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Synaptotagmin 1 (Syt1) is a synaptic vesicle integral membrane
protein that regulates neurotransmitter release by activating fast syn-
chronous fusion and suppressing slower asynchronous release. The
cytoplasmic C2 domains of Syt1 interact with SNAREs and plasma
membrane phospholipids in a Ca?*-dependent manner and can sub-
stitute for full-length Syt1 in in vitro membrane fusion assays. To
determine whether synaptic vesicle tethering of Syt1 is required for
normal fusion in vivo, we performed a structure-function study with
tethering mutants at the Drosophila larval neuromuscular junction.
Transgenic animals expressing only the cytoplasmic C2 domains or
full-length Syt1 tethered to the plasma membrane failed to restore
synchronous synaptic vesicle fusion, and also failed to clamp sponta-
neous vesicle release. In addition, transgenic animals with shorter, but
not those with longer, linker regions separating the C2 domains from
the transmembrane segment abolished Syt1’s ability to activate syn-
chronous vesicle fusion. Similar defects were observed when C2 do-
main alignment was altered to C2B-C2A from the normal C2A-C2B
orientation, leaving the tether itself intact. Although cytoplasmic
and plasma membrane-tethered Syt1 variants could not restore syn-
chronous release in syt? null mutants, they were very effective in
promoting fusion through the slower asynchronous pathway. As
such, the subcellular localization of Syt1 within synaptic terminals is
important for the temporal dynamics that underlie synchronous and
asynchronous neurotransmitter release.
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N eurotransmitter release requires temporal and spatial cou-
pling of action potential-triggered Ca** influx to synaptic
vesicle fusion (1). The core fusion machine contains SNARE
proteins found on the synaptic vesicle (v-SNAREs) and plasma
membrane (t-SNAREs) that assemble into a four-helix bundle to
bring the two bilayers into close apposition (2, 3). Besides SNARE:,
Ca’*-binding proteins act to trigger release through fast synchro-
nous and slow asynchronous pathways. Synaptotagmin 1 (Sytl) is
a synaptic vesicle protein that binds Ca®* and triggers synchronous
vesicle fusion (4-9). Sytl contains an intravesicular N-terminal tail,
a single transmembrane segment, and a ~60- residue linker that
connects to two cytoplasmic Ca®*-binding C2 domains (10-13).
Numerous Sytl studies have focused on its cytoplasmic C2
domains, which interact with phospholipids and the SNARE
complex in a Ca*"-dependent manner and are proposed to be
the essential domains that trigger fusion (12, 14-21). In con-
trast, the significance of other structural elements of Sytl
remains poorly understood. Sytl is predicted to facilitate syn-
aptic vesicle fusion through a trans interaction with plasma
membrane lipids (22-27). Tethering of Syt1 to synaptic vesicles
through its transmembrane domain has been postulated to
position the protein to properly target lipids and SNAREs, or
to be required to generate force for pulling the membranes
together. Although anchoring through the transmembrane
tether is unlikely to generate the intramembrane proximity
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required for the final steps in fusion owing to the distance in-
volved, binding of individual C2 domains simultaneously to both
membranes might, because such binding can aggregate lipid
bilayers in vitro (27-29).

Despite these models, however, the role of vesicular tethering
of Syt1 in vivo remains unclear. Injection of a cytoplasmic domain
of rat Sytl into crayfish motor axons facilitates exocytosis (30),
implying that the cytoplasmic region alone may act as a fusion
trigger. In contrast, in vitro studies indicate that the linker domain
that connects the transmembrane region to the C2 domains may
regulate docking, fusion pore opening, Sytl multimerization, and
intramolecular C2 domain interactions (31-34). The requirement
of C2 domain order (C2A, then C2B) has been suggested to be
dispensable for synaptic vesicle endocytosis in vitro (35), but the
functional consequences of altered C2 domain order on Syt1’s role
in triggering exocytosis in vivo remain unclear.

Here we assayed the requirements of these Sytl regions for
neurotransmitter release in vivo. We generated transgenic ani-
mals expressing modified Sytl proteins in the synaptotagmin
1 null mutant background and examined their function at the
Drosophila larval neuromuscular junction (NMJ), a well-established
model glutamatergic synapse. Our results indicate that synaptic
vesicle tethering, optimal linker length, and specific C2 domain
alignment are important for Sytl to regulate vesicle fusion. In ad-
dition, synaptic vesicle-tethered and cytoplasmic Sytl proteins dif-
ferentially regulate synchronous vs. asynchronous release kinetics,
indicating that synaptic vesicle localization of Syt1 is critical for
regulating neurotransmitter release.

Significance

Synaptotagmin 1 (Syt1) is widely considered to act as the fast
Ca®* sensor for synchronous synaptic vesicle fusion through its
tandem Ca?*-binding C2 domains. Here we demonstrate that
Syt1’s C2 domains activate rapid synchronous fusion only if
they are in the proper orientation and specifically tethered to
the synaptic vesicle with an appropriate linker distance. Al-
though expression of the cytoplasmic C2 domains of Syt1 alone
did not support fast synchronous release, it did enhance the
asynchronous component of exocytosis. These findings dem-
onstrate that synaptic vesicle tethering of Syt1 positions the
protein to allow its C2 domains to regulate the kinetics of
vesicle fusion.

Author contributions: J.L. and J.T.L. designed research; J.L. performed research; J.L. ana-
lyzed data; and J.L. and J.T.L. wrote the paper.

The authors declare no conflict of interest.
This article is a PNAS Direct Submission.
To whom correspondence should be addressed. Email: jihyelee@pusan.ac.kr.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1420312112/-/DCSupplemental.

PNAS | March 24,2015 | vol. 112 | no.12 | 3793-3798

[*T}
o
=
w
o
wvi
[=]
-
>
m
=


https://core.ac.uk/display/78063629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1420312112&domain=pdf
mailto:jihyelee@pusan.ac.kr
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1420312112/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1420312112/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1420312112

Results

Tethering of Synaptotagmin 1 to Synaptic Vesicles Differentially
Alters Synchronous vs. Asynchronous Fusion. In vitro studies on
Sytl have focused largely on its cytoplasmic domain, which can fa-
cilitate Ca**-dependent fusion similar to the full-length counterpart
in liposome fusion assays (22, 36-39). Here we generated transgenic
Drosophila Sytl constructs with no transmembrane tethering (cyto-
plasmic C2A-C2B), varying linker distance (no linker and 2x linker
C2A-C2B), or altered C2 domain order [C2B-C2A (flipped) instead
of C2A-C2B] (Fig. 14). We also generated a cytoplasmic version with
altered Ca* binding (cytoplasmic C2A*-C2B*) by mutating two of
the five key aspartate residues in both C2 domains (D282N, D284N,
D416N, and D418N; Fig. 14, white circles). To eliminate the effects
of genomic position on transgenic expression, we used site-specific
transformation via the ®C31 integrase system (40).

To determine whether these manipulations affected stability or
synaptic targeting of Sytl transgenic constructs, we performed
Western blot and immunostaining analyses in syt/ null mutants
(syt1*PsytI™3, referred to hereinafter as sytl”~) expressing the
transgenes driven by the pan-neuronal driver, elav"">-GAL4 (C155).
Lower levels of protein expression were observed from brain lysates
expressing the shortened linker (no linker) and altered C2 domain
order (flipped) versions, whereas the cytoplasmic Syt1 proteins were
expressed at normal levels (Fig. 1B). All Syt variants, including the
no linker and flipped versions, targeted normally to Drosophila larval
NMJs (Fig. 1C), suggesting that these structural alterations do
not perturb synaptic Sytl localization.

We next assayed the functional effects of these transgenic pro-
teins by measuring excitatory junction potentials (EJPs) following
nerve stimulation to determine if they rescued the Ca®*-dependent
synchronous fusion that is missing in the absence of endogenous
Sytl. Transgenic animals expressing only the cytoplasmic domain
of Syt1 (cytoplasmic C2A-C2B) demonstrated dramatically altered
kinetics of evoked responses compared with sytl 7~ animals res-
cued with full-length WT Sytl (C2A-C2B) (Fig. 24). We quanti-
fied the synchronous and asynchronous components by assaying
voltage changes in 100-ms intervals for 100 ms of prestimulation
and 500 ms of poststimulation (Fig. 2B, Inset). Unlike WT, cyto-
plasmic Sytl dramatically facilitated the asynchronous component
of synaptic responses, at the expense of synchronous release oc-
curring within the first 100-ms window. (Statistical analyses of
datasets are reported in Table S1.)

Such enhanced asynchronous release may reflect a defect in
concentrating Sytl at release sites, which could compromise
the kinetics of rapid Ca** binding and triggering of fusion. If so,
cytoplasmic Syt1 would still bind Ca**, but would take longer to
engage membranes and SNARE complexes, given that it was
not prepositioned on synaptic vesicles. However, the shift in release
kinetics observed with cytoplasmic Syt1 did not depend on its ability
to bind Ca**, because sytl ~/~ null mutants rescued with a Ca**-
binding-defective cytoplasmic construct (cytoplasmic C2A*-C2B*)
showed a similar shift as seen on enhanced asynchronous release
(Fig. 2). In contrast, a full-length Ca**-binding—deficient Sytl
(C2A*-C2B¥*) that was normally tethered to synaptic vesicles did
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Fig. 1. Generation of transgenic synaptotagmin 1 constructs and their targeting to synapses. (A) Schematic of Syt1 at the vesicle-membrane interface. Syt1
transgenic proteins tagged with Myc or His (yellow circles) were generated for WT (C2A-C2B) and other variants containing virtually no or a double-length
(2x) linker segment, a flipped C2B-C2A orientation, and cytoplasmic C2A-C2B alone or with mutated Ca®*-binding residues (cytoplasmic C2A*-C2B*). The five
aspartate residues critical for Ca%+ binding in each C2 domain are indicated as small circles, two of which are mutated in the C2A*-C2B* construct (white
circles). (B) Western blot analysis for expression of transgenic Syt1 proteins in adult Drosophila brain lysates. The transgenic proteins were detected with anti-
myc or anti-His antibodies in the syt7 null mutant background (syt"). Antisera to synaptogyrin (gyr) were used for a loading control. Several of the transgenic
proteins have some smaller degradation products that are weakly visible, and we cannot rule out unexpected effects from such products. (C) Distribution of
transgenic Syt1 proteins at larval NMJs visualized with anti-Syt1 (green) antisera in the syt~ background. Anti-HRP antibody (magenta) was used to counterstain
the synaptic arbor. (Insets) Magnified images of Syt1 immunoreactivity for the boxed regions. (Scale bar: 20 um.)
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Fig. 2. Enhancement of asynchronous release by cytoplasmic synapto-

tagmin 1. (A) Representative traces of consecutive EJPs recorded in HL3.1
saline with 1.0 mM extracellular [Ca®*] shown for syt7 null mutants (syt™")
rescued with the indicated transgenic constructs. (Scale bars: 5 mV and
200 ms.). (B) Voltage integral (mV x ms) values from EJP responses plotted
for the indicated time bins pre- and poststimulation for the specified gen-
otypes. (/Inset) Calculation of voltage integral in 100-ms bins (red vertical
lines). Mean + SEM are indicated. The numbers of larva examined were as
follows: syt™'~, C2A-C2B (WT), 10; syt™, 12; syt™", cytoplasmic C2A-C2B, 7; syt™~,
cytoplasmic CCA*-C2B*, 4; s /- C2A*-C2B* (full-length), 10. **P < 0.01; ***P <
0.001, one-way ANOVA for WT vs. genotypes indicated at a 100-ms interval.
*P < 0.05; ***P < 0.001, Fisher's least significant difference (LSD) multiple-
comparison test for each pair indicated.

not enhance asynchronous release (Fig. 2B). These data indicate
that relocation of Sgtl to the cytoplasm from synaptic vesicles,
regardless of its Ca“*-binding ability, shifts synaptic vesicle re-
lease from a synchronous mode to an asynchronous mode. The
increase in asynchronous release was present only in the absence
of endogenous Sytl, given that overexpression of these cyto-
plasmic constructs in the WT background did not yield changes
in the temporal profiles of synaptic responses (Fig. S1).

It should be noted that substantial increases in the rate of
spontaneous vesicle release, or miniature EJPs (mEJPs), also
could contribute to voltage changes measured in the poststimulation
window. To evaluate this contribution, we analyzed voltage changes
at the 100-ms prestimulation window in syt ™'~ null mutants rescued
with transgenic constructs. However, the slightly elevated presti-
mulation voltage integral in cytoplasmic Sytl-expressing animals
fell far short of explaining the robust increase in stimulation-
induced asynchronous release (Fig. 2B). In the absence of nerve
stimulation, we detected increases in mEJP frequency, in addi-
tion to asynchronous release, in animals expressing cytoplasmic
Syt1 [9.16 + 1.62 Hz for cytoplasmic C2A-C2B (n = 7) vs. 2.74 +
0.29 Hz for full-length C2A-C2B (n = 15); P < 0.001] (Fig. S2).
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However, the full-length C2A*-C2B* rescue construct promoted
spontaneous release to far greater levels than its cytoplasmic
counterpart [17.28 + 1.54 Hz for C2A*-C2B* (n = 9) vs. 4.81 +
0.96 Hz for cytoplasmic C2A*-C2B* (n = 7); P < 0.001) (Fig.
S2), but did not alter asynchronous release (Fig. 2B). Thus, en-
hanced spontaneous release cannot explain the increased asyn-
chronous fusion observed with cytoplasmic Sytl. These results
indicate that tethering of Sytl to synaptic vesicles is indispens-
able for its function to selectively facilitate fast synchronous
vesicle fusion.

Targeting of Synaptotagmin 1 to the Plasma Membrane Fails to Support
Synchronous Vesicle Release. Currents models suggest that Sytl may
bring the vesicle and plasma membranes in close proximity through
its attachment to synaptic vesicles and Ca**-dependent penetration
into the plasma membrane via the C2 domains (27, 37, 39). How-
ever, in vitro studies indicate that synaptic transmission can be
supported by a plasma membrane-tethered Syt1 construct (35, 39).
Thus, we investigated whether alternative targeting of Sytl to the
plasma membrane could functionally replace its endogenous teth-
ering to synaptic vesicles in vivo. We generated a transgenic con-
struct in which the N-terminal region of Sytl, including the
transmembrane domain, was replaced with a myristoylation motif
(myr-C2A-C2B or myr-Sytl hereinafter), a lipid anchor that has
been successfully used in Drosophila to target other proteins to the
synaptic plasma membrane in vivo (41) (Fig. 34). Endogenous
Syt1 displays a characteristic halo-like distribution pattern at syn-
apses that corresponds to synaptic vesicles distributed throughout
the bouton, including the interior of the terminal (Fig. 3B, Upper,
arrowheads). In contrast, myr-Syt1 was localized at the periphery
of synaptic terminals (Fig. 3B, Lower, arrows), with increased co-
localization with syntaxin (Syx), a plasma membrane t-SNARE
protein [Fig. 3C; coefficient for colocalization of Syt1 relative to Syx
(Left): 0.51 +0.03 for C2A-C2B vs. 0.66 + 0.02 for myr-Syt1, P < 0.01;
coefficient for overall colocalization between Sytl and Syx (Right):
0.27 + 0.03 for C2A-C2B vs. 0.36 + 0.02 for myr-Syt1, P < 0.05].

We next assayed the ability of myr-Sytl to restore synaptic
responses in syt "~ mutants. In contrast to WT, myr-Syt1 failed
to restore synchronous release and clamp spontaneous fusion
(Fig. 3C, Fig. S2, and Table S2). In addition, myr-Syt1 resulted in
a significant increase in asynchronous vesicle release, a pattern
indistinguishable from that observed with cytoplasmic Syt1 (Fig.
3D, green column). These data indicate that tethering of Sytl to
synaptic vesicles, but not to the opposing plasma membrane, is
required to properly activate synchronous release and clamp
spontaneous fusion.

Synaptotagmin 1 Linker Domain Length and C2 Domain Arrangement
Regulate Synchronous Fusion. Given that Sytl requires tethering
to synaptic vesicles to selectively promote synchronous neuro-
transmitter release, we assayed how the spacing of the C2 domains
from the vesicle membrane, as well as C2 domain order, would
alter synaptic transmission. Sytl proteins expressing an extended
double-length linker domain (2x linker) rescued synaptic trans-
mission defects in syt/ 7~ mutants comparable to their WT coun-
terpart (Fig. 4 A and B). In contrast to the extend linker, syr1 =™~
mutants rescued with virtually no linker failed to restore normal
evoked responses, with responses indistinguishable from those of
syt~ (Fig. 4 A and B). We did not detect any significant differ-
ences in asynchronous responses occurring between 200 and 500 ms
poststimulation among syt~ mutants rescued with WT, 2x linker,
and no linker Sytl constructs (Table S3). The no linker version
exhibited mildly enhanced spontaneous release [6.15 + 0.73 Hz (n =
10); Fig. S2] that resulted in a slight elevation in the voltage integral
that was similar in the prestimulation and poststimulation 400- to
500-ms windows (Fig. 4B and Table S3). These results indicate that
the linker domain has a minimal length requirement to facilitate
synchronous release and to clamp spontaneous fusion.
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Fig. 3. Failure to restore synchronous release by plasma membrane-targeted synaptotagmin 1. (A) Schematic of myr-Syt1 showing the intravesicular tail and
transmembrane segment replaced with a myristoylation motif to target the protein to the plasma membrane. (B) Distribution of WT (C2A-C2B) or myr-Syt1
expressed in the syt? null mutant background (syt”") revealed by immunoreactivity against Syt1 (magenta) and compared with the plasma membrane
t-SNARE syntaxin (Syx) (green). Note that myristoylation of Syt1 increases targeting of the protein from central areas of the boutons (Upper, arrowheads) to
the plasma membrane domain (Lower, arrows) defined by Syx immunoreactivity. (C) The fraction of colocalization between Syt1 and Syx calculated from
double-labeled confocal images, using ImagelJ with the Coloc2 plugin (S/ Materials and Methods). Manders and Pearson coefficients are indicated for relative
[Syt1 to Syx (Left) and Syx to Syt1 (Center)] and overall colocalization (Right) between the two signals, respectively. The numbers of larva and regions of
interest (ROIs) examined were as follows: syt ™=, C2A-C2B (WT), 5 (13); syt -, myr-C2A-C2B, 6 (12). *P < 0.05; **P < 0.01, Student two-sample t test for WT vs.
myr-C2A-C2B. (D) Representative traces of EJP responses shown for syt1™~ mutants rescued with myristoylated Syt1. (Scale bar: 5 mV and 200 ms.) (E) Voltage
integral (mV x ms) values plotted for the indicated time bins pre- and poststimulation (green column for myr-Syt1). Data from the syt1"‘ (white column) and
rescue with WT (black column) and cytoplasmic Syt1 proteins (gray column) from Fig. 2 are shown for comparison. Mean + SEM are indicated. The numbers of
larva examined were as follows: syt™~, C2A-C2B (WT), 10; syt™'~, 12; syt™"~, cytoplasmic C2A-C2B, 7; syt™~, myr-C2A-C2B, 9. *P < 0.05; **P < 0.01; ***P < 0.001,

one-way ANOVA for WT vs. genotypes indicated at a 100-ms interval. *P < 0.05, Fisher’s LSD multiple-comparison test for each pair indicated.

Although the C2A and C2B domains have several distinct
effector interactions, it is unclear whether the specific alignment
of C2A preceding C2B is a core feature of Sytl. To address this
question, we analyzed synchronous release in syt ~~ mutants
rescued with a flipped Syt1 C2 domain order (C2B-C2A). Unlike
the ability of a C2B-C2A flipped construct to rescue endocytosis
(35), C2B-C2A failed to restore the synchronous component of
vesicle release in vivo in sytI ™~ mutants (Fig. 4 A and B). The
flipped Syt1 rescue also displayed enhanced spontaneous release
[5.34 £ 0.74 Hz (n = 5); Fig. S2], resulting in a mildly elevated
voltage integral at 400-500 ms poststimulation and, to a lesser
extent, at 100 ms prestimulation (Fig. 4B and Table S3). These
results indicate that the specific C2A-C2B orientation of the
cytoplasmic C2 domains is required for synchronous neuro-
transmitter release. Given the presence of the intact linker do-
main in this line, the data also suggest that the linker domain
alone is insufficient to restore the normal kinetics of release.

Discussion

The Ca**-binding C2 domains of Syt1 have been intensively studied
for their role in driving synchronous synaptic vesicle fusion. Here
we analyzed whether other regions of Sytl also participate in
regulating release. Our findings demonstrate that transmembrane
tethering to synaptic vesicles and maintenance of the linker length
and C2 domain orientation are critical for Sytl to regulate neuro-
transmission. In addition, cytoplasmic Syt1 enhanced asynchronous
release even in the presence of Ca**-binding mutations in both
C2 domains, indicating that vesicular tethering of Syt1 is important
for whether fusion occurs through a synchronous pathway or an
asynchronous pathway. Taken together, these data demonstrate
that synaptic vesicle tethering and linker domain length function to
allow the C2A-C2B domains of Syt1 to regulate multiple modes of
neurotransmitter release.
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One goal of this study was to compare the requirements of
synaptic vesicle tethering of Sytl in vivo to in vitro biochemistry
and liposome fusion results that used the Sytl cytoplasmic C2
domains (23-25, 36). Only a few previous in vivo studies have
investigated whether Syt1 requires synaptic vesicle tethering, and
have yielded conflicting results. Although injections of the cy-
toplasmic domain of rat Syt1 into crayfish motor axons appeared
to enhance the synchronicity of release (30), a similar approach
in Aplysia neurons found inhibitory effects of cytoplasmic Sytl
proteins (42). Using a genetic rescue approach, we found that
the cytoplasmic domain of Sytl could not support normal syn-
aptic transmission in vivo. Cytoplasmic Sytl failed to rescue
characteristic defects of sys/ null mutants, including disrupted
synchronous evoked release and enhanced spontaneous fusion
(Fig. 2 and Fig. S2). We hypothesize that synaptic vesicle teth-
ering positions the C2 domains near plasma membrane lipids
and the SNARE complex, given that interactions with these
effectors have been suggested to mediate the activation of
evoked release and suppression of spontaneous fusion.

In contrast to synchronous release, cytoplasmic Sytl expres-
sion induced a novel effect on synaptic transmission that has not
been reported in vitro: a dramatic enhancement of asynchronous
release (Fig. 2). The syt/ ™~ mutants alone exhibited slightly el-
evated asynchronous release, indicating that Sytl can suppress
this slower fusion mode (7); however, cytoplasmic Syt1 triggered
a long-lasting increase in asynchronous fusion far greater than
that observed in syt~ (Fig. 2B). These data indicate that cy-
toplasmic Sytl promotes asynchronous release, rather than
simply failing to suppress the asynchronous pathway. We initially
surmised that this enhanced release might be due to Ca**-bound
Syt1 taking longer to engage membrane lipids or SNARE com-
plexes, given that it was not positioned normally at the site of
fusion through membrane tethering. This hypothesis was not
supported by the findings that Ca**-binding-defective cytoplasmic
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Fig. 4. Proper synaptotagmin 1 linker length and C2 domain orientation
are required for synchronous release. (A) Representative EJPs for syt1~/~
mutants rescued with the indicated transgenic constructs: (Left) 2x linker;
(Right) no linker and C2B-C2A. (Scale bar: 5 mV and 200 ms.) (B) Voltage
integral (mV x ms) values plotted for the indicated time bins pre- and
poststimulation. Mean + SEM are indicated. The numbers of larva examined
were as follows: syt™~, C2A-C2B (WT), 10; syt~ 12; syt”’~, no Linker-
C2A-C2B, 11; syt™", 2x Linker-C2A-C2B, 7; syt™~, C2B-C2A (flipped), 5. *P <
0.05; **P < 0.01; ***P < 0.001, one-way ANOVA for WT vs. genotypes in-
dicated at a 100-ms interval.

Sytl induced a similar enhancement of the slower asynchronous
phase of release (Fig. 2). Precisely how the aspartate-to-asparagine
C2 domain mutants used in our study affect lipid interactions in vivo
is unclear, considering that they could potentially trigger enhanced
Ca**-independent lipid interactions that would activate asynchronous
release. However, similar mutations in the normal synaptic vesicle-
tethered version failed to induce enhanced asynchronous release,
indicating that this property is unique to the cytoplasmic (and plasma
membrane-tethered) versions of Sytl.

An alternative model to account for the enhanced asynchro-
nous release under these conditions is that cytoplasmic Syt1 sup-
ports docking and endocytosis that is defective in the null mutant,
leading to an increased number of vesicles that can be activated
by the asynchronous Ca®* sensor. Although we cannot completely
exclude this possibility, our previous result with Ca®*-binding—
defective full-length Sytl (C2A*-C2B*) is inconsistent with this
model (21). The full-length C2A*-C2B* Sytl could not support
synchronous release, but restored normal synaptic vesicle number
and vesicle docking, as quantified by EM (21); however, this
mutated version of full-length Sytl does not show the enhanced
asynchronous release induced by the cytoplasmic and plasma
membrane-tethered versions (Fig. 2), suggesting that mechanisms
outside of vesicle docking and endocytosis may be relevant.

We also found a requirement for a specific linker domain
length to connect the C2 domains to a synaptic vesicle. Although
sytI”'~ mutants rescued with a 2x linker were indistinguishable
from those rescued with the WT counterpart, a shorter linker
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domain did not support synchronous fusion (Fig. 4). How flexible
the 2x linker is in vivo is unknown, but the data indicate that Syt1
might not be required to “pull” the synaptic vesicle toward the
plasma membrane as a mechanism to bring the two bilayers in
close proximity. Our data also indicate the specific C2 domain
order in Sytl (C2A-C2B) is important for synaptic transmission
(Fig. 4), suggesting that cooperative interactions by the two C2
domains may have a spatial requirement for driving fusion. Given
that plasma membrane-tethered Syt1 also fails to support synchro-
nous evoked release and induces enhanced asynchronous release
(Fig. 3), our data indicate that Sytl must be tethered specifically
to synaptic vesicles to support Ca>*-dependent, fast synchronous
release in vivo at Drosophila synapses.

Our results differ somewhat from observations using lentivirus
rescue of mouse syt/ knockout neurons with a growth associated
protein 43 (GAP43) palmitoylation domain version of Sytl that
tethers the protein to the plasma membrane (although a small
amount of vesicular targeting remains with this construct; ref. 33).
This plasma membrane version of Sytl rescues peak evoked am-
plitude at excitatory synapses (33), but fails to fully rescue the
total charge transfer at inhibitory synapses (37), indicating there
may be milder kinetic differences at mammalian synapses as well.
Whether myr-Sytl and GAP43-Sytl have differences in the ef-
ficacy of synaptic vesicle vs. plasma membrane targeting, or
whether these differences reflect species-specific Sytl require-
ments, will require a further study.

Besides the effects on asynchronous release, synaptic vesicle-
tethered Sytl was also required for regulation of spontaneous
fusion. The cytoplasmic domain of Sytl has been shown to form
a complex with SNARE proteins in a Ca®*-independent manner
in vitro (43-45) and to arrest partially assembled trans-SNARE
complexes before fusion (38), which may explain a potential role
of Sytl as a clamp for spontaneous release. However, our results
indicate that the ability of cytoplasmic Sytl to clamp fusion in
in vitro assays (38) does not translate into an in vivo clamping
effect. We observed a significant increase in spontaneous fusion
events in the presence of the cytoplasmic Sytl compared with
WT-rescued or null synapses (Fig. S2), suggesting that vesicular
tethering of Sytl is also critical for its clamping function.

One of the most striking findings of our analysis is that
membrane anchoring of Sytl to synaptic vesicles defines the
responsiveness and kinetics for its C2 domains to trigger vesicle
fusion. How does the role of Sytl compare with other putative
Ca** sensors? Synaptotagmin 7 (Syt7), another member of Syt
family that has been localized to the plasma membrane, was
recently implicated in asynchronous release. Knockdown of Syt7
selectively reduced asynchronous neurotransmitter release at
zebrafish neuromuscular synapses and in cultured hippocampal
neurons, suggesting that Syt7 may act as a plasma membrane
Ca** sensor for asynchronous fusion (46, 47). Whether Syt7 and
myr-Syt]l share common effector interactions to trigger asyn-
chronous release is unclear; however, unlike the observation with
Ca**-binding—defective cytoplasmic Sytl, Syt7 does require Ca**
binding to function as an asynchronous sensor (47). In addition,
a potential similarity of cytoplasmic Sytl to Doc2, a cytoplasmic
Ca*" sensor protein family recently implicated in asynchronous
and spontaneous vesicle fusion, can be seen (48). The Doc2s are
a family of cytoplasmic proteins (a, B, y) that contains dual C2
domains capable of binding to phospholipids in a Ca**-dependent
manner (49). Although Drosophila lacks a Doc2 homolog, mam-
malian studies of the protein family suggest that it regulates syn-
aptic vesicle release without membrane tethering (48). As such,
subcellular localizations of Ca®* sensors, together with their
Ca”*-binding properties and effector interactions, are likely key
determinants of the speed of synaptic vesicle exocytosis.

In summary, we conclude that tethering of Sytl to synaptic
vesicles in vivo is a prerequisite for its role in facilitating fast
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synchronous synaptic vesicle release and suppressing asynchro-
nous and spontaneous fusion.

Materials and Methods

Drosophila Stocks and Genetics. Drosophila melanogaster male larvae and
adult flies were cultured on standard medium at 22 °C. Generation of
transgenic Syt1 lines is detailed in S/ Materials and Methods.

Western Blot and Immunohistochemistry Analyses. \Western blot analyses were
performed with 1~3-d-old adult fly heads as described previously (21). The
primary antibodies used included rabbit anti-synaptogyrin (gyr;1:20,000)
and mouse anti-myc (1:500; Life Technologies) or anti-His antibodies (1:1,000;
Qiagen). Immunohistochemistry on third instar larvae was performed with

. Rizo J, Rosenmund C (2008) Synaptic vesicle fusion. Nat Struct Mol Biol 15(7):665-674.

. Sollner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE (1993) A protein
assembly-disassembly pathway in vitro that may correspond to sequential steps of
synaptic vesicle docking, activation, and fusion. Cell 75(3):409-418.

. Sollner T, et al. (1993) SNAP receptors implicated in vesicle targeting and fusion.
Nature 362(6418):318-324.

4. Littleton JT, Stern M, Schulze K, Perin M, Bellen HJ (1993) Mutational analysis of
Drosophila synaptotagmin demonstrates its essential role in Ca(2+)-activated neuro-
transmitter release. Cell 74(6):1125-1134.

. Geppert M, et al. (1994) Synaptotagmin I: A major Ca?* sensor for transmitter release
at a central synapse. Cell 79(4):717-727.

. Voets T, et al. (2001) Intracellular calcium dependence of large dense-core vesicle
exocytosis in the absence of synaptotagmin |. Proc Natl Acad Sci USA 98(20):
11680-11685.

. Yoshihara M, Littleton JT (2002) Synaptotagmin | functions as a calcium sensor to
synchronize neurotransmitter release. Neuron 36(5):897-908.

. Nishiki T, Augustine GJ (2004) Synaptotagmin | synchronizes transmitter release in
mouse hippocampal neurons. J Neurosci 24(27):6127-6132.

9. Liu H, Dean C, Arthur CP, Dong M, Chapman ER (2009) Autapses and networks of
hippocampal neurons exhibit distinct synaptic transmission phenotypes in the ab-
sence of synaptotagmin I. J Neurosci 29(23):7395-7403.

10. Perin MS, Fried VA, Mignery GA, Jahn R, Studhof TC (1990) Phospholipid binding by
a synaptic vesicle protein homologous to the regulatory region of protein kinase C.
Nature 345(6272):260-263.

11. Perin MS, Brose N, Jahn R, Sudhof TC (1991) Domain structure of synaptotagmin
(p65). J Biol Chem 266(1):623-629.

12. Sutton RB, Davletov BA, Berghuis AM, Sudhof TC, Sprang SR (1995) Structure of the
first C2 domain of synaptotagmin I: A novel Ca**/phospholipid-binding fold. Cell
80(6):929-938.

13. Desai RC, et al. (2000) The C2B domain of synaptotagmin is a Ca(2+)-sensing module
essential for exocytosis. J Cell Biol 150(5):1125-1136.

14. Brose N, Petrenko AG, Sudhof TC, Jahn R (1992) Synaptotagmin: A calcium sensor on
the synaptic vesicle surface. Science 256(5059):1021-1025.

15. Chapman ER, Jahn R (1994) Calcium-dependent interaction of the cytoplasmic region
of synaptotagmin with membranes: Autonomous function of a single C2-homologous
domain. J Biol Chem 269(8):5735-5741.

16. Chapman ER, Hanson PI, An S, Jahn R (1995) Ca’t regulates the interaction between
synaptotagmin and syntaxin 1. J Biol Chem 270(40):23667-23671.

17. Zhang X, Kim-Miller MJ, Fukuda M, Kowalchyk JA, Martin TFJ (2002) Ca®**-dependent
synaptotagmin binding to SNAP-25 is essential for Ca®*-triggered exocytosis. Neuron
34(4):599-611.

18. Fernandez-Chacén R, et al. (2001) Synaptotagmin | functions as a calcium regulator of
release probability. Nature 410(6824):41-49.

19. Mackler JM, Drummond JA, Loewen CA, Robinson IM, Reist NE (2002) The C(2)B Ca(2+)-
binding motif of synaptotagmin is required for synaptic transmission in vivo. Nature
418(6895):340-344.

20. Yoshihara M, Guan Z, Littleton JT (2010) Differential regulation of synchronous versus
asynchronous neurotransmitter release by the C2 domains of synaptotagmin 1. Proc
Natl Acad Sci USA 107(33):14869-14874.

21. Lee J, Guan Z, Akbergenova Y, Littleton JT (2013) Genetic analysis of synaptotagmin
C2 domain specificity in regulating spontaneous and evoked neurotransmitter re-
lease. J Neurosci 33(1):187-200.

22. Stein A, Radhakrishnan A, Riedel D, Fasshauer D, Jahn R (2007) Synaptotagmin acti-
vates membrane fusion through a Ca®*-dependent trans interaction with phospho-
lipids. Nat Struct Mol Biol 14(10):904-911.

23. Lee H-K, et al. (2010) Dynamic Caz*-dependent stimulation of vesicle fusion by
membrane-anchored synaptotagmin 1. Science 328(5979):760-763.

24. Kyoung M, et al. (2011) In vitro system capable of differentiating fast Ca**-triggered

content mixing from lipid exchange for mechanistic studies of neurotransmitter re-

lease. Proc Natl Acad Sci USA 108(29):E304-E313.

N

w

[}

o

~

00

3798 | www.pnas.org/cgi/doi/10.1073/pnas.1420312112

Syt1 (1:500) and Syx antisera (1:100), followed by FITC- and rhodamine red-
conjugated secondary antibodies (1:250; Life Technologies). The procedures
are described in more detail in S/ Materials and Methods.

Electrophysiology. Intracellular recordings of EJPs and mEJPs were performed
as described previously (21) at muscle fiber 6 of segments A3-A5, using HL3.1
saline at fixed [Ca®*] (1.0 for EJPs and 0.2 mM for mEJPs). Data acquisition
and analysis are described in S/ Materials and Methods.
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