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Abstract
We show that topological states are often developed in two-dimensional semimetals with quadratic
band crossing points (BCPs) by electron–electron interactions. To illustrate this, we construct a
concretemodel with the BCPon an extended Lieb lattice and investigate the interaction-driven
topological instabilities.Wefind that the BCP ismarginally unstable against infinitesimal repulsions.
Depending on the interaction strengths, topological quantum anomalous/spinHall, charge nematic,
and nematic-spin-nematic phases develop separately. Possible physical realizations of quadratic BCPs
are provided.

1. Introduction

The search for new topological states ofmatter has not stopped since the discovery of the quantumHall state in
the 1980s [1]. In particular, in recent years, the study of ‘topological insulators’ (TI) has become one of themost
activefields in condensed-matter physics, not only for its importance to fundamental physics but also for its
potential application in spintronics or thermoelectrics [2, 3]. This new insulating phase is distinguished from the
conventional one by a non-trivial Z2 topological invariant and robust gapless edge states in two dimensions (2D)
[4–7] or surface states in three dimensions (3D) [8, 9], againstmoderate perturbations that preserve time
reversal symmetry (TRS).

Generally, such topological insulating states can occur in a systemwith strong spin–orbit coupling that
explicitly breaks spin rotational symmetry (SRS), resulting in the band inversion phenomenon. Typical
materials that exhibit the TI phase are found in, for instance, theHgTe/CdTe quantumwells (2D), Bix −Sb x1 ,
Bi2Se3, Bi2Te3 (3D), and so on [11–15].However, an alternative route to TI is possible and it is associatedwith
the concept of the topologicalMott insulator,first studied in [16] in strongly correlated systems. There are two
key and generic ingredients in this approach. First, the Fermi surface of the non-interacting system should
shrink to discrete points (2D) or lines (3D), and hence it is semi-metallic; second, there exists a suitable repulsive
interaction, which can dynamically generate spin–orbit coupling through spontaneously broken SRS, as first
discovered byWu andZhang [10]. A few pioneering examples along this line of thought have been discussed in
various lattice geometries, e.g., honeycomb, [16–22] checkerboard, [23] kagome, [24, 25] diamond lattices [27],
and in the low-energy continuum theory [26].

Here we show that topological states can be generally realized in a systemwith quadratic band crossing
points (BCPs), which are symmetry protected at the non-interacting level. Near such kinds of BCP, instability
toward phases with broken symmetries is inevitable even if there is only weak interaction between electrons. To
demonstrate this, we construct a concretemodel with such a BCPon an extended 2DLieb lattice. There are
several reasons for us to choose the Lieb lattice. First, the Lieb lattice has three sites per unit cell, as shown in
figure 1.With only nearest-neighbor (NN) hoppings, there is a dispersionless (flat) band in themiddle of the
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band structure. The three-band touching point is the result of a combined effect of (a) crystalline symmetry
group of the Lieb lattice (D h4 -group), (b) spin rotation symmetry (or the absence of spin-orbital coupling), and
(c) equal intra-sublattice hopping amplitudes and vanishing hopping amplitudes between B andC sublattices.
Depending on the values of the onsite potentials or the presence of further range hoppings, the band crossing
feature between thisflat band and the two other bandsmay include: (i) Theflat band touches upper and lower
linearly dispersing bands at one point when (a, b, c) are all satisfied. (ii) Theflat band can be isolated. For
instance, one can add intrinsic spin–orbit couplings, i.e., breaking (b), as discussed byWeeks and Franz [29].
(iii)When the onsite potential on theA sublattice is not equal to that ofB/C sublattices [i.e., breaking (c)], the
flat band only touches one of the other two bands, which becomes quadratically dispersing, instead of linearly
dispersing [30]. Thus, these choices could variegate our results. Second, a nearly flat band has effectively large
correlation effects due to the small bandwidth, leading to fractional Chern insulating phases if the band has a
non-zeroChern number (see section 4). Finally, the 2DLieb lattice has been themost important building block
inmany 3Dperovskitematerials featuredwith complex phase diagram and strong electron–electron
correlations. Thus, study of themodel can be viewed as a preliminary investigation of the TI phase especially in
layered perovskites composed of weakly coupled 2Dplaneswith Lieb lattice structure (e.g., thewell-known
high-Tc cuprates).

In this paper, we start with the construction of the explicitmodel and reveal the topological nature of the
BCP at the non-interacting level.We then examine the consequence of such topological BCP, i.e., with a
symmetry protected quadratic dispersion, under the presence of short-range repulsive interactions.We
investigate various symmetry breaking instabilities at BCPswithin a self-consistentmean-field(MF)
approximation.Note that wemainly focus on type (iii) band structure, namely, only two bands touch together,
and compare it with the case of type (i) when necessary. In principle, for the BCP, there are twoways to open a
gap and gain energy: one is to open a full gap at BCP, and the other one is to split the BCP into twoDirac points
(eachwith Berry flux π), but at the price of brokenC4 symmetry. To justify this speculation, we showphase
diagrams for spinless/spinful fermions at 1/3 or 2/3 filling, according to the position of the BCP in the band
structure. In fact, at bothfillings, the phase diagrams are qualitatively similar with subtle differences due to
particle-hole asymmetry introduced by the interactions. In the spinless case, the leading order under ‘weak’next
nearest-neighbor (NNN) repulsion is the quantumanomalousHall (QAH) insulating state (TRS broken). For
‘strong’NNNrepulsion, the ground state evolves into insulating nematic state (C4 symmetry broken down to
C2). In addition, for intermediate strength, there exists a narrow coexistence region between these two orders. In
the spinful case, the phase diagrams aremore complicated. Besides the phases wefind in the spinless case, there
are also a quantum spinHall (QSH) insulating state and a nematic-spin-nematic semi-metallic phasewithDirac
nodes [31–33]. Thus, we clearly demonstrate that, in principle, correlated systemswith Lieb lattice structure can
be host to various non-trivial phases including TIs.

This paper is organized as follows. In section 2, we define themodel and demonstrate the topological nature
of its BCP frombothmomentum and real-space points of view.Next, the consequences of introducing short-
range repulsions are discussed for spinless fermions in section 3.1 and for spinful fermions in section 3.2,
respectively. Finally, we discuss some issues andmake conclusions in section 4.

Figure 1. Schematic plot of the 2D (extended) Lieb lattice. The dotted curve indicates the unit cell, which contains three sublattice sites
(A, B, C).
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2. The latticemodel

Webeginwith the tight-bindingmodel for non-interacting fermions,

 ∑ ∑ε= − +t c c c c , (1)
ij

ij i j

i

i i i0
† †

where ci
† creates a fermion on site i of the 2DLieb lattice, the unit cell of which is given by A B C, , sites shown in

figure 1. For simplicity, we take the hopping amplitudes, =t tij , betweenNN sites 〈 〉ij , and =t 0ij otherwise for
themoment. The effect of adding longer-range hopping amplitudes (but small inmagnitude) will be discussed
later when appropriate. Note that theC4 point group symmetry dictates that the onsite potentials onB andC are
equal, ε ε=B C. Although ε A B C( , , ) are generically non-zero, only their relative values are essential to determine
the symmetry of the lattice, and hence, the band structure. Therefore, hereafter we set the units of energy ≡t 1,
the lattice constant ≡a 1, and, without loss of generality, ε ε= = 0B C .

2.1. Band structure
The band structure of equation (1) can be obtained by transforming 0 intomomentum space,

 ∑ψ ψ= H k( ) , (2)
k

k k0
†

0

where the fermion spinor, ψ = c c c( , , )A B Ck k k k
† † † † , with sublattice (basis) index A B C, , and = k kk ( , )x y .

Defining the displacement vectors, =a (1 2, 0)1 and =a (0, 1 2)2 , H k( )0 is of the form

ε
=

− −( ) ( )
H

t t
k

k a k a
( )

2 cos · 2 cos ·

0 0
0

, (3)
A

0

1 2
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

where the lower triangularmatrix is understood to befilled for keeping thewholematrix hermitian. In this
notation, thefirst Brillouin zone (FBZ) is a square with four time reversal invariantmomenta (TRIM):
Γ π π π= = =X M(0, 0), ( , 0), ( , ), and π=Y (0, ) [see the inset of figure 2(a)]. The energy spectrum consists

of two dispersive bands, ϵ ε ε= ± +± bk( )
1

2
( 4 )A A k

2 with ∑=
=

b t k a[2 cos( · )]
i ik 1

2 2, and one dispersionless

flat band, ϵ =k( ) 00 .

Figure 2.Band structure of themodel along the high symmetry lines in the FBZ for (a) ε = 0A and for (b) ε = − t4A . In case (b),
when ″ =t t0.1 (with the constraintmentioned in the text) is present, the BCP at M becomes standardQBCP and the spectrum is
changed slightly as shown by dashed lines. Inset of (a): FBZ of the Lieb lattice. There are four time reversal invariantmomenta:
Γ X M, , , and Y.
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An important feature of thismodel is that the presence or absence of εA can change electronic properties
dramatically.When ε = 0A , the flat band touches two linearly dispersing bands at M point in the FBZ [type (i)],
where the linear bandsmeet as if therewas a ‘Dirac point’. However, the touching point in fact has completely
different structure. It becomes clear oncewe expand H k( )0 around M point with = + ∣ ∣≪k M p p, 1. To the
first order in p, H k( )0 can bewritten as

∼H vB L B( ) · , (4)F0

where the Fermi velocity =v tF , = p pB ( , , 0)x y , and the (pseudo) spin-1matrices are defined as

= = = −L L L i
i

0 1 0
1 0 0
0 0 0

,
0 0 1
0 0 0
1 0 0

,
0 0 0
0 0
0 0

, (5)x y z

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

obeying Lie algebra of SU(2), i.e., ϵ=L L i L[ , ]i j ijk k [39, 40], instead of a Clifford algebra as in the case of
graphene. This is the fundamental reasonwhy there is noDirac point and hence no fermion doubling problem
[41] on the Lieb lattice. Viewing the low-energy effectiveHamiltonian H B( )0 as a ‘spin’ L in an external
‘magnetic field’ B, its eigenvalues can be easily read out as ϵ = ∣ ∣v lB p( ) F p, where = ±l 0, 1p are the quantized
angularmomenta along the axis parallel to B in three dimensions.

When ε ≠ 0A , however, the spin-1 structurementioned previously is no longer valid. Theflat band now
touches only one dispersive (massive) energy band either above or below at M point, depending on the sign of
εA [see figure 2(b)]. Tomake this structure transparent, we again expand H k( )0 around M with small p.
Assuming ε∣ ∣ ≪ ∣ ∣tp A and ε < 0A at 2/3 filling, we then integrate out the contribution frombasisA (due to
almost fully filledA sublattice) and obtain a low-energy effective two-bandHamiltonian,

σ σ∼ = + +H
m

p p p

p p p
d I d dp( )

1
, (6)eff x x y

x y y

I x x z z0
0

2

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

where ε= −m vA F0
2. In the last equality, we expressH0

eff in terms of the identity and Paulimatrices with

= + −d p p m
1

2
( )I x y

2 2
0

1, =d p p mx x y 0, and = − −d p p m
1

2
( )z x y

2 2
0

1. Interestingly, if we further allow small, lattice

symmetry unbroken third-neighbor hoppings ″ >t 0 (but forbid to hopwhenever here is a site in themiddle of
the path), the flat band becomes slightly dispersive and the effectiveHamiltonian changes to

= + − ″−d p p m t
1

2
( )( )I x y

2 2
0

1 , =d p p mx x y 0, and = − + ″−d p p m t
1

2
( )( )z x y

2 2
0

1 without removing BCP [see

figure 2(b)]. Such point at =p 0 is the so-called quadratic BCP (QBCP), which has been studied recently by
several research groups. [23, 34–36]One of the key features for aQBCP in 2D is that its density of states (DOS) is
non-zero at the crossing point, in sharp contrast to the case ofDirac points. This will lead to essential difference
when responding to theweak interactions present in the system. In the following, wewillmainly focus on the
ε ≠ 0A case and show that the BCP in ourmodel is not only topologically non-trivial, but alsomakes the system
be a potential host to a topological phase under weak repulsive interactions.

2.2. Topological nature of the band touching
The band touching phenomenon on the Lieb lattice is quite generic and stable for non-interacting fermions.
Such stability deserves a full analysis here.We shall provide two different approaches to show it: One is based on
momentum-space topology, and the other one is based on real-space topology.

From thefirst point of view, the BCP actually forms a topological defect in themomentum space, similar to a
vortex in a 2D superconductor, herewith awinding number ±2. To see this, let us rewrite equation (6) as

σ= + ′H d Ip B p( ) ( ) ·eff
I0 , where the ‘magnetic field’ ′ = d dB p( ) ( , 0, )x z . This effectiveHamiltonian now

represents a spin-1/2 particle sitting in amagnetic field ′B , which has a vortex structure at =p 0, as shown in
figure 3(a). For comparison, recall that for ε = 0A we instead have a spin-1 particle in an external field B
[equation (4)], whose structure is shown infigure 3(b). Thewinding numberW then can be easily extracted
from the figures that in the former case,W=2; in the latter case,W=1.However, somewhat counterintuitively,
both cases are associatedwith the sameBerry phase of the BCP, [37] which can be calculated precisely by

∮=
Γ

B i u upd · , (7)n
n np p p

whereΓ is a contour in the p space enclosing the touching point, n denotes any one of the involved bands, and
∣ 〉unp represents the Blochwave function for nth band. A simple argument solves this puzzle. The line integral
along any loop enclosing 0 in p space given previously is known to be 1/2 (1) times the solid angle subtended by

′B p( ) [B p( )] from the origin for a spin-1/2 (1) particle. Thus, π π= =B W2 2 2n in the former case, which is
just equivalent to π π= =B W2 2n in the latter one. In fact, whenBn=0, any infinitesimalmixing
(perturbation) between bandswould lift the degeneracy.With non-vanishing π= ±B 2n , we confirm that the
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BCPon the Lieb lattice at the non-interacting level is topologically stable (i.e., not opening a gap) as long as the
spinless systempreserves both TRS andC4 point group symmetry. Note thatC4 symmetry in ourmodel is quite
essential, as a similarQBCPhappens in the A-B stacking bilayer graphene (withC3 symmetry) while it can easily
decay intoDirac BCPs and thus is topologically unstable [23, 28].

An alternative point of view for the protection of suchBCPon the Lieb lattice can be associatedwith certain
topological structure present in the real space, ormore specifically, with the existence of the eigenstates that are
extended along non-contractible loopswinding around thewhole lattice with periodic boundary conditions (i.e.,
a torus) [38]. To demonstrate this feature, we first take themerit of theflat band, which allows us to construct its
corresponding localized, one-particle eigenstates of 0 (Wannier states). Taking R to be the coordinate of the
central site of the shaded plaquette shown infigure 4, wefind that the creation operator for the localized
eigenstate at R can bewritten as

 ∑= − − −
=

+ + ++ +( )c c c
1

2 6
( 1) 2 , (8)

j

j
R R b R b R b
†

1

4
† † †

j j j2 3 2 4

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

where = = = − = −b a b a b b b b, , ,1 1 2 2 3 1 4 2, = − = = = −b b b b(1, 1 2), (1, 1 2), (1 2, 1), ( 1 2, 1)5 6 7 8 ,
= − = − = − = −b b b b b b b b, , ,9 5 10 6 11 7 12 8. The key reason for these states being localized is rooted in the fact

Figure 3.Vortex structure of the BCP in p space: (a) the planar vector field ′B ; (b) the planar vector field B.

Figure 4. Schematic plot of the localized eigenstate at R on the Lieb lattice (ε ≠ 0A ). Only those sites in the shaded area have non-zero
weights, whosemagnitudes are denoted by numbers (up to a normalization factor). Theweights onA sublattice (blue dots) are all
zero.
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that all A-sites have vanishing amplitudes and remain zero after the action of 0 on themdue to destructive
interference.

In localized-state language, the existence of the BCP in ourmodel with ε ≠ 0A is equivalent to state that the
dimension of the space expanded by independent localized eigenstates with zero energy has a dimension that is
one larger than the number of unit cells,N. The extra state cannot come from the flat band, but fromone of the
dispersive bands. The plaquette states we constructed in equation (8) seem to formN linearly independent states
with zero energy. For ourmodel with periodic boundary conditions, however, the following relation,

 ∑= =π π= e 0, (9)i
q

R

q R
R( , )

† · †

reduces the naive counting by one and hence only −N 1 states are independent. Themissing two states, in fact,
are accounted for by two non-contractible loops around thewhole lattice (torus), as illustrated infigures 5(a) and
(b).When 0 acts on these states, the destructive interference again guarantees the zero eigenvalue. Now, in
total we have +N 1 independent states. Therefore, provided not destroying the flat band, such band touching
phenomenon is protected by the topological character of the lattice.

3. Interaction-driven instabilities

The existence of such symmetry/topology-protected BCPs on the Lieb lattice at the non-interacting level
motivates us to further ask if it is stable in the presence of repulsive interactions. To see this, wewillfirst examine
whether generic short-range repulsions are relevant to this BCP fromperturbative renormalization group (RG)
analysis, and next, if the interactions are relevant, wewill investigate possible consequences of such instability,
i.e., symmetry breaking phases, atMF level.

To performRG analysis, we consider a continuum, spin-1/2Hamiltonian, which can be obtained by
projecting the original three-band interactingmodel onto an effective two-band theorynear the BCP in the
continuumand ε∣ ∣ ≫ tA limit,

  = + , (10)eff eff
int
eff

0

where the free part 0 reads as

 ∫∑ Ψ Ψ=
σ

σ σd Hr r r( ) ( ). (11)eff eff
0

†
0

The subscript σ denotes spin polarization and the fermion fieldΨ ψ ψ=σ σ σ( , )†
1
†

2
† with 1, 2 represents orbital (i.e.,

two touching bands) degrees of freedom.Note that in themomentum space the expression forHeff
0 is given by

equation (6), and is independent of σ. For simplicity, we take small ε″ = −t t A
2 such that dI=0,making the

effective theory particle-hole symmetric. In fact, non-vanishing dIwould not change ourmain conclusion,
provided > ″−m t0

1 . The projected interacting part includes only (1) intra-orbital and (2) inter-orbital contact
interactions,

Figure 5.The two non-contractible loop stateswinding the lattice along periodic x direction (a) and y direction (b).Only those sites in
the shaded area have non-zeroweights (denoted by numbers in the plots). Theweights onA sublattice (blue dots) are all zero.
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  




∫

∫

∑

∑

ψ ψ ψ ψ

ψ ψ ψ ψ

= +

=

=
σ σ

σσ σ σ σ σ

=
↑ ↓ ↓ ↑

′
′ ′ ′

u

g

r r r r r

r r r r r

,

d ( ) ( ) ( ) ( ),

d ( ) ( ) ( ) ( ), (12)

int
eff eff eff

eff

a
a a a a

eff

1 2

1

1

2
† †

2

,
1
†

2
†

2 1

where u and σσ′g are intra-orbital and inter-orbital coupling parameters, respectively.

For the chemical potential μ = 0, the non-interacting system eff
0 leads to one Fermi point at =p 0 with

non-vanishingDOS, instead of a Fermi surface. Setting the dimension =p[ ] 1and understanding the dynamical
critical exponent z = 2due to quadratic dispersion, it is straightforward to see that the dimension ψ =σ r[ ( )] 1a ;
in the interacting part the coupling constants = =σσ′u g[ ] [ ] 0, implying that they are superficiallymarginal
interactions. However, as shown in appendix A,we find that they are genericallymarginally relevant and bring
the system to the strong coupling regime.More explicitly, up to one-loop order, the coupled RG equations for
the coupling parameters are

γ α γ γ

α γ γ

α γ γ γ

= − + −

= − +

= − − +

↑↑ ↑↑ ↑↓

↑↑
↑↑ ↑↓ ↑↓

↑↓
↑↓ ↑↑ ↑↑ ↑↓

du

dl
u g u g g

dg

dl
g g u g

dg

dl
g g u g g

(2 ) 2 2 ,

2 ,

( 2 ) 2 2 , (13)

2

2 2

2

wherewe have used the fact that =↑↑ ↓↓g g and =↑↓ ↓↑g g . l denotes themomentum rescaling → −p pe l and the

coefficients α
π

=
∣ ∣

− −

t
K t

1

2 ¯
( 1 ¯ )

2
2 and γ

π
= − − − + ∣ ∣ − − −

− + ∣ ∣

− −t E t K t t E t K t

t t

¯ (1 ¯ ) (1 ¯ ) ¯ ( (1 ¯ ) (1 ¯ ))

8 ( 1 ¯ ) ¯

2 2 2 2 2

2 2
,

withK(x) [E(x)], the elliptic function offirst (second) kind and = + ″− −t m t m¯ ( )0
1

0
1. In fact, no new fixed point

(FP) is produced in this set of RG equations, except for the non-interacting one at which u and σσ′g vanish.
Moreover, we find that given generic bare coupling parameters ( >σσ′u g, 0), at least one of themdiverges first
when reaching a low enough energy scale. This indicates that the non-interacting FP is an unstable FP, which can
drive the system to the strong coupling regime in the presence of short-range repulsions. In addition, it is worth
mentioning that by setting = =↑↓g u 0, we reduce the RG equation back to the spinless case,

α=↑↑
↑↑

dg

dl
g (14)2

with α > 0, which is consistent with thework done in [23] and, importantly, it implies that short-range
repulsions are againmarginally relevant.

3.1. Spinless fermions
From above, we know that aQBCP is generally unstable against weak repulsive interactions.We nowdiscuss its
consequence on the Lieb lattice and explore possible symmetry breaking phases driven by interactions atMF
level.Wewarmupwith the spinless case to gain some physical insights before including spin degrees of freedom.

The latticemodel we study is given by equation (1), with short-range interacting terms,

 ∑ ∑= +V n n V n n , (15)int

ij

i j

ij

i j1 2

whereV1 andV2 are repulsive coupling constants forNNandNNN interactions, respectively. =n c ci i i
† is the

number operator on the site i. The chemical potential is suitably chosen to keep the system at 2/3 (1/3)filling for
ε < 0A (ε > 0A ).We proceed by treating int in theMF approximation, including both the onsite and bondMF
decoupling particle-hole channels,

→ + −n n n n n n n n , (16)i j i j j i i j

ϕ ϕ ϕ ϕ→ − − +n n c c c c , (17)i j ij j i ij i j ij ij
† * † *

where ϕ ϕ= = 〈 〉c cij ji i j* † represent certain current/bond order with i j, belonging toNNandNNNbonds.

Note that in this work only translation-invariantMFansatz is considered. The repulsive interactions can produce
the following possible phases:

(i)Nematic state. This is a phase associatedwith brokenC4 symmetry down toC2. In particular, it does not
break the translational symmetry by any lattice vectors, and thus is in contrast to the conventional charge density
wave (CDW)order, which enlarges the unit cell due to translational symmetry breaking [seefigure 6]. This
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phase behaves like an anisotropicmetal (oneQBCP splits into twoDirac points) or an insulator (twoDirac
pointsmeet at zone boundary and end upwith a gap), depending on the strength of repulsive interaction. There
are two types within this phase. Type I is ‘site’nematic with order parameter,

∑η = 〈 〉 − 〈 〉δ δ δ′ + ′ + ′c c c c
1

8
( )Bi Bi Ci Ci

† † , where δ′ = ± ±x yˆ 2 ˆ 2 denoting fourNNNbonds of B-site and

A B C, , are sublattice indices.Without loss of generality, at 2/3 fillingwe can set the charge density, 〈 〉c cAi Ai
†

ρ= +2

3
, 〈 〉c cBi Bi

† η= − +ρ2

3 2
, and 〈 〉c cCi Ci

† η= − −ρ2

3 2
.

As ε > 0A , at 1/3 fillingwe simply replace 2/3 by 1/3 in the above expression. Note that the use of the
parameter ρ is to take into account the renormalization of the onsite potentials due to interactions. The non-zero
expectation value of it does not break any symmetry of themodel. On the other hand, type II is ‘bond’nematic

with order parameter either in the formof ∑ ∑= 〈 〉 − 〈 〉δ δ δ δ=± + =± +Q c c c c
1

4
Re[ ]

x Ai Bi y Ai Ci1 ˆ
†

ˆ
† , or in the form

of ∑= 〈 〉δ δ δ′ ′ + ′Q D c c
1

4
Re Bi Ci2

† for =δ′=± −D 1x y( ˆ 2 ˆ 2) and = −δ′=± +D 1x y( ˆ 2 ˆ 2) . The subscript of the order

parameters indicates their origin of eitherV1 orV2 repulsion.
(ii)Current-loop state.This type of phase is featured by spontaneous TRS breaking. Themost probable

current patterns that preserve translational invariancewith no (charge) source and drain present on the lattice
sites are shown infigures 7(a)–(d). Each state basically comes from the non-vanishing imaginary part of certain
bond orders in theMFdecouplings andmay behaveHall-insulating [7(a)], semi-metallic [7(b), 7(d)], or
insulating [7(c)]. In particular, themost significant one is case (a), which exhibitsQAH effect with order

parameter, ∑Φ = 〈 〉δ δ δ′ ′ + ′D c c
1

4
Im[ ]Bi Ci2

† . This topological state is known to be characterized by quantized

Hall conductancewithout Landau levels (or equivalently, by non-zero Chern number) and has topology-
protected, gapless chiral edgemodes [42].We compute theChern number for each bandwithin this state and
find that (1) for ε∣ ∣ > 0A , the previous two touching bands now carry Chern numbers ±1 separately. In
particular, one of two bands is (nearly) dispersionless. The third one simply carries zero; (2) for ε = 0A , the
middleflat band carries zeroChern number, while the upper and lower bands carry ±1, respectively.

The other possible current-loop states, however, are not topological insulating. For case (b) (Varma ΘI loop
state [43]), it is semi-metallic with the order parameter given by, simultaneously,

∑ ∑Φ = 〈 〉 − 〈 〉δ δ δ δ=± + =± +c c c c
1

4
Im[ ]

x Ai Bi y Ai Ci1 ˆ 2
†

ˆ 2
† and ∑Φ′ = 〈 〉δ δ′ + ′c c

1

4
Im Bi Ci2

† . For case (c) (Varma

ΘII loop state [43]), it is insulatingwith broken inversion symmetry (IS) aswell, but is invariant under the
combined TRS and IS. Thus, there is noHall or uniformKerr response by noticing that for any given
momentum k it changes sign under TRS or IS [35]. This order can be described as Φ Φ Φ′ ≠ ″ = ≠‴0, 01 2 2 ,

where ∑ ∑Φ δ δ′ = 〈 〉 + 〈 〉δ δ δ δ=± + =± +x c c y c c
1

4
Im[ (2 · ˆ) (2 · ˆ) ]

x Ai Bi y Ai Ci1 ˆ 2
†

ˆ 2
† ,

∑Φ δ″ = ′ 〈 〉δ δ δ′ ′ + ′x D c c
1

4
Im[ (2 · ˆ) ]Bi Ci2

† , and ∑Φ δ= ′ 〈 〉δ δ‴
′ + ′x c c

1

4
Im[ (2 · ˆ) ]Bi Ci2

† . Finally, case (d) is a semi-

Figure 6.The schematic plots for (a) site charge nematic state and (b) site nematic-spin-nematic state. Since the electronic
information of A sublattice sites (blue dots) is irrelevant here, only those of B andC sublattice sites are compared. Each open circle
represents the local charge density, whosemagnitude depends on the size of it. The arrow at each site represents a net spin
polarization.

8

New J. Phys. 17 (2015) 055016 W-FTsai et al



metallic statewith broken IS and hence has no netHall current in it. Its order is described as

Φ Φ Φ≠ ′ = ″ ≠‴ 0, 02 1 1 , where ∑ ∑Φ δ δ″ = 〈 〉 − 〈 〉δ δ δ δ=± + =± +x c c y c c
1

4
Im[ (2 · ˆ) (2 · ˆ) ]

x Ai Bi y Ai Ci1 ˆ 2
†

ˆ 2
† .

Inmomentum space, theMFHamiltonian at 2/3filling can be nowwritten in thematrix form,

 ∑Ψ μ Ψ= − +H I E( ) , (18)MF

k

k k k
†

0

with the fermion spinor,Ψ = c c c( , , )A B Ck k k k
† † † † , and

ε ε ε ε ε

δ Φ Φ Φ Φ
δ Φ Φ Φ

= −
+

−

+ ′ + + + ′ + ″ +
+ + + + ′ + ″

‴

E
N

V

N

V

NV t Q

NV t Q

¯ ( ¯ ¯ )

4

¯ ¯

4

4 ( )

4 ( ), (19)

A B C B C
0

1 1 1

1

2 2

2

2
2

2
2

2
2

2
2

2
2

2
2

1
2

1
2

1
2

1
2

1
2

where δt (δ ′t ) represents a renormalization due toNN(NNN) repulsions. TheHamiltonianmatrix Hk reads

ε ε Γ Γ
ε ε ν Γ

ε ε ν
=

+
+ +

+ +
H

¯

¯ ¯

¯ ¯ ,

, (20)

A A x y

B B y xy

C C x

k

1

1 2

1 2

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

where ε ρ= −V¯ (8 6 ) 3A1 1 , ε ρ= +V¯ 2 (2 3 ) 3B1 1 , ε ρ η= − −V¯ 2 (4 3 6 ) 3B2 2 , ε ρ= +V¯ 2 (2 3 ) 3C1 1 ,
ε ρ η= − +V¯ 2 (4 3 6 ) 3C2 2 , and ν = − ″t k2 cosx y x y, , ;Γ parameters are given by

Figure 7.The current loop ground states for (a) Φ ≠ 02 and others are zero (QAH state); (b) Φ Φ ′ ≠, 01 2 and others are zero (Varma
ΘI loop)(c) Φ Φ Φ′ ″ = ≠‴, 01 2 2 (Varma ΘII loop); (d) Φ Φ Φ′ = ″ ≠‴, 01 1 2 .
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Γ Φ

Φ Φ

Γ Φ Φ

Φ

Φ

= − ∓ −

− ′ ± ″

= ′ +

− −

− ″

‴

t V Q i
k

V
k

iV
k k

V
k k

V Q i
k k

V
k k

( 2 2 ( ))cos
2

2 ( )sin
2

,

4 cos
2

cos
2

4 sin
2

cos
2

4 ( )sin
2

sin
2

4 cos
2

sin
2

. (21)

x y
x y

x y

xy
x y x y

x y

x y

, 1 1 1
,

1 1 1
,

2 2 2 2

2 2 2

2 2

Thus, theMF free energy can be expressed as

∑
β

= − + +β μ− −( )F
N

e E
1

ln 1 , (22)E

k

( )
0

k

where β = k T1 B and Ek are eigenvalues of Hk. The ground state with given coupling parameters can then be
determined byminimizing the free energy with respect to each order parameter, yielding a set of coupled gap
equations. Notice that at 1/3 fillingwe follow the same procedure and only the diagonal part of Hk andE0 need
to be changed accordingly due to the shift of the average charge density.

We numerically solve the coupled gap equations self-consistently and obtain the zero-temperatureV1-V2

phase diagrams at both 1/3 (ε = t4A ) and 2/3 (ε = − t4A )fillings, as seen infigures 8(a) and (b). Note that in
this study, onlyweak short-range repulsions, i.e., ⩽V V t,1 2 are considered. At 1/3filling, we find that there are
three phases in the absence ofV1: QAHphase, coexistingQAH+nematic phase, and nematic phase. Beginning
with ≪V t2 , the infinitesimal instability ofQBCP leads toQAHphase by the second-order phase transition,

with aT=0 gap, Δ Φ Λ= ∝ −
V

N V
( ) exp(

1
)QAH 2 2

0 2

, whereN0 denotes the finiteDOS atQBCP andΛ is an energy

cutoff; on the other hand, for ≳ > ∼t V V t0.22c2 2 the ground state breaksC4 symmetry spontaneously down to
C2 and exhibits insulating nematic phasewith a gap Δ η∼N . In this phase, wefind that the site-nematic order
(η) is the dominant one and a small component of the bond-nematic order (Q1) accompanies with it. In fact, we
notice that the bond-nematic order cannot be induced byV1 itself.

Finally, with an intermediate value ofV2, there exists a narrowwindow for the coexistence of bothQAHand
nematic orders. This can be further seen infigure 9, showing themagnitude of both order parameters as a
function ofV2 with fixedV1. Since the bulk energy gap never really closes asV2 increases, it suggests that the

Figure 8. Schematic zero-temperatureMFphase diagrams for spinless fermions on the (a) 1/3filled latticewith ε =t 4A , ″ = −t t 0.1
and on the (b) 2/3filled latticewith ε = −t 4A , ″ =t t 0.1. The shaded area represents the coexistence region.
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quantumphase transition betweenQAHand nematic phases is not continuous, lacking a quantum critical point.
In addition, we also notice that there is no room for the current-loop states other thanQAH state for systems
with relatively large ε∣ ∣A andweak repulsions.

At 2/3 filling, the phase diagram is qualitatively similar to that at 1/3filling.However, there are a few remarks
worthmentioning here: (1) Although the non-interacting energy spectrum for bothfillings can be related by
translating ‘particle’ into ‘hole’ language, which causes → −t t , ″ → − ″t t , ε ε→ −A A, and μ μ→ − . The
interactions given in the present form ruin such relation and hence the two phase diagramsmust be different6. 2)
Notice that since in our consideration ε∣ ∣A is the largest energy scale among others, it is easy to realize that the
charge density at A-site is δn at 1/3filling and δ− n1 at 2/3filling, where δn denotes small density fluctuation.
Such factmakes theNN repulsion (V1 term) almost a constant depending on the total number of fermions,
leading toV1-insignificant phase diagrams in both cases. However, a close study in energetics (assuming the
system is inQAHphase) can show thatV1 enters the dynamics through the first order of δn for 1/3fillingwhile
through the second order of δn for 2/3filling. Therefore, the phase diagram is relatively insensitive toV1 in the 2/
3-filling case. (3)When ε ″ →t, 0A , the spin-1 structure near band touching point, as discussed in the previous
section, is recovered. OurMF study shows that the infinitesimal instability (near 1/3 or 2/3filling) is absent due
to the vanishingDOS of the dispersive bands and the semi-metallic phase is robust untilV2 reaches certain
critical value.Moreover, for ⩾V V c2 2 , wefind that theQAHphase only survives in a negligible windowofV2,
and the nematic phase becomes the dominant one in the phase diagram (not shown). This result is similar to the
work done by Liu et al [24] on the 2/3-filled kagome latticewithDirac BCPs.

3.2. Spinful fermions
Wenow take the spin degrees of freedom into account. ThemodelHamiltonian again consists of the free and
interacting parts, i.e.,   = + int0 . The free part is again given by equation (1) with extra spin index σ in the
fermion creation/annihilation operators; the interacting terms now contain

 ∑∑ ∑ ∑

∑

= +

+
σ σ

σ σ
σ σ

σ σ
′

′
′

′

↑ ↓

V n n V n n

U n n . (23)

int

ij

i j

ij

i j

i

i i i

,

1 , ,

,

2 , ,

, ,

In addition toV1 (V2) denoting the coupling constant of NN (NNN) repulsion, we also consider the repulsive
Hubbard (Ui) terms For simplicity, wewill assume uniformonsite repulsions, i.e., =U Ui .

Figure 9.Themagnitude of bothQAH (blue, solid) and nematic (green, dashed) order parameters as a function ofV2 at 1/3-filled
lattice with ε =t 4A , ″ = −t t 0.1, andfixed =V t 0.21 .

6
If one replaces ni by ρ−ni 0 with ρ0 denoting the average charge density and rewrites the density-density repulsions in terms of it in

equation (15), themapping between 1/3 and 2/3fillings by particle-hole language translationwill become exact.
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Different from the spinless case, there are not only spin-singlet order parameters (as we had before), but also
spin-triplet order parameters withinMF approximation. The possible phases under translation-invariant ansatz
are classified below7:

(i) Charge nematic state (CN). This phase is associated with spontaneously rotational (C4) symmetry breaking.
One can either have the site-nematic or bond-nematic state, whose order parameter is a spin-singlet and
simply the same as that for spinless fermionswith additional summation on spin σ times a normalization
factor 1/2.Note that for the site-nematic case, the driving force is now frombothU andV2 terms, combined

together to give out an effectiveNNN repulsion, ′ = −V V
U

2(
8

)2 2 , playing similar role ofV2 in the spinless

model.

(ii) Nematic-spin-nematic state (NSN). This phase breaks C4 symmetry in the spin sector, not in the charge
sector. Consequently, it turns the (spin) doubly degenerateQBCP into fourDirac points (two pairs with
opposite spin polarizations), andC4 symmetry of the band structure remains intact. Similar to its charge
counterpart in (i), there are two types: One is the site-NSNwith a spin-triplet order parameter, η ⃗t =

∑ −δ δ′ + ′S S
1

16
( )Bi Ci , where αS = 〈 〉α σ σσ α σ′ ′c csi i,

†
, with α = A B C, , and s, the Paulimatrices. Note that

this phase can occur simply due to the presence of theHubbard term, which provides a spin-triplet

channel, − ⃗U S
2

3
( )i

2 with ⃗Si representing usual spin operator. The other one is the bond-NSN, which is

described by ⃗Q
t

1 =
1

8
Re[∑ ∑〈 〉 − 〈 〉δ σ σσ δ σ δ σ σσ δ σ=± ′ + ′ =± ′ + ′c c c cs s ]

x Ai Bi y Ai Ciˆ 2 ,
†

, ˆ 2 ,
†

, or

∑⃗ = 〈 〉δ δ σ σσ δ σ′ ′ ′ + ′Q D c cs
1

8
Re

t
Bi Ci2 ,
†

, (breakingC4 along a diagonal direction of the lattice).

(iii) Charge current-loop state with broken TRS. As mentioned in the spinless model, among all the current
patterns the case (a) infigure 7 is ofmost interest. This state, characterized by spontaneously brokenTRS
and parity symmetry, exhibits QAHeffect with a spin-singlet order parameter,

∑Φ = 〈 〉δ σ δ σ δ σ′ ′ + ′D c c
1

8
Im[ ]Bi Ci2 , ,

†
, .Mainly driven byV2 terms, fermionswith opposite spin polariza-

tionsflow in the sameway and hence provide the sameflux pattern, penetrating thewhole lattice. In
addition, we investigate the possibility for the other current-loop states [e.g., from figures 7(b)–(d)] and
find that none of them are stabilized by the presence of short-range repulsions in ourMF study. Therefore,
wewill only consider case (a) hereafter.

(iv) Spin current-loop state with TRS. The key difference of this phase from its charge counterpart (QAH) is TRS
unbroken. One can view it as a combined double-layerQAH system: fermions of opposite spin
polarizations, residing in different layers, producing just opposite flux patterns separately. Thus, for the
whole systemTRS is preserved. In fact, this is known as quantum spinHall (QSH) phase, or equivalently,
2DZ2-non-trivial TI, with spin-triplet order parameter described by

∑Φ⃗ = 〈 〉δ δ σ σσ δ σ′ ′ ′ + ′ ′D c cs
1

8
Im[ ]

t
Bi Ci2 ,
†

, . Two remarks deservementioning here. First, bothQAHand

QSHare topological phases, characterized by a non-trivial topological indexwith robust edge states.
However, the former one acquires a non-vanishing Chern number, while the latter one has zeroChern
number due to TRS. Thus, a new topological index, called Z2 index ν, needs to be introduced [4, 5, 9]. As
detailed in appendix B, theQSHphase on the Lieb lattice indeed acquires non-trivial ν = 1. Second, it is
straightforward to see that at theMF level, the energy spectra (not shown here) for bothQAHandQSHare
the same. As a result, they have equal energy gain fromV2 repulsion and hence one cannot distinguish them
in theMFphase diagram. If therewere an extraNNNexchange coupling J2 present in the system, theQAH
would be favored for >J 02 ; reversely, theQSHwould be favored for <J 02 due to its spin-triplet nature.

Under our assumption of translational invariance within ourMF study, we do not consider any charge or
spin density wave order.However, it is still worth pointing out that if ε∣ ∣ → ∞A and hencemakes theA
sublattice be effectively decoupled from rest of the lattice sites, at largeU the (0,0) antiferromagnetic order could
be realized at 1/3 (2/3)fillingwith ε > 0A (ε < 0A ), as guaranteed by the Liebʼs theorem [44].

7
A ferromagnetic (FM) state can be proved to be the exact ground state in systemswith half-filledflat bands and short-range repulsions.

However, in our system theflat band (which in fact acquires a small bandwidth if a small t″ exists) is completely filled (or empty), and thus it
is the dynamics around the BCP, rather than the filled band, that determines the phase. In addition, we notice that the FM state cannot open a
full gap on the Fermi surface. Instead, it results in a (circular) line nodewith finiteDOS at Fermi level, in sharp contrast to a typical nematic
state, where there are only discrete Dirac nodes. Therefore, it is never favored energetically.
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Following the same procedure as in the spinless case, we decouple the interacting termswithinMF
approximation and obtain theMF free energy in similar formof equation (22), wherewe have used theMF

ansatz, ρ σ〈 〉 = + +σn S
2

3

1

2
Ai Az, ,

ρ η σ η〈 〉 = − + + +σn S
2

3 2

1

2
( 2 )Bi Bz z

t
, , and

ρ η σ η〈 〉 = − − + −σn S
2

3 2

1

2
( 2 )Ci Bz z

t
, for the 2/3-filled lattice. Note that, for simplicity, we have assumed

that spin points to z-direction after SU(2) symmetry breaking. Such treatment will be applied to other spin-
triplet order parameters as well.E0 in the spinful case becomes

ε ε ε ε ε
δ

δ Φ Φ

η

ε ε ε ε

= −
+

− + + +

+ ′ + + + +

+ + + +

−
+

+
+

( )

E

N V V
V t Q Q

V t Q Q

U
S S S

U
V V

¯ ( ¯ ¯ ) ¯ ¯
8 ( )

8 ( )

4
8

( ¯ ¯ )

16

¯ ¯

16
, (24)
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z
t

z
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1
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2
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1 1
2

1
2
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2
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2
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2

⎡
⎣⎢

⎤
⎦⎥

where ε ε ε ε¯ , ¯ , ¯ , ¯A B B C1 1 2 1, and ε̄C2 are defined as before. Ek are eigenvalues of theMFHamiltonian, which is now a
6× 6matrix.

Byminimizing free energywith respect to various order parameters, theT = 0MFU-V2 phase diagram at 2/3
filling (ε = − t4A ) for spinful fermions is shown infigure 10.Wefirst notice that in the absence ofU there again
exist three phases: QAH/QSHphase, coexistingQAH/QSH+CNphase, andCNphase fromweak to strongV2

repulsion. In particular, the fact that the topological QAH/QSHphase can arise from infinitesimal instability of
QBCP further justifies the interaction-driven scenario as a promisingway for producing TI. In the presence ofU,
however, theNSNphase begins to competewith the topological phase and clearly dominates overQAH/QSH

whenever ≫ >U V 02 . On the other hand, as ′ = − ≳V V
U

t2(
8

) 0.222 2 , the insulating CNphase takes over the

phase diagram and this is consistent with the result shown in the spinlessmodel. Two remarks are worth
mentioning here. Thefirst one is about the effect ofNN repulsionV1. As in the spinless case, at 2/3filling the
phase diagram is not sensitive to the presence ofV1. Especially,V1 itself does not lead to any order.However,
whenV1 becomes stronger, it is quite possible that the systemmight gain certain energy by opening a gap due to
translation symmetry breaking, and hence is beyond our current consideration. The second point is about the
system at 1/3 fillingwith ε = t4A . In fact, the phase diagram is qualitatively similar to that of 2/3 filling and
therefore we omit it without further discussion.

4.Discussion and conclusion

Themodel we have solved on the Lieb lattice demonstrates that the TI (QAH/QSH state) can be induced by
appropriate interactions through a spontaneously symmetry breakingmechanism,which dynamically generates
spin–orbit couplings necessary for a topological insulator. It is then natural to ask how it can be realized
experimentally.

Figure 10. Schematic zero-temperaturemean-field phase diagram for spinful fermions at 2/3-filling with ε = −t 4A , ″ =t t 0.1, and
=V 01 . The short-hand notations represent: NSN=nematic-spin-nematic; QAH=quantum anomalousHall; CN= charge nematic.

The shaded area denotes the coexistence region.
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Wenotice that in the interaction-driven scenario there are twokey conditions that a systemhas to fulfill: (1)
Theband structure should contain a suitableBCPatwhich two touching bands haveopposite curvatures. (2) The
system shouldhaveweak (or no) spin–orbit coupling [spin SU(2) symmetry is preserved] andNNNrepulsions
need to bemore significant than the other short-range repulsions.While the condition (2) is tricky andwehave to
reserve it for future investigation,wewould like to comment on somepossible routes for condition (1) below.

First of all, themost promising candidate, webelieve, is fromcold atom system.Asdiscussed byGoldman et al
in [39], the Lieb latticemay be constructed as an optical lattice created byproperly arranged laser beams. In
particular, the spin–orbit interaction,whichmight be an issue in traditionalmaterials, nowbecomes irrelevant.
Another potential way for realizing a Lieb latticemay come from layered perovskites. Awell-known example is the
CuO2 plane inhigh-Tc cuprates such as La −x1 SrxCuO4orYBa2Cu3O7,whose electronic structuremight be
captured by a three-bandmodelwith p p, ,x y and −dx y2 2 orbitals.Here, for illustrationpurposes,we take a typical

three-band (Emery)model, written inhole language, having the same formof equation (1) [45, 46]. The
correspondingmodel parameters are given byHybertsen et al [48]: t=1.5, ′ =t 0.65, ε = 0A , and ε = 3.6B C, ,
where ′t denotesNNNhopping. The band structure in theFBZ along high symmetry lines is presented in
figure 11(a). Asone can see, there is indeed aBCPat M, butwith ‘wrong’ curvatures for two touching bands.As a
result, cupratesmay be impractical to produce topological phase aswedesire. To overcome this issue, weoffer two
speculative suggestions. Thefirst way out is to adddecorated elementswith suitable orbital nature (e.g., p-orbital)
between atomsonB andC sites that could change the sign of ′t . This change leads to theband structure shown in
figure 11(b)with ‘right’ curvatures now.Keeping the sameorbital characters, the secondway is to search for a new
systemamongperovskitematerials, whosemodelHamiltonian is similar to that given by Sun et alʼs recentwork in
appendix F [49]. The key feature of such three-bandmodel is that the dominating transfer integrals are now
associatedwith distance a after hopping. For instance, if, by certain geometric reason, the relevant orbital onB (C)
sublattice becomes py (px), instead ofpx(py) as in the cuprates, the above consideration couldbeplausible.

Before concluding ourwork, wewould likemake a brief remark for the possible new physics brought by the
(nearly)flat band appearing in the Lieb lattice. Consider ε > 0A and onlyNNhoppings in our spinlessmodel.
Now, themiddle band is completelyflat and toucheswith the lower dispersive band at M in FBZ. At 1/3 filling if
we turn onV2, the ground state would enterQAH state with an energy gap ΔQAH opened at M. Aswe have
mentioned in section 3.1, themiddle and lower bands acquire Chern numbers ±1, while the upper one has zero
Chern number in this phase.Moreover, the flatness of themiddle band is approximately determined by the ratio
of band-gap to bandwidth  ϵ Δ∼ ( )A QAH . In otherwords, with appropriately chosen ϵ ΔA QAH , one can
produce a nearlyflat bandwith non-trivial Chern number. This result is quite significant since itmay provide an
opportunity to realize a fractionalQAH state (or fractionalZ2 TI in the spinful case) when such band is partially
filled [50–55].

Figure 11. (a) Energy spectrumof themodel for cuprates along the high symmetry lines in the BZwith parametersmentioned in the
text. (b) The samemodel as used in (a), butwith reversed sign of ′t .
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In conclusion, we have studied interacting spinless/spinful fermions on the (extended) Lieb lattice and have
explored the possibilities of various spontaneously broken symmetries associatedwith a BCP in the band
structure. Due to the topological nature of the BCP, namely, with Berry phase π2 , we have seen that in theT = 0
phase diagram the system can exhibit topological QAH/QSH, nematic, andNSNphases, depending on the
strengths of short-range density–density interactions. In particular, the existence of the TI phasefirmly justifies
the interaction-driven scenario.Moreover, for a quadratic BCP (as ϵ ″ ≠t, 0A ), only weak interaction is
necessary for inducing the TI phase, which is in sharp contrast to the systemswithDirac points. In addition, in
ourmodel there exists a nearly flat band, which is interesting in its own right andwe argue that in principle, one
can obtain a nearly flat topological bandwithout externalmagnetic field, a starting point to realize exotic
correlated phases ofmatter. Still, there aremany open issues and they deserve further investigation. For instance,
one could consider the effect of the chemical potential away from the BCPor the instability to superconductivity
fromboth repulsions and attractions, with special focus on the possibility of any topological nature.
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AppendixA. Perturbative RG analysis for aQBCP

In this section, we derive RG equations given in equation (13) in path integral formulation and show the RG
flows for two typical cases.We beginwith defining the action and the shorthand notations below. At zero
temperature, the full action is given by

= +S S S , (A.1)int0

where the free action S0 reads

∫ ∫∑ ω
π π

Ψ ω ω Ψ ω=
σ

σ
σ

σ
−

S
p

Gp p p
d

2

d

(2 )
¯ ( , ) ˆ ( , ) ( , ), (A.2)0

2

2 0

1⎡⎣ ⎤⎦

inmomentum space. TheGrassmann variables, Ψ ψ ψ=σ σ σ
¯ ( ¯ , ¯ )1 2 with 1, 2 (labeled by ‘a’ for later use)

representing orbital degrees of freedom. Asmentioned in themain text, for simplicity, we consider the inverse of
the non-interactingGreen’s function ω ω σ σ= − −σ −G i I d dp[ ˆ ( , )] x x z z0

1 , which is suitable for a particle-hole
symmetricQBCPwith =d p p mx x y 0, = −d p p t m( ) ¯ (2 )z x y

2 2
0 , and =t̄ 2 and is independent of spin

polarization σ. Wewillfix m1 (2 )0 as our unit in the analysis. The action of interactions can bewritten as,

∫

∫

∑

∑

ξ ψ ψ ψ ψ

ξ ψ ψ ψ ψ

= +

= −

= −
σσ

σσ σ σ σ σ

=
↑ ↓ ↓ ↑

′
′ ′ ′

S S S

S u

S g

,

d ¯ (4) ¯ (3) (2) (1),

d ¯ (4) ¯ (3) (2) (1), (A.3)

int

a
a a a a

1 2

1

1

2

2 1 2 2 1

where ∫∏∫ ∫ξ
ω
π π

=
= −∞

∞
d

d d p

2 (2 )b

b b

1

3
2

2
and the shorthand notation ω=b p( , )b b . Note that ‘4= 1+ 2–3’ is

understood by energy andmomentum conservation andwe ignore themomentumdependence of u and σσ′g ,
which turns out to be irrelevant in RG sense. In addition, it is worthmentioning here that the present RG analysis
ismuch simpler than that of usual Fermi liquids in the sense that there is no Fermi surface ( =p 0F ). This fact

thuswaives the complexity brought by the Fermi surface, a situation similar to ϕ4-theory.
Let us now sketch how to obtain one-loopRG equations, following the standard perturbative RGprocedure

by Shankar [56]. Defining amomentum cutoffΛ and ψ< (ψ>) as slow (fast)modes with Λ< <p s0
(Λ Λ< <s p ), the key formulawe use to derive the renormalized action by integrating out the fastmodes is
given by
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¯ ,
0
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0
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1
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int int int

0

0

0,
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0, 0,
2

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
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Note that in deriving the last equality we have used the cumulant expansion.Z0 denotes the non-interacting
partition function and 〈 〉 >0, represents averagewith respect to the fastmodes of action S0. The collected
exponent of the exponential terms now results in the renormalized action ′S .

Before examining the renormalization of coupling parameters u and σσ′g , we first notice that, to
the one-loop level, the quartic terms in Sint do induce quadratic terms from the tadpole diagram
shown in figure 12, which are momentum independent. This would indicate there is no non-
interacting FP in our system. However, explicit calculations show that all contributions from such
types of diagram are zero and hence our starting FP survives without flowing (t̄ , ψ σa are not
renormalized), in contrast to the case of the Luttinger liquid.

Next, we turn our attention to the diagrams that renormalize coupling parameters. As shown in
figures 13(a)–(c), they are, respectively, total contributions to the renormalized u, σσg , and σσg ¯ . Obviously, they

have standard structures such as ‘BCS’, ‘ZS’ (zero sound), and ‘ZS ′’ used in Shankarʼs seminal work [56].Note
thatwe have taken the convention that = ↑ = ↓1̄ 2, ¯ and vice versa. The essential fermion loop integrals are
listed below (without vertex):

∫
∫
∫
∫
∫
∫

γ

γ

α γ

α γ

γ

γ

− =

− =

− = −

= − −

=

= −

σ σ

σ σ

σ σ

σ σ

σ σ

σ σ

′

′

′

′

G q G q l t

G q G q l t

G q G q l t t

G q G q l t t

G q G q l t

G q G q l t

BCS1 : ( ) ( ) d · ( ¯),

BCS2 : ( ) ( ) d · ( ¯),

BCS3 : ( ) ( ) d · [ ( ¯) ( ¯)],

ZS1 : ( ) ( ) d · [ ( ¯) ( ¯)],

ZS2 : ( ) ( ) d · ( ¯),

ZS3 : ( ) ( ) d · ( ¯), (A.6)

q
aa aa

q
aa aa

q
aa aa

q
aa aa

q
aa aa

q
aa aa

0 0¯ ¯

0 ¯ 0¯

0 0
¯

0 0¯ ¯

0 ¯ 0¯
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where∫ ∫ ∫ ∫ω
π

θ
π

Λ
π

≡
π

Λ
−∞

∞
s

qd

2

d

2

d

2q 0

2
and t̄ , α t(¯), γ t(¯) are defined in themain text [just below

equation (13)]. The superscript, σ′, ofG0 can be either σ or σ̄ . The presence of dl is due to the approximationwe
have used, = + ≈s dl dlln ln(1 ) in the limit →s 1. In order to evaluate these integrals, we have set all external
ω = =p 0 andmade θ θ= =q q q qcos , sinx y . Combining all the Feynman diagrams infigure 13 and

keeping inmind the order of fermion operators, the straightforward algebra gives rise a set of RG equations, as
we desire, equation (13).

Finally, we investigate the RG flowbeginningwithweak coupling regime for two typical cases: (a)
> =σσ σσu g g ¯ ; (b) < =σσ σσu g g ¯ . As one can see infigure 14, in either case, they allflow to strong coupling

regime and hence the non-interacting FP is actually unstable against short-range repulsions.

Figure 12.The tadpole diagram, induced by the quartic terms, can in principle renormalize the free action. The arrowed lines on the
left represent the intra-orbital (solid) and inter-orbital (dashed) non-interactingGreenʼs functions, respectively.
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Appendix B. The proof of non-trivialZ2 index for the quantum spinHall phase

The existence of theQSH state can be justified by a non-trivialZ2-valued invariant ν = 1. ThisZ2 index
represents the topological nature of theQSH state and leads to topologically protected gapless edge states when

Figure 13.Diagrams to one-loop level that contribute to renormalize (a) u, (b) σσg , and (c) σσg ¯ . Different types of vertices are shown
on the left. The labels for external legs in each one-loop diagram are the same as the vertex on the left and hence are omitted.

Figure 14.RGflows for u(l) (solid, blue), ↑↑g l( ) (dotted,black), and ↑↓g l( ) (dashed, red)with interaction profile (a)

= = =↑↑ ↑↓u g g(0) 0.5, (0) (0) 0.05; (b) = = =↑↑ ↑↓u g g(0) 0.05, (0) (0) 0.5. In both cases, =t̄ 2.
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the 2D system ismade openwith boundaries. Here, we present amethod,first invented by Fu andKane [9], to
deriveZ2 index explicitly. Thismethod essentially takes the advantage of IS such that the index can be related to
the parity eigenvalues ξ Γ( )m i2 of m2 occupied energy bands at four TRIM: ΓΓ = X Y, ,i , and M.

For the purpose of instruction, we focus on 1/3fillingwith ε = 0A B C, , and hence only the lower band is
relevant. As shown in section 3, the presence ofV2 can dynamically generate the ‘spin–orbit’ interaction, which
is equivalent to add the following term into equation (2).

 ∑ψ ψ=
σ

σ σH k( ) (B.1)SO SO

k
k k

,

†

with =H k( )SO

λ±
−

iw

iw

0 0 0
0 0 2

0 2 0
, (B.2)SO k

k

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

where ∑≡ − ′
=

+w k a( 1) cos( · )
j

j
jk 1

2 1 with ′ = +a a a1 1 2, and ′ = −a a a2 2 1. The + −( ) sign refers to spin-up

(down) fermions. The eigenvalues of = +H H Hk k k( ) ( ) ( )SO0 are ϵ λ= ± +± b wk( ) 4 SOk k
2 2 and ϵ =k( ) 00

and their corresponding eigenstates can bewritten in the form,

=u G q q q( , , ) , (B.3)n n A B Ck k k k k
T

where the expressions of the components qlk ( =l A B C, , ) and the normalization factor Gnk for each band n
( = 0, ±) are given in table 1.

At TRIM,we have eigenstates ∣ 〉 = − −
Γ−u (

1

2
,

1

2
,

1

2
)T , ∣ 〉 =−u (

1

2
, 0,

1

2
)T

X , ∣ 〉=−u Y , and

∣ 〉 = −
−u

i
(0,

1

2
,

2
)T

M according to table 1, respectively. Now, let usmake a gauge transformation on

eigenstates such that only one coordinate R would be assigned to each unit cell (instead of +R ai for each atom
within the cell), and the BlochHamiltonian H k( )nowobeys + =H Hk G k( ) ( ) and, with the inversion
operator P̂ , − =H PH Pk k( ) ˆ ( ) ˆ, resulting in Γ= =H Pk[ ( ), ˆ] 0i . Thus, the parity eigenvalue nowbecomes a
good quantumnumber at TRIM.Under such transformation the eigenstates are rewritten as

∣ 〉 = − −
Γ−u (

1

2
,

1

2
,

1

2
)T , ∣ 〉 =−u (

1

2
, 0,

1

2
)T

X , ∣ 〉 = −
−u (

1

2
,

1

2
, 0)T

Y , and

∣ 〉 = − −
−u

i
(0,

2
,

1

2
)T

M . Picking up any one of A-sites as our inversion center, we can determine the parity

eigenvalue for each TRIMby examining thewave functions (eigenstates) in real space. Sincemoving a unit cell
by R is simplymultiplying our eigenstate at Γi by a factor Γei R·i , we now see the parity eigenvalues for Γi=
Γ X Y M( , , , ), are, respectively, P= (+,+,+,-). TheZ2 index ν is then determined by

∏ δ− = = −ν

=

( 1) 1, (B.4)
i

i

1

4

where ∏δ ξ Γ=
=

( )i m

N
m i1 2 , andN=1 indicating either spin-up or spin-down band in our example here.

Therefore, ν = 1 suggests that the ground state of our system at 1/3filling has topological nature.We summarize
the parity eigenvalue of each band in table 2. Finally, for ε ≠ 0A , one can follow similar procedure and the
conclusion of ν = 1 is unchanged.

Table 1.The expressions for the coefficients of ∣ 〉unk with xi=
k a· i (i=1, 2). For =k M, the listed expressions break down
with ambiguity and hencewe single themout,
∣ 〉 =+u i(0,1 2 , 2 )T

M , ∣ 〉 = −−u i(0,1 2 , 2 )T
M

and ∣ 〉 =u (1, 0, 0)T
M0 . Note that the upper (lower) sign in

the square bracket refers to spin-up (down) fermions.

∑=
=

b t ak[2 cos( · , )]
i ik 1

2 2.

qAk ϵ λ− wk( ) 4n SO k
2 2 2

qBk ϵ λ±t x i w xk2 [ ( )cos 2 cos ]n SO k1 2

qCk ϵ λ∓t x i w xk2 [ ( )cos 2 cos ]n SO k2 1

−Gnk
2 ϵ ϵ λ− +w bk k( )[ ( ) 4 ]n n SO k k

2 2 2 2

λ λ+ +w b w4 ( 4 )SO SOk k k
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