 2πa is small compared to the size of the device and the radiation impedance becomes almost
purely resistive and equivalent to the area multiplied by the characteristic acoustic impedance of the medium or
ρcπa2 [31].

In the opposite case for ka << 1 when the wavelength is long compared to size, the mean outflow from the
transducer is approximately uniform, behaving like a point source. Here, the radiation resistance varies from the
reactance by a factor of ka; thus, the reactive component dominates. Particularly for small ka, the resistive and
reactive loading is nearly the same in both cases. As such, it should be valid to apply the same approximations for
ka < 1 from the rigid piston case to the plate vibration approach. From [36], the dimensionless radiation resistance
can be approximated as:

rr ≈ (ka)
2
/2 (51)

and likewise dimensionless reactance becomes:
xr ≈ ka (52)

As expected, the approximations shows strong agreement with the analytical values for ka < 1 in Figure 7. In
general for both the rigid piston and plate vibration cases, the high and low ka limiting behaviors are observable.

Fig. 7. Dimensionless resistance rr and reactance xr components of the radiation impedance for the rigid piston model and the current plate
vibration derivation near the first axisymmetric vibration mode. Values provided for specific values of ka shown in Table III. Simplified rr and
xr given by Equations 51 and 52, respectively provide valid approximation for small ka.

D. Directivity

With the definition of µ in Equation 42, the angular dependence is already implicitly considered in the acoustic
impedance derivation and is effectively eliminated through the force integration over the surface of the pMUT. Based
on the form of the impedance integral presented in [36] and discussion on the angular dependence of intensity in
[31], the directivity can be directly extracted from the above acoustic impedance determination.

By definition, directionality is the ratio of the far field pressure at an angle θ to the on axis far field pressure
with θ = 0 [37]. Consistent with assumptions made by Porter [37] and Pritchard [36], radiator directivity at large
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[H]

TABLE III
DIMENSIONLESS RADIATION IMPEDANCE VALUES

ka xr rr

0.1 0.0933 0.0050
0.2 0.1855 0.0199
0.3 0.2753 0.0445
0.4 0.3617 0.0785
0.5 0.4435 0.1213
0.6 0.5200 0.1723
0.7 0.5900 0.2308
0.8 0.6529 0.2960
0.9 0.7080 0.3668
1 0.7547 0.4424
1.5 0.8530 0.8532
2 0.7381 1.2233
2.5 0.4818 1.4538
3 0.1907 1.5106
3.5 -0.0405 1.4262
4 -0.1628 1.2728
4.5 -0.1805 1.1246
5 -0.1341 1.0280
5.5 -0.0726 0.9915
6 -0.0297 0.9954

distances from the surface K = K (µ, φ) is independent of the radial coordinate r:

K (µ, φ) =
Pω (µ, φ)

Pω (µ = 0, φ)
=

∫
uω (r0, φ) J0 (µr0)µr0dr0∫

uω (r0, φ) r0dr0
(53)

where the pressure is calculated using Equation 44. Finally from the directivity, an alternative form of radiation
impedance in Equation 47 based on that given by [36] can be written:

Zr,n = ρcπa2 (ka)

∫ k+j∞

0

Kn (µa) J1 (µa)
dµ√
k2 − µ2

(54)

As a check of the directivity calculation, a constant velocity represents the rigid piston case, which when input
into Equation 53 yields the well-established beam pattern for rigid piston radiation [31]:

Krp (µa) =
2J0 (µa)

µa
(55)

as shown in Figure 8. Using the previous calculated integrals in Equations 45 and 21 and the directivity definition
in Equation 53 yields the axisymmetric mode dependent directivity of the vibrating plate:

Kn (µa) =
λ0ng0n (µa)

2J1 (λ0n)
(56)

For validation of the determined directivity, the beam pattern intensity with reference to its maximum value at a
measurement point perpendicular to the surface is shown plotted against the dimensionless variable µa = kasinθ in
Figure 8. It is significant to note that this pattern holds for any value of ka, and the directivity intensity is bounded
by the minimum values set by |ka|. Simulated values specific to a single pMUT near its fundamental resonance in
a vegetable oil environment show strong agreement with the derived directivity K (µ). Comparison with the rigid
piston model shows deviation between the piston and plate increases with ka.

Based on typical length scales and fluid properties for a micro-scale ultrasonic transducer used in medical
applications, a single device operated in an oil medium is generally bounded by 0.1 < ka < 1, justifying the
bounding points represented at the top of Figure 8. Here the wavelength is small compared to the size of the
device, but not negligibly small. As such, wave propagation occurs with nearly uniform radial intensity from the

13



Fig. 8. Beam pattern as a function of the dimensionless variable kasinθ = µa. Inset (a) shows range of common ka values for MUTs used
in medical ultrasound with comparison to a simulated pMUT near fundamental resonance. Model and simulation curves difficult to discern
because of good agreement. Analytical model compared to rigid piston model for larger µa in (b). Minima represent grating lobes present for
higher values of ka.

MUT similar to that from a point source. However, intensity loss proportional to ka occurs off the axis of maximum
response and is observable in the directivity shown in Figure 8.

IV. FABRICATION

For substantive model verification, a single electrode pMUT cell design with varying electrode size is selected.
Given the relation between electrode size and transformation coupling through B11, electrode size is expected
to have an easily measurable influence on electrical parameters. Since electrode size is simply modified through
lithographic patterning, validation of the model can be made on the substrate level ensuring consistency in the
material properties and piezoelectric film quality between tested devices. Various plate radii were also patterned to
achieve varying resonant frequencies, with larger lower frequency (< 1MHz) devices representing NDT and range
finding applications and smaller, higher frequency devices (> 1MHz) considered for medical ultrasound.

The pMUT fabrication process starts with a Silicon-on-Insulator (SOI) wafer consisting of 3.5µm silicon device
and 1µm buried silicon oxide layers. Thermal oxide is grown on the wafer and image reversal photolithography
is used to pattern the bottom electrode and electrical routing to contact pads on the edge of chips. Electron beam
deposition of 30nm/200nm of Ti/Pt forms the bottom electrode layer followed by lift-off to achieved the final
patterning.

Next, a multi-layer Pb (Zr0.52)Ti0.48O3 film is deposited, patterned and annealed on the substrate. 15 wt%
PZT sol-gel (PZT 52/48 solution E1 purchased from Mitsubishi Materials) is spin coated onto the substrate and
then pyrolyzed at 350◦C. Subsequent layers are deposited following the same approach. After pyrolysis, PZT is
patterned via standard photolithography and etched with a quick exposure to a 20 : 6 : 1 mixture of DI water:
hydrochloric acid: buffered oxide etch immediately followed by vigorous rinsing in DI water. Once the photoresist
is removed, the PZT is annealed in a furnace at 700◦C with oxygen flow.

The top electrode is patterned using the same image reversal photolithography and lift-off technique except with
electron beam deposition of 30nm/175nm of Ti/Au. In addition to patterning of the top electrode, Au is deposited
on the contact pads at the chip edge for wire bonding. Finally, the diaphragm and chips are released with a Deep
Reactive Ion Etching (DRIE) of the handle wafer from the back side using the buried oxide as an etch stop. The
fabrication process flow is shown in Figure 9, and measured thicknesses of tested pMUT devices are shown in
Table I.

Scanning electron microscope (SEM) images of the final device cross-sections are shown in Figure 10. Over-
etching is observed as part of the common ’footing’ defect that results from charge build-up on the buried oxide
layer of the SOI substrate during DRIE. Steps were taken to minimize the footing effects by modifying handle
wafer thickness, etch time, chamber pressure and other parameters. However, for model confirmation, the diaphragm
radius is adjusted based on the SEM cross-sectional images to reflect over-etching. As a general rule, over-etching
is aspect ratio dependent and therefore increases with device radius. For the large devices, over-etching of ≈ 40%
is observed, which is consistent the cross-section shown in Figure 10.
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Fig. 9. pMUT fabrication process flow with cross-section images of the SOI substrate after thermal oxide growth (a), bottom electrode deposition
(b), PZT deposition and etching (c), top electrode deposition (d), and back side DRIE (e). Rendered isometric view (left) and microscope (right)
images of the devices during processing shown in (b), (c), and (d).

V. EXPERIMENT

A. Dynamic Deflection

The resonant frequency of pMUT cells are measured using a laser doppler vibrometer (LDV, Model MSA-500
Micro System Analyzer with extended frequency range capability, courtesy of Polytec, Inc.) via a frequency sweep
with 1V excitation. Results are shown in Figure 11a for pMUTs with radii similar to devices used in subsequent
electrical and static deflection tests.

For the first three axisymmetric vibration modes, the measured deflection profile is normalized and compared to the
dimensionless shape profile from Equation 4 in Figure 11b-d. For n = 1, 2, 3, the constant λ0n = 3.197, 6.307, 9.44
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Fig. 10. SEM of finished pMUT device with top view (a) and cross sections in (b-d). Over-etch defect shown in greater detail in (c) and
labeled top layer view in (d).

which is taken from plate vibration literature [31]. Strong agreement between the measured profile and model
indicate that the diaphragms are vibrating within the plate regime, and the influence of tension from residual
stresses is assumed to be minimal, which is neglected in the current analysis.

From SEM images such as those in Figure 10, the fundamental resonant frequency is calculated according to
Equation 6 by inputting the etched plate radius, layer thicknesses and material properties. Strong agreement between
the model and measured resonant frequency demonstrates both the validity of Equation 6 [31] and confirms the
calculation of D, I0, and a for further use in the equivalent circuit model.

B. Static Deflection and e31,f Measurement

With the proven dominance of plate mode bending, the deflection model is applied to the static bending case
using Equation 7 neglecting pressure. Previously, the static model was compared to both experimental data and an
alternative energy based deflection derivation demonstrating strong agreement [28]. With the validated model, static
deflection is now used to directly determine the piezoelectric constant e31,f , which bypasses the specialized wafer
flexure set-up typically required for the 31 piezoelectric constant measurement [38]. Static deflection is measured
over a range of applied bias voltages using an optical profilometer (ZYGO Corp.). Differential deflection averaged
over the electrode area is compared to the 0V reference state. For the single electrode case only considering the
first vibration mode, the deflection scales with bias voltage as:

Wavg,11 =
e31,fZp
DΛ01γ401

B11VDC

[
1

πa2e

∫ 2π

0

∫ ae

0

Ψ (r0) r0dr0dθ0

]
= −MVDC (57)

where the slope M becomes:

M =
2e31,fZp
DΛ01γ401

[
J1 (γ01ae)

2 −
(
J0 (λ01)

I0 (λ01)
I1 (γ01ae)

)2
]

(58)

From the resonant frequency, the etched radius is determined using the approach described in the previous section.
All other geometric parameters and constants that define the slope M are known. For devices characterized in Table
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Fig. 11. LDV frequency sweep measurement normalized to deflection at fundamental resonant mode (a), insets show 3D views of raw profile
data (axes not to scale) for a = 137.0µm device at each axisymmetric mode. Normalized profile slices as a function of dimensionless radius
compared to shape profile in Equation 4 for n = 1, 2, 3 axisymmetric vibration modes shown in (b)-(d), respectively.

Fig. 12. Differential deflection averaged over the center electrode area measured from four separate devices with the same geometry. Slope
extracted from linear fit through the origin with robustness demonstrated via high R2. Standard error shows the consistency of measurement
with e31,f = −8.56± 0.6C/m2 calculated using Equation 58.

IV, e31,f = −8.56± 0.6C/m2 is determined from a linear fit of the deflection vs. bias voltage data and Equation
58 and is consistent with typical values for thin film Pb (Zr0.52)Ti0.48O3 [35].

Electrode size dependence is determined in a similar manner using the linear fit of differential deflection and bias
voltage. Since the electrode size varies, the slope is adjusted to account for the varying area used in the deflection
profile average. Experimental data is plotted as M/Ψavg,11 in Figure 3 where Ψavg,11 is represented by the bracketed
term in Equation 57. All data is normalized to the maximum value of M/Ψavg,1 achieved at ae/a = 0.64 with
error bars showing standard error. Measurements were performed on devices with a = 139.5 ± 0.2µm and layer
thicknesses shown in Table I. Extracted e31,f = −6.35± 1.06C/m2 is again consistent with common values [35]
and demonstrates the typical variation in deposited sol-gel PZT quality across wafer substrates.

C. Electrical Impedance

Transduction performance is further evaluated using electrical impedance measurements (Model 1260A
Impedance/Gain-phase Analyzer, Solartron Inc.) with a frequency sweep with V1 = 1V near the fundamental
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Fig. 13. Imaginary X (a) and Real R (b) components of the experimentally measured electrical impedance showing linear interpolation for
stationary data fit. Motional impedance loop with circle fit (c) showing center resonant frequency f0, half power frequencies f ′ and f ′′, and
angle 2β. Motional impedance results when stationary fit subtracted from total impedance. Parameter values for this device and neighboring
devices reported in Table IV.

resonant mode. Impedance measurements are calibrated using a standard open/short compensation technique to
remove the effects of the measurement probes and cables. Typically, a form of least square curve fitting is then
employed to calculated the lumped parameters of the BVD model directly from the impedance data. However, it
is found that this method is very sensitive to initial conditions and is difficult to implement when the anticipated
values of lumped parameters vary by many orders of magnitude. Given this limitation, an iterative fitting technique,
based on experimentally extracted values and known transduction metrics for piezoelectric transducer systems, is
developed for higher accuracy and less sensitive fitting, as it does not require guessing initial conditions.

1) Stationary Components: The iterative fitting process begins by separating static and motional impedance
following a classical approach to impedance data fitting provided by [39]. A linear interpolation of the imaginary
and real raw data at frequencies above and below the resonant and anti-resonant peaks is used to determine the static
electrical reactive Xe and resistive Re terms, respectively, which are then subtracted from the total imaginary and
real impedances to determine motional impedance components. Sample experimental data with stationary fitting is
shown in Figure 13.

From the linear fit, the shunt capacitance defined in Equation 18 is directly determined by the static reactance
according to:

C0 =
−1

ωXe
=
εσ33πa

2
e

hp

(
1− k231

)
(59)

Like many perovskite phase ferroelectric materials, PZT has a high dielectric constant, which results in a shunt
capacitance larger than anticipated parasitics. However, for highest accuracy, impedance measurements were made
via direct device probing to remove parasitic effects of electrical routing. For the analytical model and simulation,
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the relative dielectric constant εσ33/ε0 = 800 is selected, which shows a strong fit with the experimental data in
Figure 14a and falls within the range of common values for thin film PZT [40]. The shunt capacitance measurement
is validated through comparison to a measured bulk capacitor of similar capacitance.

In experiment, it is found that application of the appropriate DC bias voltage is required to minimize dielectric loss
and maximize the piezoelectric constant near resonance. In this way, static conductance G0 is considered negligible
in subsequent calculations, which is consistent with the treatment of conventional piezoelectric transducer systems
[30]. The cumulative sum of the required bias field and amplitude of the AC signal is on the order of 3x the coercive
field of the PZT, which is consistent with fields typically applied for poling [41]. Unlike in the bulk case, for thin
film piezoelectric systems, it is common for a biasing DC electric field to be added to an AC field to maintain
polarization when the operating AC field is close to the coercive field [35]. Biasing is also found to reduce the loss
tangent in piezoelectric thin films [29], [42]. Despite the application of bias voltage, e31,f extracted from the best
fit circuit parameters and confirmed with simulations is smaller than in the static case as shown in Table IV.

2) Motional Components: Motional lumped parameters are determined from lumped parameter based definitions
of metrics measured directly from experiment. In experiment, the sharpness of the resonant peak, referred to as the
mechanical quality factor Qm is measured and related to lumped parameters by [30].

Qm = ω0
L

R
=

f0
f ′′ − f ′

(60)

where (f ′′ − f ′) /f0 is the fractional bandwidth at half-power or −3dB fractional bandwidth. Graphically, Qm is
determined following the approach in [39]. After subtraction of stationary components from total impedance, a
circular fit of the vector locus of the motional impedance is performed as shown in Figure 13c. From the circle
radius and the angle 2β formed between the circle center and origin, the coordinates of the half-power f ′ and f ′′

frequencies are geometrically determined and represent the frequencies at which the real and imaginary components
of the impedance are equal.

Other metrics used for fitting include the effective electromechanical coupling k2eff [30]:

k2eff =
N2C

N2C + C0
= 1− f20

f2a
(61)

measured from the anti-resonant frequency at the local maximum fa and resonant frequency at the local minimum
f0 of the impedance magnitude data. Finally, the angular resonant frequency ω0 = 2πf0 is alternatively defined as:

ω0 =
1√
LC

(62)

The experimentally determined values in Equations 59, 60, 61, and 62 are then input into the iterative fitting model
described in Appendix D to determine the best fit lumped parameters.

With fluid medium and mechanical dissipation, the resonant peak is slightly damped widening the apparent gap
between the resonant and anti-resonant peak resulting in an artificially high k2eff measurement as shown in Table
IV. Based on this error, it is recommended that the capacitance based definition of k2eff should be reported over
the experimentally determined frequency based definition, both shown in Equation 61. Since the calculated quality
factor is less sensitive to the linear interpolation fit as demonstrated in Table IV, the directly measured value of
Qm is generally valid.

VI. IMPEDANCE MODEL VALIDATION

Electrical impedance parameter fitting from pMUTs with varying electrode coverage are collected to support the
current circuit modeling endeavor (Figure 14). For best comparison, data for electrode size variation is collected on
chips from the same wafer with similar material stack thicknesses. However, across wafer variation in PZT quality
and etching resulted in variation of the piezoelectric constants on a chip-by-chip basis. For a more universally
accurate data comparison, the modified transformation ratio is introduced to remove the piezoelectric constant
dependence:

N ′ =
N

e31,f
(63)
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TABLE IV
EQUIVALENT CIRCUIT LUMPED PARAMETER VALUES AND PERFORMANCE METRICS

Parameter Data Fit(Measured) Analytical Model
e31,f = −5.5C/m2

General aexp(µm) 62.6± 0.3
ae/a 0.479± 0.002
e31,f (C/m2, static) −8.56± 0.6
e31,f (C/m2, 3− 4MHz) −5.5± 0.15
C0(pF ) 70.3± 0.9 76
CN2(pF ) 0.120± 0.007 0.120
k2eff (%) 0.165± 0.009 (0.734) 0.171

Air f0(MHz) 3.554± 0.030
L/N2(mH) 17.4± 0.9 16.7
R/N2(Ω) 1481± 43
MLR 5.1± 0.34
Qm 264.9± 20.2 (298.7)

Data collected from 2D patterned cells on the same chip.

Simulations with varying e31,f values confirm that the definitions of motional parameters based on N ′ are equivalent,
which agrees with the analytical modeling prediction. For mass and capacitance parameters, simulation, analytical
model and experimental data show strong agreement (see Figure 14) confirming the accuracy of the Green’s function
based approaches.

Although the motional resistance trend as a function of electrode radial coverage is similar, the measured
resistance is much larger than simulated and analytical values. Since mechanical dissipation is difficult to predict,
the mechanical resistance is initially not included in the analytical and simulation model. However, from the data fit
to experimental data, the total resistance including the mechanical and acoustic components is extracted. For most
MEMS resonator systems, mechanical dissipation is due to thermoelastic losses and is anticipated to be larger than
the acoustic loading resistance in air [43]. In the engineering of traditional bulk ultrasonic devices, the mechanical
loss ratio MLR relates mechanical resistance Rm to acoustic resistance Rr as:

MLR = Rm/Rr (64)

and is a common metric for quantifying dissipation [44]. Using this approach, the mechanical dissipation is
empirically determined from analytical and measured data with standard error as MLR = 5.21 ± 0.27 for data
presented in Figure 14d. As expected, MLR is constant with limited variation for diaphragms of similar geometry.
The total motional resistance R can then be estimated as:

R = (MLR+ 1)Rr (65)

and shows strong agreement with the experimentally measured values in Figure 14d.
The raw experimental impedance curve data is compared to the analytical model via substitution of the empirically

calculated R from Equation 65 into the system transfer function. When both are included in the analytical model,
the resulting total and motional impedance data aligns well with the modified analytical model as shown in Figure
13. Transfer functions in Figure 15 plotted with lumped parameters shown in Figure 14. Figure 15 demonstrates
efficacy of model and data fit to experiment over a range of electrode sizes.

On-chip pMUT variation is further evaluated through measurement of identical 2D patterned transducer cells.
Relevant metrics, extracted parameters, and device geometry in Table IV demonstrate the repeatability of the data
fitting and consistency of on-chip device performance.

VII. DISCUSSION

A generalized form of the arbitrary electrode, axisymmetric vibration mode Mason equivalent circuit for a
clamped, circular plate pMUT is presented. From the most general form, the electrical, mechanical and acoustic
domain lumped parameters are defined for the fundamental vibration mode, single electrode case. With the lumped
parameter determinations validated with experiment and simulation, design suggestions can be made based on
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Fig. 14. Shunt capacitance (a), modified motional compliance (b), inductance (c), and resistance (d) as a function of electrode radial coverage
where N ′ is defined in Equation 63. MLR determined empirically from Equation 64 as MLR = 5.21± 0.27.
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Fig. 15. Experimental data including lumped parameter data fit and analytical model with MLR and measured stationary capacitance as a
function of electrode radial coverage. Motional impedance (a) and total imaginary (b) and real (c) impedance as a function of frequency and
correspond with extracted parameters for chip #1 in Figure 14. Close fit demonstrates robustness of fitting technique and strength of analytical
model.

structural and material property dependence. The initial design is fabricated with a focus on residual stress reduction
through the use of a dummy outer electrode and thick silicon device layer. As a result from the vibration mode shape
measurements and static deflection, pMUT vibration is shown to be plate mode and the influence of tension caused
by residual stress is negligible. Further work is needed to evaluate the extent of the stress-free model applicability to
pMUT designs with smaller relative thickness of supporting structural layers. In these cases, it is strongly suggested
that the plate model is only applied when the stiffness is confirmed to dominate deflection and vibration behavior
as was demonstrated in the current work. Determination of residual stress effects is the subject of future work,
which can be achieved through the addition of a second order residual stress induced tension term in Equation 1
(see [45] for tension modified plate vibration equation) and an analogous solution technique.

However, residual stress reduction comes at a cost: the thick, inactive silicon layer acts to reduce the effective
electromechanical coupling. In future design endeavors, thickness and material selection of the active and inactive
material layers should be optimized via Equation 61 with achievable performance bounded by fundamental material
coupling k231. As in MEMS cantilever systems [46], it is realistic to assume that the upper limit of the achievable
electromechanical coupling is approximately k231/2. For increased driving efficiency, the shunt capacitance should be
minimized without compromising high transformation N and compliance values Cm, which is most easily achieved
with high k231. In this way, k231 is a critical figure of merit in selection of the appropriate piezoelectric material for
any 31 mode MEMS based vibrating plate system. However, k231 must balanced with a high force output figure of
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merit e31,f . Strong transformation between the electrical and mechanical domains defined by N relates directly to
pressure output and sensitivity. Since N scales directly with e31,f , the ideal piezoelectric material for high effective
electromechanical coupling and increased sensitivity must have high k231 and e31,f making engineered relaxor
ferroelectrics like PMN − PT an attractive selection based on increased piezoelectric response [47]. Although
aluminum nitride (AlN) can achieve comparable k231 to PZT, lower e31,f makes AlN more suited for applications
where sensitivity can be sacrificed for decreased shunt capacitance.

Additional improvement in electromechanical transformation is achieved through DC bias voltage application.
Consistent with previous results [29], [42], bias voltage increases e31,f and offset the dielectric loss responsible for
static resistance. At high frequency, the application of the bias voltage can minimize the loss tangent and maximize
responsiveness; however, a reduction in e31,f compared to the static case is still present and likely caused by de-
poling effects. It can be assumed that this reduction is unavoidable and further work is necessary to strongly confirm
the relation between static and dynamic e31,f . The validated static and dynamic plate vibration models introduced
here demonstrate the capability of direct quantification of thin film piezoelectric constant for comparison between
static and dynamic cases.

The mechanical, transformation, and electrical domain parameters are similarly defined regardless of the pMUT
application. Given the separate derivation approach in the acoustic domain, the acoustic parameters are valid for
any vibrating, clamped circular plate system and are therefore applicable to alternative actuation mechanisms
including electromagnetic and electrostatic systems, particularly cMUTs. For ultrasonic systems, application is
largely dependent on size, frequency, and fluid loading conditions and determination of acoustic parameters must
be carefully considered based on the dimensionless acoustic parameter ka at resonance in each of these application.

Generally for medical ultrasound applications, a single cell falls within the ka < 1 but in air loading for NDT and
range finding, ka > 1 is possible. When ka < 1, the convenient polynomial approximations for Rr and Lr are valid
and the nearly omni-directional directivity mimics that of a point source. With ka > 1, limiting approximations for
acoustic impedance no longer hold and design should be selected with roughly ka < 6 to prevent grating lobes. As a
tool to the vibrating plate designer, a table of exact values for non-dimensionalized radiation resistance and reactance
is provided based on calculated ka (Table III), and is useful for regimes where limiting case approximations do not
apply.

In the mechanical domain, resistance is difficult to directly calculate and the empirically determined MLR is
introduced to quantify Rm as a function of Rr. MLR is shown to be independent of electrode size but is likely
material thickness and signal dependent, and more work is necessary to further understand the relation. However,
a quick comparison of the radiation resistance between oil and air loaded environments provides justification for
limiting case approximations. Assuming that MLR does not vary greatly between the oil and air loaded cases and
for safe assumption MLRair ≈ O (10), the oil loading case is predicted by:

MLRoil = MLRair
(ρcrr)air
(ρcrr)oil

(66)

Since rr only varies between approximately 0 and 1 and (ρc)air / (ρc)oil = O
(
10−4

)
, the worst case limits

MLRoil << 1. In most fluid loading cases representative of a medical ultrasound environment, it is likely safe to
assume that Rm is negligible but it might be necessary to check this assumption with empirical data. Particularly,
since heat dissipation likely scales with signal amplitude, the small AC signal amplitude (V0 = 1V ) used in the
current determination of MLRair might underestimate more realistic driving conditions, so care must be taken
with the limiting approximation.

Beyond the single electrode system, it is the hope of the authors that the general form of the equivalent circuit
can be advantageous for optimization of novel designs that have yet to be considered. For example, in conventional
multi-layer bulk transducer systems, wideband transmission performance has been demonstrated by using higher
order resonant modes [30]. For increased output, Sammoura et al. [48] proposed a two electrode pMUT design
where a center circular electrode and outer ring electrode are excited at voltages of the same magnitude and opposite
polarity. Model use is not limited to these representative examples but demonstrate the utility of the general analytical
circuit for real and novel applications.
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VIII. CONCLUSIONS

An analytical model with defined Mason equivalent circuit parameters is enumerated for the general case of the
arbitrary electrode, axisymmetric vibration mode, circular clamped plate pMUT cell. Acoustic domain modeling is
applicable to any vibrating plate system, which can prove useful in the analysis of both cMUT and pMUT systems.
For the single electrode fundamental vibration mode case, fabricated thin film PZT based pMUT cells with various
electrode sizes confirm the developed model through electrical impedance measurement, which is further supported
with simulation using custom defined thin film PZT material.

The explicit definition of Mason model lumped parameters is based on geometry and material properties enabling
straight forward implementation in fields including range finding, non-destructive testing and medical ultrasound.
Evaluation of lumped parameters is focused on model validation but is presented in a form amenable to future
design optimization. Building on the derived analytical equations, relevant simplifications based on operating
regimes defined by geometric and system parameters provides further ease of use in application of the developed
lumped parameter models. Finally, the utility of the analytical model is proved through formulation of preliminary
suggestions for improved electromechanical performance. This serves as the basis for future work to analytically
quantify key performance metrics including bandwidth, transmit and receiving sensitivity, output power, and
efficiency based on the derived equivalent circuit.

APPENDIX A

As before, the unimorph pMUT consists of a stack of a q isotropic material layers with an overall thickness∑q
i=1 hi. The height zi of material layer i referenced from the plate bottom at z = 0 is determined by the thickness

h of each preceding layer via zi =
∑i
j=0 hj . Neglecting electric field contributions and assuming the poisson ratio

of each layer νi is similar, the multi-layer plate neutral plane zN is conventionally defined as:

zN =
1

2

q∑
i=1

Yi(z2i−z
2
i−1)

1−ν2
i

Yihi
1−ν2

i

(67)

where Yi is the Young’s Modulus of material layer i [3]. By integrating the plate stress-strain constitutive relations
to determine bending moments about the neutral plane, the flexural rigidity D is defined [28]:

D =

q∑
i=1

Yi
3 (1− ν2i )

[
(zi − zN )

3 − (zi−1 − zN )
3
]

(68)

and the inertial term is determined from Hamilton’s principle where surface density I0 is [49]:

I0 =

q∑
i=1

ρihi (69)

APPENDIX B

For a clamped plate, the deflection solution is determined by the green’s function and the right hand side of
Equation 1 commonly referred to as the forcing function f (r):

W (r0) = −
∫ a

0

f (r)G (r|r0) rdr (70)

From before [28], the axisymmetric Green’s function is defined as:

G (r|r0) =
∑
n

Ψ0n (r) Ψ0n (r0)

Λ0n (γ40n − γ4)
(71)

with deflection profile constant Λ0n:

Λ0n =

a∫
0

[Ψ0n (r)]
2
rdr = a2J0 (λ0n)

2 (72)
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TABLE V
MATERIAL PROPERTIES OF SOL-GEL Pb (Zr0.52T i0.48)O3

Parameter Value
Yp 63GPa
νp 0.33
d33,f 100pC/N
e31,f varied
εσ33 800

Values from [35].

APPENDIX C

A. Material Definition of Sol-Gel PZT

For all simulations, the material properties of the sol-gel PZT based on commonly known values found in [35]
are manually input into the simulation. Material properties are defined for the stress-charge form of the piezoelectric
relations [44]:

σ = cEε− eE
D = eε+ εεE

(73)

All materials including PZT are assumed to be isotropic, so the compliance matrix cE is reduced by symmetry
accordingly:

cE =


Q11 Q12 Q12 0 0 0
Q12 Q11 Q12 0 0 0
Q12 Q12 Q11 0 0 0

0 0 0 Q66 0 0
0 0 0 0 Q66 0
0 0 0 0 0 Q66

 (74)

where:
Q11 =

Yp(1−νp)
(1−2νp)(1+νp)

Q12 =
Ypνp

(1−2νp)(1+νp)
Q66 =

Yp
2(1+νp)

(75)

with material properties defined in Table V.
Since the electric field is applied in the 3 direction and the excitation is in the 31 mode, fully defined material

property matrices are unnecessary for proper simulation. Therefore, properties unnecessary for the computation,
like piezoelectric constants in alternative excitation modes are filled with realistic dummy values based on [35].
To ensure that these unnecessary material constants do not affect the simulation, dummy values are swept and the
results demonstrate minimal effects.

The piezoelectric constant matrix is then defined as:

e =

 0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0

 (76)

where:
e33 = d33,fQ11

e31 = e31,f + Q12
Q11e33

(77)

In the electric domain, the dielectric constants εε form the matrix:

εε =

εε11 0 0
0 εε22 0
0 0 εε33

 (78)
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Fig. 16. Schematic of 2D axisymmetric pMUT COMSOL model set up showing geometry, boundary conditions and pressure measurement
along the maximum response axis (MRA).

with:
εε33 =

ε0ε
σ
33 − 2d31e31 − d33e33

ε0
(79)

where ε0 is the permittivity of free space and:

d31 =
1−νp
Yp

e31,f

d33 = d33,f − 2νp
1−νp d31

(80)

For the above matrices, dummy values are inserted for e15, εε11, and εε22, which in practice do not affect simulation
results. However, since the modified longitudinal piezoelectric constant d33,f does determine the 31 mode transverse
constant and the dielectric constant in 33 at constant strain, several values were inserted into simulations based on
a range of anticipated values taken from [35]. Modification of d33,f demonstrated some effect on the broadness of
the resonant peak; however, the magnitude of the effect on Qm is limited (< 10%). As such, a value consistent
with [35] is selected and shown in Table V, which should provide a reasonably accurate result.

B. Single Cell Geometry

A single pMUT cell is modeled using a 2D axisymmetric piezoacoustic framework in COMSOL 4.2a. The cell
is centered in a rigid wall with a length much greater than the device diameter and is surrounded on the top side
by a hemispherical fluid medium. Boundary conditions are set as fixed along the plate edge, rigid on the wall
and spherical wave radiation is defined at the hemispherical boundary. Pressure values as a function of distance
are calculated from the mesh points along the maximum response axis (MRA), which is the axis centered and
perpendicular to the active cell. The simulated model geometry and boundary conditions are depicted in Figure 16.

APPENDIX D

From Equations 59, 60, 61 and 62, initial values of the lumped parameters C0, N2C, L/N2, and R/N2 are set.
Since Qm and k2eff are sensitive to stationary fitting and measurement conditions, error is anticipated in the initial,
direct lumped parameter values. Therefore, an iterative fitting approach diagrammed in Figure 17 is adopted for
determining the lumped parameter best fit. Data fit parameter values are shown in Table IV.
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Initialize

Guess:
k2eff (0) = 1− f20

f2a

Qm (0) =
f0

f ′′ − f ′

Specify:

C0 =
−1

ωXe

ω0

N2C (i) =
C0

1−keff (i)2

L
N2 (i) =

1
ω2

0CN
2(i)

R
N2 (i, j) =
ω0

Qm(j)
L
N2 (i)

Calculate
Transfer
Function

∣∣∣[Dcos (2β)]exp

− [Dcos (2β)]fit

∣∣∣2
→ 0?

k2eff (i) =
k2eff (i− 1) +

∆k2eff

Stop

Qm (j) =
Qm (j − 1) +

∆Qm

Fig. 17. Iterative lumped parameter fitting process flow. Best fit achieved with minimum residual sum of squares set by the diameter D of the
motional impedance locus.
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