
Blocks at Your Fingertips:
Blurring the Line Between Blocks and Text in GP

Jens Mönig
jens@moenig.org

CDG

Yoshiki Ohshima
Yoshiki.Ohshima@acm.org

Communications Design Group (CDG), SAP Labs

John Maloney
jmaloney@media.mit.edu

CDG

Abstract—Visual blocks languages offer many advantages to
the beginner or “casual” programmer. They eliminate syntax
issues, allow the user to work with logical program chunks,
provide affordances such as drop-down menus, and leverage the
fact that recognition is easier than recall. However, as users gain
experience and start creating larger programs, they encounter
two inconvenient properties of pure blocks languages: blocks take
up more screen real-estate than textual languages and dragging
blocks from a palette is slower than typing.

This paper describes three experiments in blurring the line
between blocks and textual code in GP, a new blocks language
for casual programmers currently under development.

I. INTRODUCTION

We are currently developing a new general purpose blocks
programming language, code named “GP”, aimed at “casual
programmers” (teen to adult). We hope to welcome new
programmers with a blocks-based authoring system that is as
easy to use as Scratch and to support them as they grow in
expertise. GP has been designed to allow the code for com-
plete applications, including the GP programming environment
itself, to be viewed, edited, and debugged as blocks. Thus,
the budding programmer need not learn a new language or
even switch from blocks to textual code as their abilities and
ambitions grow.

II. PROBLEMS

A. The screen real estate problem

Blocks-based programming languages replace text with
graphical objects representing programming language ele-
ments such statements, expressions, and control structures.
These graphical program blocks typically have borders or-
namented with notches and indentations to suggest how the
blocks fit together. Blocks contain embedded labels, icons,
editable text fields, and interactive widgets such as drop-down
menus and color pickers. As a result, a block representing
a single statement usually takes more space than its textual
counterpart. The actual amount of extra space depends on the
visual design of the blocks, the hardware platform, and target
audience. For example, a blocks language that targets young
children using touch-screens might use larger blocks than one
aimed at adults using laptops.

Short block scripts can be quite readable. Unfortunately,
even a small increase in statement size multiplies with the
number of blocks in a stack and the number of stacks in a
window. This expansion spreads blocks code over a larger

area than its textual equivalent, making it harder to get an
overview of the code at a glance, and increasing the burden
of scrolling and navigation. This screen real estate problem
was pointed out long ago by Peter Deutsch1. In addition,
the colors, borders, and graphical elements of blocks can be
visually distracting, making it harder to scan the textual labels
on the blocks that carry most of the meaning.

B. The input problem

A blocks palette helps newcomers quickly discover what
commands are available. (Some blocks systems, such as
Scratch, allow blocks to be tested right in the palette, further
facilitating discovery and understanding.) However, experi-
enced programmers who use blocks languages often complain
that, once they know what commands are available, assembling
scripts by dragging blocks out of a palette is cumbersome
and takes much longer than it would take to type the code.
Searching for a block in the palette involves searching one or
more categories, visually scanning the blocks in each category
and possibly scrolling to find the desired block. In addition to
taking time, this process interrupts the users flow of thought
about the code.

The input problem gets worse as the number of blocks in
the palette grows. The first version of Scratch had about 80
blocks. The current versions of Scratch 2.0 and Snap each
come with about 140 blocks, and they can be extended with
external modules and user-defined block libraries that add
additional blocks. Since GP is aimed at a wider spectrum of
applications, its palette already includes 250 blocks, and since
GP is designed to be easily extended, that number will grow.

We seek to combine the benefits of blocks with the speed
of reading and writing textual code. The rest of this paper
describes three experiments that explore ways to address the
screen real estate and input problems.

III. EXPERIMENTS

A. Switching between blocks mode and text mode

Internally, GP code is represented as abstract syntax trees
that can be rendered easily as either blocks or text. Thus, the
first experiment (inspired in part by D. Anthony Bau’s Droplet
Editor for Pencil Code [3], which we saw in 2014) is to allow
the user to switch between blocks and text modes in place

1wikipedia.org/wiki/Deutsch_limit

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78063674?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. The script for a gray-scale gradient in both blocks mode and text
mode. The text mode version has been edited to remove the closing curly-
bracket of the “for” loop, so it is no longer syntactically correct. The vertical
line at the end of the text is the cursor.

(Figure 1). In text mode, one can type, delete, and position the
cursor at the character level, as one would in any text editor.
Clicking outside of the script parses the text and converts the
script back into blocks—assuming it is syntactically correct.

Text mode addresses the screen real estate problem: text
consumes less space than the blocks. With the current font
choices, the vertical space required for the text is about half
that of the blocks. Text mode also addresses the input problem:
an expert can type code quickly without having to drag blocks
out of the palette. Text mode also allows an expert to create
blocks for GP functions that are not advertised in the palette,
a “feature” that has sometimes saved us during demos.

However, we found that text mode has a number of dis-
advantages. First, it re-introduces the possibility of making
syntax and spelling errors. Second, switching to text loses the
interaction affordances we enjoy with blocks. For example,
some blocks include drop-down menus. color picker widgets,
or numeric input slots that can be “scrubbed” to adjust the
input value; with text, one must type expressions or constants
to generate the desired values.

Finally, editing code as pure text requires using the internal
form of GP code, a LISP-like function call format that does
not support inline keywords. Furthermore, one must use the
internal function names. In the example, the internal function
name for the statement in the loop body is “self fillRect”
rather than “fill rectangle x y w h ”. Dropping
inline keywords and exposing the internal function names
is confusing enough in English, but it poses even bigger
programs for translating GP blocks into other languages. A
huge benefit of allowing block labels to be independent of
the underlying function names is that one can render the
same code into multiple spoken languages. Scratch supports
over 60 languages, and scripts written in one language (say,
Spanish) can viewed in another (say, Japanese). Scratch even
flips blocks to support right-to-left languages like Hebrew
and Arabic. We want the option of creating a Scratch-like
translation system for GP.

B. Blocks that look like text

The second experiment is an attempt to combine the benefits
of blocks with the compactness of textual code. The idea is

Fig. 2. The same code viewed as normal blocks (top) and as “text blocks”
(bottom). The downward arrowhead in the first line is a drop-down menu
widget. The horizontal arrowheads can be used to expand blocks to show
optional parameters.

to retain the graphical object structure of blocks code but
change its appearance and layout by removing all borders and
graphical ornaments except those needed to show structure,
such as in nested subexpressions. This “text blocks” mode
(currently controlled by a ”blocks-text” slider in the UI that
operates globally on all blocks and scripts) condenses the
blocks into roughly the same screen real-estate as textual
code and minimizes visual distractions, thus improving the
readability of larger pieces of code. However, the blocks are
still there and active. They can be dragged, dropped, duplicated
and assembled in different ways. To make this clear, faint
outlines of the block shapes appear as the mouse cursor
hovers over them. The blocks also retain any interactive input
widgets such as drop-down menus, color pickers, and, as seen
in Figure 2, the arrowheads used to reveal optional block
parameters.

With GPs current font and layout choices, a stack of blocks
in “text blocks” mode takes up about half the vertical space
as that same stack viewed as normal blocks. Surprisingly,
text blocks code can also take less vertical space than its
textual equivalent. When viewed in TextWrangler, a popular
textual code editor, a 39-line GP ”quicksort” method actually
required 40% more vertical space than it did when viewed
as text-blocks using the same font. The main reason for
this is that TextWrangler uses a generous amount of space
between lines, possibly to help programmers locate errors by
line number, whereas GP’s current line spacing is somewhat
cramped. However, these are details; the key point is that
code rendered as “text blocks” can be at least as dense as
the equivalent textual code in a conventional code editor, and
thus the Deutsch limit is not an issue.

Inspired by a demo of Etoys given by Alan Kay at the
2004 OOPSLA conference, we parameterized the transition
between conventional blocks and text blocks. This allows us
to provide a “blocks-text” slider so that the user can set the
blocks appearance to any intermediate point along the blocks-
text continuum, as Alan showed in his talk. It also allows the
transition to be animated, as it is in PencilCode.



Fig. 3. Keyboard editing. A block is being inserted at the block editing cursor
(white bar). The user has typed “fi” and the menu shows several possible
matching blocks. The user can either type enough letters that the desired “fill
rectangle” block is the only match or, as shown here, use the down arrow key
to select the desired block. Once the desired block is selected the user can
press the enter key to insert it.

C. Keyboard-based block editing

The third experiment explores ways to input and edit blocks
code using only the keyboard. This effort was initially inspired
by an interest in making GP accessible to users with visual or
physical impairments, but we quickly realized that keyboard-
based block editing addresses the input problem and thus
benefits all GP users.

For this experiment, we added a movable “block editing
cursor” to the scripts editor (Figure 3). The block editing
cursor can be moved through all blocks in the scripts editor
using the arrow and tab keys, and the block before the cursor
can be deleted using the backspace key. Pressing a letter key
allows the user to type the name of a block to be inserted
at the cursor. 2 As they type, the system shows a short list
of potentially matching blocks that is updated after every
keystroke. Matches are determined by comparing the letters
typed with the subset of blocks from the palette that would be
syntactically correct at that input location. For example, when
the cursor is in an input slot, only reporter blocks (expressions)
are offered as possible matches. The enter key can be pressed
to select and insert the top-hit in the match list, or the arrow
keys can be used to select one of the other alternatives. This
mechanism is similar to the auto-completion feature found in
some textual code editors, although in this case the user must
choose a valid block, whereas in a text editor the user can
ignore the auto-completion suggestions and type something
else.

Keyboard editing makes inputting blocks code much faster
for experts. Features for experts can make a system less
welcoming for beginners, but not in this case. A new GP
user can easily ignore the keyboard editing features. They
can explore the block palettes to discover what commands are
available and can use drag-and-and drop to assemble blocks
into scripts, just as they do in Scratch. However, keyboard
editing may be useful even for a relative newcomer to GP,
since it leverages the fact that recognition is easier than recall.

2Block matching was inspired by Snap’s search-bar, originally prototyped
by Kyle Hotchkiss (pull request #403 for Snap) and by Greenfoot3’s frame
editor by Michael Kölling, Neil C. C. Brown, and Amjad Altadmri [2].

The user need only remember (or guess) enough of a block
name to make the desired block appear in the list of possible
matches.

Keyboard editing supports translation to different spoken
languages, since block matching is based on the (translated)
block labels, not on the internal function names.

IV. REFLECTION

These three experiments have provoked some reflections.
The first experiment, converting between text and blocks
seemed promising until we tried it. However, simply editing
blocks code as text re-introduces the potential for syntax and
spelling errors, loses the convenience of input widgets such
as menus and color-pickers, and poses problems for block
translation to other languages. The second experiment sug-
gests that we can eliminate visual distraction and achieve the
same compactness as textual code by changing the graphical
appearance and layout. By retaining the underlying block
structure, users still enjoy freedom from syntax and spelling
errors, the benefits of structural editing, and the convenience
of input widgets. The third experiment suggests that entering
and editing blocks code can be done efficiently using only
the keyboard. Furthermore, in contrast to the free-form text
mode editing of the first experiment, keyboard-based blocks
editing eliminates the potential for syntax and spelling errors
and supports translation.

Of course, other projects have explored ideas similar to
those discussed here, include StarLogo TNG [1], Greenfoot
[2], and Pencil Code [3][4]. The Greenfoot paper includes an
excellent discussion of other related work, including several
structure-based code editors from the 1980’s, Alice, and Touch
Develop.

While blocks languages are a tremendous boon to begin-
ners and casual programmers, experienced programmers often
prefer text-based programming tools. While it is too soon
to tell how well the techniques described in this paper—
along with other techniques yet to be discovered—will serve
programmers, it is our fond hope that experienced program-
mers may eventually find blocks programming environments
more convenient and productive than the text-based tools they
currently use.

REFERENCES

[1] Corey McCaffrey. StarLogo TNG: The Convergence of Graphical Pro-
gramming and Text Processing. Master’s thesis, Massachusetts Institute
of Technology, 2006.

[2] Michael Kölling, Neil C. C. Brown, and Amjad Altadmri. Frame-Based
Editing: Easing the Transition from Blocks to Text-based Programming
(to appear). In The 10th Workshop in Primary and Secondary Computing
Education (WiPSCE), 2015.

[3] D. Anthony Bau. Introducing the Droplet Editor, 2014. https://
youtu.be/PGDj1IzOtoo.

[4] David Bau, D. Anthony Bau, Mathew Dawson, and C. Sydney Pickens.
Pencil Code: Block Code for a Text World. In ACM Interaction Design
and Children (IDC), pages pp. 445–448, 2015.


