-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by DSpace@MIT

Home Search Collections Journals About Contactus My IOPscience

Interaction-driven topological and nematic phases on the Lieb lattice

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2015 New J. Phys. 17 055016
(http://iopscience.iop.org/1367-2630/17/5/055016)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 18.51.1.3
This content was downloaded on 18/08/2015 at 15:07

Please note that terms and conditions apply.



https://core.ac.uk/display/78063604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/17/5
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

10P Publishing

@ CrossMark

OPENACCESS

RECEIVED
1 February 2015

REVISED
7 April 2015

ACCEPTED FOR PUBLICATION
14 April 2015

PUBLISHED
14 May 2015

Content from this work
may be used under the
terms of the Creative
Commons Attribution 3.0
licence.

NewJ. Phys. 17 (2015) 055016 doi:10.1088/1367-2630/17/5/055016

H eutsche Physikalische Gesellscha Published in partnership
New journal Of PhYSlCS st M(I)DPG with: Deutsche Physikalische
IOP Institute of Physics | Gesellschaft and the Institute

The open access journal at the forefront of physics .
of Physics

PAPER

Interaction-driven topological and nematic phases on the Lieb
|lattice

Wei-Feng Tsai', Chen Fang’, Hong Yao’ and Jiangping Hu*’

1

Department of Physics, National Sun Yat-sen University, Kaohsiung 804, Taiwan, Republic of China

Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Institute for Advanced Study, Tsinghua University, Beijing 100084, People’s Republic of China

Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100080,
People’s Republic of China

> Department of Physics, Purdue University, West Lafayette, IN 47907, USA

2
3
4

E-mail: wftsai@mail.nsysu.edu.tw, chen.fang2491@gmail.com, yaohong@tsinghua.edu.cn and hu4@physics.purdue.edu

Keywords: quadratic band touching, topological phases, nematic

Any further distribution of Ab stract

this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

We show that topological states are often developed in two-dimensional semimetals with quadratic
band crossing points (BCPs) by electron—electron interactions. To illustrate this, we construct a
concrete model with the BCP on an extended Lieb lattice and investigate the interaction-driven
topological instabilities. We find that the BCP is marginally unstable against infinitesimal repulsions.
Depending on the interaction strengths, topological quantum anomalous/spin Hall, charge nematic,
and nematic-spin-nematic phases develop separately. Possible physical realizations of quadratic BCPs
are provided.

1. Introduction

The search for new topological states of matter has not stopped since the discovery of the quantum Hall state in
the 1980s [1]. In particular, in recent years, the study of ‘topological insulators’ (TT) has become one of the most
active fields in condensed-matter physics, not only for its importance to fundamental physics but also for its
potential application in spintronics or thermoelectrics [2, 3]. This new insulating phase is distinguished from the
conventional one by a non-trivial Z, topological invariant and robust gapless edge states in two dimensions (2D)
[4-7] or surface states in three dimensions (3D) [8, 9], against moderate perturbations that preserve time
reversal symmetry (TRS).

Generally, such topological insulating states can occur in a system with strong spin—orbit coupling that
explicitly breaks spin rotational symmetry (SRS), resulting in the band inversion phenomenon. Typical
materials that exhibit the TI phase are found in, for instance, the HgTe/CdTe quantum wells (2D), Bi,.Sb; _,,
Bi,Ses, BiyTe; (3D), and so on [11-15]. However, an alternative route to TTis possible and it is associated with
the concept of the topological Mott insulator, first studied in [16] in strongly correlated systems. There are two
key and generic ingredients in this approach. First, the Fermi surface of the non-interacting system should
shrink to discrete points (2D) or lines (3D), and hence it is semi-metallic; second, there exists a suitable repulsive
interaction, which can dynamically generate spin—orbit coupling through spontaneously broken SRS, as first
discovered by Wu and Zhang [10]. A few pioneering examples along this line of thought have been discussed in
various lattice geometries, e.g., honeycomb, [16-22] checkerboard, [23] kagome, [24, 25] diamond lattices [27],
and in the low-energy continuum theory [26].

Here we show that topological states can be generally realized in a system with quadratic band crossing
points (BCPs), which are symmetry protected at the non-interacting level. Near such kinds of BCP, instability
toward phases with broken symmetries is inevitable even if there is only weak interaction between electrons. To
demonstrate this, we construct a concrete model with such a BCP on an extended 2D Lieb lattice. There are
several reasons for us to choose the Lieb lattice. First, the Lieb lattice has three sites per unit cell, as shown in
figure 1. With only nearest-neighbor (NN) hoppings, there is a dispersionless (flat) band in the middle of the

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Schematic plot of the 2D (extended) Lieb lattice. The dotted curve indicates the unit cell, which contains three sublattice sites
(A,B,QC).

band structure. The three-band touching point is the result of a combined effect of (a) crystalline symmetry
group of the Lieb lattice (Dj,-group), (b) spin rotation symmetry (or the absence of spin-orbital coupling), and
(c) equal intra-sublattice hopping amplitudes and vanishing hopping amplitudes between B and C sublattices.
Depending on the values of the onsite potentials or the presence of further range hoppings, the band crossing
feature between this flat band and the two other bands may include: (i) The flat band touches upper and lower
linearly dispersing bands at one point when (a, b, ¢) are all satisfied. (ii) The flat band can be isolated. For
instance, one can add intrinsic spin—orbit couplings, i.e., breaking (b), as discussed by Weeks and Franz [29].
(iii) When the onsite potential on the A sublattice is not equal to that of B/C sublattices [i.e., breaking (c)], the
flat band only touches one of the other two bands, which becomes quadratically dispersing, instead of linearly
dispersing [30]. Thus, these choices could variegate our results. Second, a nearly flat band has effectively large
correlation effects due to the small bandwidth, leading to fractional Chern insulating phases if the band has a
non-zero Chern number (see section 4). Finally, the 2D Lieb lattice has been the most important building block
in many 3D perovskite materials featured with complex phase diagram and strong electron—electron
correlations. Thus, study of the model can be viewed as a preliminary investigation of the TI phase especially in
layered perovskites composed of weakly coupled 2D planes with Lieb lattice structure (e.g., the well-known
high-T, cuprates).

In this paper, we start with the construction of the explicit model and reveal the topological nature of the
BCP at the non-interacting level. We then examine the consequence of such topological BCP, i.e., with a
symmetry protected quadratic dispersion, under the presence of short-range repulsive interactions. We
investigate various symmetry breaking instabilities at BCPs within a self-consistent mean-field(MF)
approximation. Note that we mainly focus on type (iii) band structure, namely, only two bands touch together,
and compare it with the case of type (i) when necessary. In principle, for the BCP, there are two ways to open a
gap and gain energy: one is to open a full gap at BCP, and the other one is to split the BCP into two Dirac points
(each with Berry flux z), but at the price of broken C, symmetry. To justify this speculation, we show phase
diagrams for spinless/spinful fermions at 1/3 or 2/3 filling, according to the position of the BCP in the band
structure. In fact, at both fillings, the phase diagrams are qualitatively similar with subtle differences due to
particle-hole asymmetry introduced by the interactions. In the spinless case, the leading order under ‘weak’ next
nearest-neighbor (NNN) repulsion is the quantum anomalous Hall (QAH) insulating state (TRS broken). For
‘strong’ NNN repulsion, the ground state evolves into insulating nematic state (C, symmetry broken down to
(). In addition, for intermediate strength, there exists a narrow coexistence region between these two orders. In
the spinful case, the phase diagrams are more complicated. Besides the phases we find in the spinless case, there
are also a quantum spin Hall (QSH) insulating state and a nematic-spin-nematic semi-metallic phase with Dirac
nodes [31-33]. Thus, we clearly demonstrate that, in principle, correlated systems with Lieb lattice structure can
be host to various non-trivial phases including T1s.

This paper is organized as follows. In section 2, we define the model and demonstrate the topological nature
of its BCP from both momentum and real-space points of view. Next, the consequences of introducing short-
range repulsions are discussed for spinless fermions in section 3.1 and for spinful fermions in section 3.2,
respectively. Finally, we discuss some issues and make conclusions in section 4.
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Figure 2. Band structure of the model along the high symmetry lines in the FBZ for (a) €4 = 0 and for (b) e4 = —4t.In case (b),
when t” = 0.1t (with the constraint mentioned in the text) is present, the BCP at M becomes standard QBCP and the spectrum is
changed slightly as shown by dashed lines. Inset of (a): FBZ of the Lieb lattice. There are four time reversal invariant momenta:
I',X,M,and Y.

2. The lattice model

We begin with the tight-binding model for non-interacting fermions,
H, = —Ztijcfcj + Ze,—cfci, (1)
ij i

where cf creates a fermion on site i of the 2D Lieb lattice, the unit cell of which is given by A, B, C sites shown in

figure 1. For simplicity, we take the hopping amplitudes, t;; = ¢, between NN sites (ij), and t;; = 0 otherwise for
the moment. The effect of adding longer-range hopping amplitudes (but small in magnitude) will be discussed
later when appropriate. Note that the C, point group symmetry dictates that the onsite potentials on Band Care
equal, ep = &c. Although &4 p ¢) are generically non-zero, only their relative values are essential to determine
the symmetry of the lattice, and hence, the band structure. Therefore, hereafter we set the units of energy t = 1,
thelattice constant a = 1, and, withoutloss of generality, e = ¢ = 0.

2.1. Band structure
The band structure of equation (1) can be obtained by transforming H, into momentum space,

Ho= Yyl Ho (Do (2)
k

where the fermion spinor, 1,1/1:r = (¢l Cho ¢ty ), with sublattice (basis) index A, B, Cand k = (k,, ky).
Defining the displacement vectors, a; = (1/2, 0)and a, = (0, 1/2), H, (k) is of the form

eq4 —2t cos (k . al) —2t cos (k . az)
0 0 ’ 3
0

H, (k) =

where the lower triangular matrix is understood to be filled for keeping the whole matrix hermitian. In this
notation, the first Brillouin zone (FBZ) is a square with four time reversal invariant momenta (TRIM):
I'=(0,0),X=(x,0), M= (n, r),and Y = (0, x) [see the inset of figure 2(a)]. The energy spectrum consists

of two dispersive bands, €, (k) = %(SA + (&} + 4by ) with by = Z; [2t cos(k - a;)]?, and one dispersionless
flatband, ¢, (k) = 0.
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An important feature of this model is that the presence or absence of €4 can change electronic properties
dramatically. When ¢4 = 0, the flat band touches two linearly dispersing bands at M point in the FBZ [type (i)],
where the linear bands meet as if there was a ‘Dirac point’. However, the touching point in fact has completely
different structure. It becomes clear once we expand Hy (k) around M pointwith k = M + p, |p|< 1. Tothe
first order in p, Hy (k) can be written as

Hy(B) ~ vL - B, (4)

where the Fermi velocity vr = ¢, B = (p,, by 0), and the (pseudo) spin-1 matrices are defined as

010 00 1 000
Ly=|10 0}, L,=]0 0 0|, L.=]|0 0 —i|, (5)
000 100 0i 0

obeying Lie algebra of SU(2), i.e., [L;, L;] = iej Lk [39,40], instead of a Clifford algebra as in the case of
graphene. This is the fundamental reason why there is no Dirac point and hence no fermion doubling problem
[41] on the Lieb lattice. Viewing the low-energy effective Hamiltonian H, (B) asa ‘spin’ L in an external
‘magnetic field’ B, its eigenvalues can be easily read outas € (B) = v¢ |p| Iy, where [, = 0, +1are the quantized
angular momenta along the axis parallel to B in three dimensions.

When ¢, # 0, however, the spin-1 structure mentioned previously is no longer valid. The flat band now
touches only one dispersive (massive) energy band either above or below at M point, depending on the sign of
€4 [see figure 2(b)]. To make this structure transparent, we again expand Hy (k) around M with small p.
Assuming |p| < |ea/t|and €4 < 0at2/3 filling, we then integrate out the contribution from basis A (due to
almost fully filled A sublattice) and obtain a low-energy effective two-band Hamiltonian,

2
1| P BB
HI )~ —| * | =dil + deoy, + d.o, (6)
Mo\ Bp, P,
where my = —e4/v2. In the last equality, we express HY in terms of the identity and Pauli matrices with

d; = %(px2 + p}f)mo‘l, d, = pxpy/mo, andd, = %(px2 - pyz)mo_l. Interestingly, if we further allow small, lattice

symmetry unbroken third-neighbor hoppings t” > 0 (but forbid to hop whenever here is a site in the middle of
the path), the flat band becomes slightly dispersive and the effective Hamiltonian changes to

1 1 . .
d; = > ® + p;) (mgt = t),d, = pxpy/mo, andd, = 5 ® - pyz) (mg' + t") without removing BCP [see
figure 2(b)]. Such pointat p = 0 is the so-called quadratic BCP (QBCP), which has been studied recently by
several research groups. [23, 34-36] One of the key features for a QBCP in 2D is that its density of states (DOS) is
non-zero at the crossing point, in sharp contrast to the case of Dirac points. This will lead to essential difference
when responding to the weak interactions present in the system. In the following, we will mainly focus on the

g4 # 0 case and show that the BCP in our model is not only topologically non-trivial, but also makes the system
be a potential host to a topological phase under weak repulsive interactions.

2.2. Topological nature of the band touching
The band touching phenomenon on the Lieb lattice is quite generic and stable for non-interacting fermions.
Such stability deserves a full analysis here. We shall provide two different approaches to show it: One is based on
momentum-space topology, and the other one is based on real-space topology.

From the first point of view, the BCP actually forms a topological defect in the momentum space, similar to a
vortex in a 2D superconductor, here with a winding number 2. To see this, let us rewrite equation (6) as
Hoeﬁ[ (p) = d;I + B'(p) - o, where the ‘magnetic field’ B'(p) = (d,, 0, d,). This effective Hamiltonian now
represents a spin-1/2 particle sitting in a magnetic field B, which has a vortex structure at p = 0, as shown in
figure 3(a). For comparison, recall that for €4 = 0 we instead have a spin-1 particle in an external field B
[equation (4)], whose structure is shown in figure 3(b). The winding number W then can be easily extracted
from the figures that in the former case, W = 2; in the latter case, W= 1. However, somewhat counterintuitively,
both cases are associated with the same Berry phase of the BCP, [37] which can be calculated precisely by

B" = iyﬁ; dp - <an unp>, (7)

where I"is a contour in the p space enclosing the touching point, # denotes any one of the involved bands, and
|up ) represents the Bloch wave function for nth band. A simple argument solves this puzzle. The line integral
along any loop enclosing 0 in p space given previously is known to be 1/2 (1) times the solid angle subtended by
B'(p) [B(p)] from the origin for a spin-1/2 (1) particle. Thus, B" = 2zW/2 = 2z in the former case, which is
justequivalent to B" = 2zW = 2x in the latter one. In fact, when B" = 0, any infinitesimal mixing
(perturbation) between bands would lift the degeneracy. With non-vanishing B” = +2x, we confirm that the

Yo
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Figure 4. Schematic plot of the localized eigenstate at R on the Lieb lattice (¢4 # 0). Only those sites in the shaded area have non-zero
weights, whose magnitudes are denoted by numbers (up to a normalization factor). The weights on A sublattice (blue dots) are all

Zero.

BCP on the Lieb lattice at the non-interacting level is topologically stable (i.e., not opening a gap) as long as the
spinless system preserves both TRS and C, point group symmetry. Note that C, symmetry in our model is quite
essential, as a similar QBCP happens in the A-B stacking bilayer graphene (with C; symmetry) while it can easily
decay into Dirac BCPs and thus is topologically unstable [23, 28].

An alternative point of view for the protection of such BCP on the Lieb lattice can be associated with certain
topological structure present in the real space, or more specifically, with the existence of the eigenstates that are
extended along non-contractible loops winding around the whole lattice with periodic boundary conditions (i.e.,
atorus) [38]. To demonstrate this feature, we first take the merit of the flat band, which allows us to construct its
corresponding localized, one-particle eigenstates of H, (Wannier states). Taking R to be the coordinate of the
central site of the shaded plaquette shown in figure 4, we find that the creation operator for the localized

eigenstate at R can be written as

1

2V6

4
2 (=1 (26, = oty = b, ) | (8)

j=1

Ak =

= _b23 bS = (1) _1/2)1 b6 = (1) 1/2)1 b7 = (1/2) 1)1 b8 = (_1/2) 1)>

where b1 = ay, b2 = ap, b3 = —bl, b4
—bg. The key reason for these states being localized is rooted in the fact

by = —bs, bjy = —bg, b;; = =b;, by, =

5
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(@)

Figure 5. The two non-contractible loop states winding the lattice along periodic x direction (a) and y direction (b). Only those sites in
the shaded area have non-zero weights (denoted by numbers in the plots). The weights on A sublattice (blue dots) are all zero.

that all A-sites have vanishing amplitudes and remain zero after the action of H, on them due to destructive
interference.

Inlocalized-state language, the existence of the BCP in our model with 4 # 0is equivalent to state that the
dimension of the space expanded by independent localized eigenstates with zero energy has a dimension that is
one larger than the number of unit cells, N. The extra state cannot come from the flat band, but from one of the
dispersive bands. The plaquette states we constructed in equation (8) seem to form N linearly independent states
with zero energy. For our model with periodic boundary conditions, however, the following relation,

Ag:(ﬂ,ﬂ) = Zeiq.RATR =0, (9)
R

reduces the naive counting by one and hence only N — 1 states are independent. The missing two states, in fact,
are accounted for by two non-contractible loops around the whole lattice (torus), as illustrated in figures 5(a) and
(b). When H, acts on these states, the destructive interference again guarantees the zero eigenvalue. Now, in
total we have N + 1independent states. Therefore, provided not destroying the flat band, such band touching
phenomenon is protected by the topological character of the lattice.

3. Interaction-driven instabilities

The existence of such symmetry/topology-protected BCPs on the Lieb lattice at the non-interacting level
motivates us to further ask if it is stable in the presence of repulsive interactions. To see this, we will first examine
whether generic short-range repulsions are relevant to this BCP from perturbative renormalization group (RG)
analysis, and next, if the interactions are relevant, we will investigate possible consequences of such instability,
i.e., symmetry breaking phases, at MF level.

To perform RG analysis, we consider a continuum, spin-1/2 Hamiltonian, which can be obtained by
projecting the original three-band interacting model onto an effective two-band theory near the BCP in the
continuum and |e4| > ¢ limit,

H = HY + 1Y, (10)
where the free part H, reads as
Hf =Y [arwlmHg ). ()

The subscript ¢ denotes spin polarization and the fermion field ¥, = (1;/12, 1;/;6) with 1, 2 represents orbital (i.e.,
two touching bands) degrees of freedom. Note that in the momentum space the expression for Hg is given by
equation (6), and is independent of 6. For simplicity, we take small t" = —t*/e 4 such that d;= 0, making the
effective theory particle-hole symmetric. In fact, non-vanishing d; would not change our main conclusion,
provided m; ' > t". The projected interacting part includes only (1) intra-orbital and (2) inter-orbital contact
interactions,
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HY, = HT + 1Y,
2
HiT = Yo [ ey (e, (g, (D o),
a=1
T =Yg, [ drwl, 0w, 6y, W, ), (12)

where uand g_ are intra-orbital and inter-orbital coupling parameters, respectively.

For the chemical potential 4 = 0, the non-interacting system ¢ leads to one Fermi pointat p = 0 with
non-vanishing DOS, instead of a Fermi surface. Setting the dimension [p] = 1and understanding the dynamical
critical exponent z = 2 due to quadratic dispersion, it is straightforward to see that the dimension [y (r)] = 1;
in the interacting part the coupling constants [u] = [g_.] = 0, implying that they are superficially marginal
interactions. However, as shown in appendix A, we find that they are generically marginally relevant and bring
the system to the strong coupling regime. More explicitly, up to one-loop order, the coupled RG equations for
the coupling parameters are

du
Z =2y —a)u* + 2ygp i — 2y81481p»
dg
m_ 2 2
o % T e
dgy,
a =(a - 2y)gT2l = 278 u + 278148 (13)

where we have used the fact that g, = g, and g, = g|,./denotes the momentum rescaling p — pe~!and the

coefficients o = ! —K (V1 —=72)andy = PEQA-7?)-KA-i?)+ If_l (E_(l — ) -K(1-7) ,
212 || 872 (=1 + ) |f|

with K(x) [E(x)], the elliptic function of first (second) kind and 7 = (m; ' + t")/my . In fact, no new fixed point
(EP) is produced in this set of RG equations, except for the non-interacting one at which u and g_, vanish.
Moreover, we find that given generic bare coupling parameters (u, g, > 0), atleast one of them diverges first
when reaching alow enough energy scale. This indicates that the non-interacting FP is an unstable FP, which can
drive the system to the strong coupling regime in the presence of short-range repulsions. In addition, it is worth
mentioning that by setting g;| = u = 0, we reduce the RG equation back to the spinless case,

d;

% = ag}; (14)
with a > 0, which is consistent with the work done in [23] and, importantly, it implies that short-range
repulsions are again marginally relevant.

3.1. Spinless fermions

From above, we know that a QBCP is generally unstable against weak repulsive interactions. We now discuss its

consequence on the Lieb lattice and explore possible symmetry breaking phases driven by interactions at MF

level. We warm up with the spinless case to gain some physical insights before including spin degrees of freedom.
The lattice model we study is given by equation (1), with short-range interacting terms,

Hip = WZ”:’”;"F Vi Z”i”j: (15)
(i) (i)

where V; and V, are repulsive coupling constants for NN and NNN interactions, respectively. n; = ¢; ¢; is the
number operator on the site i. The chemical potential is suitably chosen to keep the system at 2/3 (1/3) filling for
€4 < 0 (e4 > 0). We proceed by treating H;,,; in the MF approximation, including both the onsite and bond MF
decoupling particle-hole channels,

ninj—>ni<nj> +1’lj<11i>—<ni><nj>) (16)
ninj — —qﬁijc}ci - ¢i;cfcj + byt (17)

where ¢;; = ¢J§ =(ci¢ ;) represent certain current/bond order with i, j belonging to NN and NNN bonds.
Note that in this work only translation-invariant MF ansatz is considered. The repulsive interactions can produce
the following possible phases:

(i) Nematic state. This is a phase associated with broken C, symmetry down to C,. In particular, it does not
break the translational symmetry by any lattice vectors, and thus is in contrast to the conventional charge density
wave (CDW) order, which enlarges the unit cell due to translational symmetry breaking [see figure 6]. This

7
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(a) (b)

T

Figure 6. The schematic plots for (a) site charge nematic state and (b) site nematic-spin-nematic state. Since the electronic
information of A sublattice sites (blue dots) is irrelevant here, only those of B and C sublattice sites are compared. Each open circle
represents the local charge density, whose magnitude depends on the size of it. The arrow at each site represents a net spin
polarization.

phase behaves like an anisotropic metal (one QBCP splits into two Dirac points) or an insulator (two Dirac
points meet at zone boundary and end up with a gap), depending on the strength of repulsive interaction. There
are two types within this phase. Type L is ‘site’ nematic with order parameter,

n= é 25,((5;%) — (clirsccive)), where 8" = ££/2 + $/2 denoting four NNN bonds of B-site and

A, B, C aresublattice indices. Without loss of generality, at 2/3 filling we can set the charge density, {c };ca;)

2 2 2
=2 4 po(chem) =2 = 2+ mand (cca) =2 = £ — .

As g4 > 0,at 1/3 filling we simply replace 2/3 by 1/3 in the above expression. Note that the use of the
parameter p is to take into account the renormalization of the onsite potentials due to interactions. The non-zero

expectation value of it does not break any symmetry of the model. On the other hand, type ITis ‘bond’ nematic

. . . 1 .
with order parameter either in the form of Q; = 1 Re [ZézifC (chicpivs) — 25=iy (cl:ccivs )], orin the form

1 .
of Q, = 1 25, Dy Re(cjiccivs ) for Dy—s(:2-32) = 1and Dg—y(2/245/2) = —1. The subscript of the order

parameters indicates their origin of either V; or V, repulsion.

(ii) Current-loop state. This type of phase is featured by spontaneous TRS breaking. The most probable
current patterns that preserve translational invariance with no (charge) source and drain present on the lattice
sites are shown in figures 7(a)—(d). Each state basically comes from the non-vanishing imaginary part of certain
bond orders in the MF decouplings and may behave Hall-insulating [7(a)], semi-metallic [7(b), 7(d)], or
insulating [7(c)]. In particular, the most significant one is case (a), which exhibits QAH effect with order

1 . . . . .
parameter, &, = 1 Im [z 5 Dg{c gi cci+s ) I- This topological state is known to be characterized by quantized

Hall conductance without Landau levels (or equivalently, by non-zero Chern number) and has topology-
protected, gapless chiral edge modes [42]. We compute the Chern number for each band within this state and
find that (1) for |e4| > 0, the previous two touching bands now carry Chern numbers *1 separately. In
particular, one of two bands is (nearly) dispersionless. The third one simply carries zero; (2) for €4 = 0, the
middle flat band carries zero Chern number, while the upper and lower bands carry 1, respectively.

The other possible current-loop states, however, are not topological insulating. For case (b) (Varma @; loop

state [43]), it is semi-metallic with the order parameter given by, simultaneously,
1 o1
D = " Im [Z{s:ﬂ/z (chichivs) — Za:iy/z (chicciss)]and @) = " 25, Im(c;ccirs ). For case (c) (Varma

Oy loop state [43]), it is insulating with broken inversion symmetry (IS) as well, but is invariant under the
combined TRS and IS. Thus, there is no Hall or uniform Kerr response by noticing that for any given
momentum k it changes sign under TRS or IS [35]. This order can be described as @ # 0, @, = @, # 0,

;1 . .
where @ = 1 Irn[zézﬂd2 (26 - X)(clicBiss) + 25=¢y/2 (26 - P)(cliccis) ),

" __ 1 N T wo__ 1 N T . . .
D) = " Im[25'(25 - X)Dg {chiccirs ) ), and @, = 1 Im[zé/ (26" - x){cgicci+s ) - Finally, case (d) is a semi-

8
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metallic state with broken IS and hence has no net Hall current in it. Its order is described as

! " " 1 A A
D) # 0, D = & # 0,where @' = 1 Im[zﬁzjﬁ/z (26 - ) (clicpivs) — 25:;@/2(25 - P){chiccivs) -
In momentum space, the MF Hamiltonian at 2/3 filling can be now written in the matrix form,
Myr = Y Wi (Hi — ul) % + Eo, (18)
k

with the fermion spinor, ¥ = (¢}, cji cly)»and

Ne i (Ep1 + Ec1) _ Negéc
AV 4V,
+ ANV (8t + QF + ®F + @3° + &) + 37
+ANV (82 + QF + O + & + &%), (19)

E():

where 6t (5t") represents a renormalization due to NN(NNN) repulsions. The Hamiltonian matrix H) reads

Ea1+ €4 I I,
Hk = Ep1 + Epr + Uy I;cy > (20)
&+ Eca + Uy,

where €41 = VI(8 — 6p)/3, €y = 2Vi(2 + 3p)/3, &gy = 2V5 (4 — 3p — 61)/3, Ec1 = 2Vi (2 + 3p)/3,
€cy =2V5(4 = 3p + 6n)/3,and v, = —2t" cos k ,; " parameters are given by
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Figure 8. Schematic zero-temperature MF phase diagrams for spinless fermions on the (a) 1/3 filled lattice with £ 4/t = 4, "/t = —0.1
and on the (b) 2/3 filled lattice with €4/t = —4, t"/t = 0.1. The shaded area represents the coexistence region.

: ky
Iy = (=2t F 2V (Q — i®))cos -

’ 4 : kx’y
=2V (@) £ @y )sin =

I = 4% cos K cos . + 4V sin & b
=4 COS — cOs — sin — cos —
xy 2572 2 2 2% ) 2
N
—4V5(Q, — id,)sin — sin =
2 2
kx k)’
—4V, D, cos — sin —. 21
D) 5 5 (21)
Thus, the MF free energy can be expressed as
1 (B
F=-——%In(1+¢PBw) 4+ E, (22)

AN 4

where f = 1/kg T and Ej are eigenvalues of Hy. The ground state with given coupling parameters can then be
determined by minimizing the free energy with respect to each order parameter, yielding a set of coupled gap
equations. Notice that at 1/3 filling we follow the same procedure and only the diagonal part of Hy and E, need
to be changed accordingly due to the shift of the average charge density.

We numerically solve the coupled gap equations self-consistently and obtain the zero-temperature V-V,
phase diagrams atboth 1/3 (e4 = 4t) and 2/3 (¢4 = —4t) fillings, as seen in figures 8(a) and (b). Note thatin
this study, only weak short-range repulsions, i.e., V{, V; < t are considered. At 1/3 filling, we find that there are
three phases in the absence of V;: QAH phase, coexisting QAH+nematic phase, and nematic phase. Beginning
with V, < ¢, the infinitesimal instability of QBCP leads to QAH phase by the second-order phase transition,

), where Ny denotes the finite DOS at QBCP and A is an energy

witha T=0gap, Agay = (V1 P,) x A exp(N
o V2
cutoff; on the other hand, for t > V; > V5. ~ 0.22¢ the ground state breaks C, symmetry spontaneously down to

G, and exhibits insulating nematic phase with a gap Ay ~ #. In this phase, we find that the site-nematic order
(n) is the dominant one and a small component of the bond-nematic order (Q,) accompanies with it. In fact, we
notice that the bond-nematic order cannot be induced by V/ itself.

Finally, with an intermediate value of V5, there exists a narrow window for the coexistence of both QAH and
nematic orders. This can be further seen in figure 9, showing the magnitude of both order parameters asa
function of V, with fixed V/;. Since the bulk energy gap never really closes as V, increases, it suggests that the

10
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Figure 9. The magnitude of both QAH (blue, solid) and nematic (green, dashed) order parameters as a function of V, at 1/3-filled
lattice with €4/t = 4,t"/t = —0.1,and fixed Vi/t = 0.2.

quantum phase transition between QAH and nematic phases is nof continuous, lacking a quantum critical point.
In addition, we also notice that there is no room for the current-loop states other than QAH state for systems
with relatively large | e 4 | and weak repulsions.

At2/3 filling, the phase diagram is qualitatively similar to that at 1/3 filling. However, there are a few remarks
worth mentioning here: (1) Although the non-interacting energy spectrum for both fillings can be related by
translating ‘particle’ into ‘hole’ language, which causes t — —t,¢" — —t", €4 — —e4,and y - —pu. The
interactions given in the present form ruin such relation and hence the two phase diagrams must be different®. 2)
Notice that since in our consideration | e4 | is the largest energy scale among others, it is easy to realize that the
charge density at A-siteis 6n at 1/3 fillingand 1 — n at 2/3 filling, where n denotes small density fluctuation.
Such fact makes the NN repulsion (V; term) almost a constant depending on the total number of fermions,
leading to V;-insignificant phase diagrams in both cases. However, a close study in energetics (assuming the
system is in QAH phase) can show that V; enters the dynamics through the first order of 61 for 1/3 filling while
through the second order of 6x for 2/3 filling. Therefore, the phase diagram is relatively insensitive to V; in the 2/
3-filling case. (3) When &4, t" — 0, the spin-1 structure near band touching point, as discussed in the previous
section, is recovered. Our MF study shows that the infinitesimal instability (near 1/3 or 2/3 filling) is absent due
to the vanishing DOS of the dispersive bands and the semi-metallic phase is robust until V; reaches certain
critical value. Moreover, for V, > V., we find that the QAH phase only survives in a negligible window of V,,
and the nematic phase becomes the dominant one in the phase diagram (not shown). This result is similar to the
work done by Liu et al [24] on the 2/3-filled kagome lattice with Dirac BCPs.

3.2. Spinful fermions

We now take the spin degrees of freedom into account. The model Hamiltonian again consists of the free and
interacting parts, i.e., H = Hy + H,,,. The free part is again given by equation (1) with extra spin index oin the
fermion creation/annihilation operators; the interacting terms now contain

Hint = Zzwni’anﬂﬂ/ + Z Z‘/Zni,anj,a/

(if) 0,0’ ((ij)) 0,0’
+ ZU,-n,-,Tn,-,l. (23)

1

In addition to V; (V) denoting the coupling constant of NN (NNN) repulsion, we also consider the repulsive
Hubbard (U;) terms For simplicity, we will assume uniform onsite repulsions, i.e., U; = U.

o onereplaces n; by n; — p, with p, denoting the average charge density and rewrites the density-density repulsions in terms of it in
equation (15), the mapping between 1/3 and 2/3 fillings by particle-hole language translation will become exact.

11
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Different from the spinless case, there are not only spin-singlet order parameters (as we had before), but also

spin-triplet order parameters within MF approximation. The possible phases under translation-invariant ansatz
are classified below”:

(i) Charge nematic state (CN). This phase is associated with spontaneously rotational (C,) symmetry breaking.

One can either have the site-nematic or bond-nematic state, whose order parameter is a spin-singlet and
simply the same as that for spinless fermions with additional summation on spin ¢ times a normalization
factor 1/2. Note that for the site-nematic case, the driving force is now from both Uand V, terms, combined

together to give out an effective NNN repulsion, V; = 2(V, — %), playing similar role of V, in the spinless

model.

(ii) Nematic-spin-nematic state (NSN). This phase breaks C, symmetry in the spin sector, not in the charge

sector. Consequently, it turns the (spin) doubly degenerate QBCP into four Dirac points (two pairs with
opposite spin polarizations), and C, symmetry of the band structure remains intact. Similar to its charge
counterpart in (i), there are two types: One is the site-NSN with a spin-triplet order parameter, 7j* =

1 . . .
T Z 5 (Sgi — Scit+s), where S, = (c;i)g Soo'Cai,o’y With @ = A, B, C and s, the Pauli matrices. Note that
this phase can occur simply due to the presence of the Hubbard term, which provides a spin-triplet

channel, — % U (S;)*with S; representing usual spin operator. The other one is the bond-NSN, which is

. =t 1
described by Q, = 3 Re[zﬁzﬂ/2 (hinSooCBits,0) — 25:119/2 (c}inSonCcivso )] or

-

Q; = % Z 5 Do Re(c g,-,(, Seo'Ccivs,o' ) (breaking C, along a diagonal direction of the lattice).

(iii) Charge current-loop state with broken TRS. As mentioned in the spinless model, among all the current

(iv)

patterns the case (a) in figure 7 is of most interest. This state, characterized by spontaneously broken TRS

and parity symmetry, exhibits QAH effect with a spin-singlet order parameter,
1

D, = 3 Im [Z 55 Dofc gi,g Cci+s,0 ) - Mainly driven by V, terms, fermions with opposite spin polariza-
tions flow in the same way and hence provide the same flux pattern, penetrating the whole lattice. In
addition, we investigate the possibility for the other current-loop states [e.g., from figures 7(b)—(d)] and
find that none of them are stabilized by the presence of short-range repulsions in our MF study. Therefore,
we will only consider case (a) hereafter.

Spin current-loop state with TRS. The key difference of this phase from its charge counterpart (QAH) is TRS
unbroken. One can view it as a combined double-layer QAH system: fermions of opposite spin
polarizations, residing in different layers, producing just opposite flux patterns separately. Thus, for the
whole system TRS is preserved. In fact, this is known as quantum spin Hall (QSH) phase, or equivalently,
2D Z,-non-trivial TT, with spin-triplet order parameter described by

> 1 .. .
(Pzt = 3 Z 5 Do Im [{c g,»,a Soo'CCivs.s' ) |- Two remarks deserve mentioning here. First, both QAH and

QSH are topological phases, characterized by a non-trivial topological index with robust edge states.
However, the former one acquires a non-vanishing Chern number, while the latter one has zero Chern
number due to TRS. Thus, a new topological index, called Z, index v, needs to be introduced [4, 5, 9]. As
detailed in appendix B, the QSH phase on the Lieb lattice indeed acquires non-trivial v = 1. Second, itis
straightforward to see that at the MF level, the energy spectra (not shown here) for both QAH and QSH are
the same. As aresult, they have equal energy gain from V, repulsion and hence one cannot distinguish them
in the MF phase diagram. If there were an extra NNN exchange coupling J, present in the system, the QAH
would be favored for J, > 0; reversely, the QSH would be favored for , < 0 due to its spin-triplet nature.

Under our assumption of translational invariance within our MF study, we do not consider any charge or

spin density wave order. However, it is still worth pointing out thatif |e4| — oo and hence makes the A
sublattice be effectively decoupled from rest of the lattice sites, at large U the (0,0) antiferromagnetic order could
berealized at 1/3 (2/3) fillingwith e4 > 0 (¢4 < 0), as guaranteed by the Lieb’s theorem [44].

“A ferromagnetic (FM) state can be proved to be the exact ground state in systems with half-filled flat bands and short-range repulsions.
However, in our system the flat band (which in fact acquires a small band width if a small " exists) is completely filled (or empty), and thus it
is the dynamics around the BCP, rather than the filled band, that determines the phase. In addition, we notice that the FM state cannot open a
full gap on the Fermi surface. Instead, it results in a (circular) line node with finite DOS at Fermi level, in sharp contrast to a typical nematic
state, where there are only discrete Dirac nodes. Therefore, it is never favored energetically.
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Figure 10. Schematic zero-temperature mean-field phase diagram for spinful fermions at 2/3-filling with €4/t = —4, "/t = 0.1,and
Vi = 0. The short-hand notations represent: NSN = nematic-spin-nematic; QAH = quantum anomalous Hall; CN = charge nematic.
The shaded area denotes the coexistence region.

Following the same procedure as in the spinless case, we decouple the interacting terms within MF
approximation and obtain the MF free energy in similar form of equation (22), where we have used the MF

2 1 2 1
ansatz, (na; ) = 3 +p+ EGSAZ,(nBi,(;) = 3 g +n+ 50 (Sp, + 217;), and
(nciq) = % - g -n+ la(SBZ — ant)for the 2/3-filled lattice. Note that, for simplicity, we have assumed

that spin points to z-direction after SU(2) symmetry breaking. Such treatment will be applied to other spin-
triplet order parameters as well. E; in the spinful case becomes

Eqy Er1(Ep + Ec1)  EpéEcy 2 2
= - + 8Vi(6t2 + Qf + Q.
N | v 1 ! 2

+8V5 (8t + QF + @3 + Qi + D3

U
+ X(sz + S5, + S& + 8n'?)

U (ep + E1)*  Epy + &5
16V} 16V

(24)

where &,3, €g1, €p2, Ec1,and éc; are defined as before. Ey are eigenvalues of the MF Hamiltonian, which is now a
6 X 6 matrix.

By minimizing free energy with respect to various order parameters, the T'= 0 MF U-V, phase diagram at 2/3
filling (¢4 = —4t) for spinful fermions is shown in figure 10. We first notice that in the absence of U there again
exist three phases: QAH/QSH phase, coexisting QAH/QSH+CN phase, and CN phase from weak to strong V,
repulsion. In particular, the fact that the topological QAH/QSH phase can arise from infinitesimal instability of
QBCP further justifies the interaction-driven scenario as a promising way for producing TI. In the presence of U,
however, the NSN phase begins to compete with the topological phase and clearly dominates over QAH/QSH

whenever U > V, > 0.On the other hand, as V; = 2(V, — %) 2 0.22¢, the insulating CN phase takes over the

phase diagram and this is consistent with the result shown in the spinless model. Two remarks are worth
mentioning here. The first one is about the effect of NN repulsion V. As in the spinless case, at 2/3 filling the
phase diagram is not sensitive to the presence of V. Especially, V| itself does not lead to any order. However,
when V| becomes stronger, it is quite possible that the system might gain certain energy by opening a gap due to
translation symmetry breaking, and hence is beyond our current consideration. The second point is about the
system at 1/3 filling with 4 = 4t. In fact, the phase diagram is qualitatively similar to that of 2/3 filling and
therefore we omit it without further discussion.

4, Discussion and conclusion

The model we have solved on the Lieb lattice demonstrates that the TI (QAH/QSH state) can be induced by
appropriate interactions through a spontaneously symmetry breaking mechanism, which dynamically generates
spin—orbit couplings necessary for a topological insulator. It is then natural to ask how it can be realized
experimentally.
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We notice that in the interaction-driven scenario there are two key conditions that a system has to fulfill: (1)
The band structure should contain a suitable BCP at which two touching bands have opposite curvatures. (2) The
system should have weak (or no) spin—orbit coupling [spin SU(2) symmetry is preserved] and NNN repulsions
need to be more significant than the other short-range repulsions. While the condition (2) is tricky and we have to
reserve it for future investigation, we would like to comment on some possible routes for condition (1) below.

First of all, the most promising candidate, we believe, is from cold atom system. As discussed by Goldman et al
in [39], the Lieb lattice may be constructed as an optical lattice created by properly arranged laser beams. In
particular, the spin—orbit interaction, which might be an issue in traditional materials, now becomes irrelevant.
Another potential way for realizing a Lieb lattice may come from layered perovskites. A well-known example is the
CuO; plane in high- T, cuprates such as La ; —xSr,CuO, or YBa,Cu;0;, whose electronic structure might be
captured by a three-band model with p_, b, and dxz_yz orbitals. Here, for illustration purposes, we take a typical
three-band (Emery) model, written in hole language, having the same form of equation (1) [45, 46]. The
corresponding model parameters are given by Hybertsen etal [48]: t=1.5,¢" = 0.65, &4 = 0,and eg ¢ = 3.6,
where ¢’ denotes NNN hopping. The band structure in the FBZ along high symmetry lines is presented in
figure 11(a). As one can see, there is indeed a BCP at M, but with ‘wrong’ curvatures for two touching bands. Asa
result, cuprates may be impractical to produce topological phase as we desire. To overcome this issue, we offer two
speculative suggestions. The first way out is to add decorated elements with suitable orbital nature (e.g., p-orbital)
between atoms on B and Csites that could change the sign of ¢'. This change leads to the band structure shown in
figure 11(b) with ‘right’ curvatures now. Keeping the same orbital characters, the second way is to search for a new
system among perovskite materials, whose model Hamiltonian is similar to that given by Sun et al’s recent work in
appendix F [49]. The key feature of such three-band model is that the dominating transfer integrals are now
associated with distance a after hopping. For instance, if, by certain geometric reason, the relevant orbital on B (C)
sublattice becomes p,, (p.), instead of p(p,) as in the cuprates, the above consideration could be plausible.

Before concluding our work, we would like make a brief remark for the possible new physics brought by the
(nearly) flat band appearing in the Lieb lattice. Consider £4 > 0 and only NN hoppings in our spinless model.
Now, the middle band is completely flat and touches with the lower dispersive band at M in FBZ. At 1/3 filling if
we turn on V), the ground state would enter QAH state with an energy gap Agay opened at M. As we have
mentioned in section 3.1, the middle and lower bands acquire Chern numbers +1, while the upper one has zero
Chern number in this phase. Moreover, the flatness of the middle band is approximately determined by the ratio
of band-gap to bandwidth ~O (4 /Aqan ). In other words, with appropriately chosen €4 /Aqgar, one can
produce a nearly flat band with non-trivial Chern number. This result is quite significant since it may provide an
opportunity to realize a fractional QAH state (or fractional Z, T in the spinful case) when such band is partially
filled [50-55].
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In conclusion, we have studied interacting spinless/spinful fermions on the (extended) Lieb lattice and have
explored the possibilities of various spontaneously broken symmetries associated with a BCP in the band
structure. Due to the topological nature of the BCP, namely, with Berry phase 27, we have seen thatin the T=0
phase diagram the system can exhibit topological QAH/QSH, nematic, and NSN phases, depending on the
strengths of short-range density—density interactions. In particular, the existence of the TI phase firmly justifies
the interaction-driven scenario. Moreover, for a quadratic BCP (as ¢4, t” # 0), only weak interaction is
necessary for inducing the TT phase, which is in sharp contrast to the systems with Dirac points. In addition, in
our model there exists a nearly flat band, which is interesting in its own right and we argue that in principle, one
can obtain a nearly flat topological band without external magnetic field, a starting point to realize exotic
correlated phases of matter. Still, there are many open issues and they deserve further investigation. For instance,
one could consider the effect of the chemical potential away from the BCP or the instability to superconductivity
from both repulsions and attractions, with special focus on the possibility of any topological nature.
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Appendix A. Perturbative RG analysis for a QBCP

In this section, we derive RG equations given in equation (13) in path integral formulation and show the RG
flows for two typical cases. We begin with defining the action and the shorthand notations below. At zero
temperature, the full action is given by

S =S80+ Sint> (A1)
where the free action Sy reads
d "o -1
SO - Z / /(2 1;2 Yj ((U, p)[GO (60, p)] %((l), P)) (AZ)

in momentum space. The Grassmann variables, ¥, = (5> Wy, ) With 1, 2 (labeled by ‘a’ for later use)
representing orbital degrees of freedom. As mentioned in the main text, for simplicity, we consider the inverse of
the non-interacting Green’s function [GOJ (w, p)I' = iwl — dyo, — d,0,, whichis suitable for a particle-hole
symmetric QBCP with d, = pxpy/mo, d, = (px2 - py2 ) f/(ZmO), and f = 2 and is independent of spin
polarization 6. We will fix 1/(2m ) as our unit in the analysis. The action of interactions can be written as,

Simt = S1 + S2,

2
si=-Y /dgwpﬂm)u‘/ﬂl(3)1//“(2)%41))
a=1

;==Y [ e v, @i, Gus, s, (1, (A3)
d
where / dé = Hb X / N za: (2” Y and the shorthand notation b = (wp, p,)-Notethat‘4=1+2-3is

understood by energy and momentum conservation and we ignore the momentum dependence of uand g_ ,
which turns out to be irrelevant in RG sense. In addition, it is worth mentioning here that the present RG analysis
is much simpler than that of usual Fermiliquids in the sense that there is no Fermi surface (p, = 0). This fact
thus waives the complexity brought by the Fermi surface, a situation similar to ¢*-theory.

Let us now sketch how to obtain one-loop RG equations, following the standard perturbative RG procedure
by Shankar [56]. Defininga momentum cutoff A and y (y ) as slow (fast) modeswith 0 < p < A/s
(A/s < p < A), thekey formula we use to derive the renormalized action by integrating out the fast modes is
given by
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Figure 12. The tadpole diagram, induced by the quartic terms, can in principle renormalize the free action. The arrowed lines on the
left represent the intra-orbital (solid) and inter-orbital (dashed) non-interacting Green’s functions, respectively.

Z= /D[W>W>; l/7<l//<]es[w<+w>’w<+w>]
- / D[ pap ][], (A4)

where

eSlevd] = Zy (A, Ass)eSlveve] (eSmy,
= Zo(A, A/s)eSolvevc]

X e[ (Smr>0>+ ( <Smt>0> <Smt>0 >) ] (A5)

Note that in deriving the last equality we have used the cumulant expansion. Z, denotes the non-interacting
partition functionand ( ) - represents average with respect to the fast modes of action Sy. The collected
exponent of the exponential terms now results in the renormalized action §'.

Before examining the renormalization of coupling parameters u and g_., we first notice that, to
the one-loop level, the quartic terms in S;,; do induce quadratic terms from the tadpole diagram
shown in figure 12, which are momentum independent. This would indicate there is no non-
interacting FP in our system. However, explicit calculations show that all contributions from such
types of diagram are zero and hence our starting FP survives without flowing (£, y,, are not
renormalized), in contrast to the case of the Luttinger liquid.

Next, we turn our attention to the diagrams that renormalize coupling parameters. As shown in
figures 13(a)—(c), they are, respectively, total contributions to the renormalized u, g_,and g_.. Obviously, they
have standard structures such as ‘BCS’, ‘ZS’ (zero sound), and ‘ZS " used in Shankar’s seminal work [56]. Note
that we have taken the convention that1 = 2, 1 = | and vice versa. The essential fermion loop integrals are
listed below (without vertex):

BCS1 : /q Glra (@) G (—q) = dl - 7 (D),

BCSZ:/q Gira () Gina (—q) = d1 - 7 (),

BCS3:_/q GE (@) Gl (—q) =dl - [a(D) - y(D],

ZSl:fq G () Gina (@) = — dI - [a (D) — 7 (D],

zsz:fq GE (@) GEn (q) = dl - 7 (),

283 [ Gl (@Gl =~ dl- 1(), (A6)

2 d.
where f f 5 f 49 fA /s/‘—q and 7, a (f), y (f) are defined in the main text [just below
<) T 0

equation (13)]. The superscrlpt o', of Go can be either o or 6. The presence of dlis due to the approximation we
haveused, Ins = In(1 + dl) = dlinthelimits — 1.In order to evaluate these integrals, we have set all external
w = p = 0andmade g, = g cos 0, q, = ¢ sin 6. Combiningall the Feynman diagrams in figure 13 and
keeping in mind the order of fermion operators, the straightforward algebra gives rise a set of RG equations, as
we desire, equation (13).

Finally, we investigate the RG flow beginning with weak coupling regime for two typical cases: (a)
u>g =g s(b)u<g =g . Asonecanseeinfigure 14,in either case, theyall flow to strong coupling
regime and hence the non-interacting FP is actually unstable against short-range repulsions.
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Figure 13. Diagrams to one-loop level that contribute to renormalize (a) u, (b) g ,and (c) g .. Different types of vertices are shown
on the left. The labels for external legs in each one-loop diagram are the same as the vertex on the left and hence are omitted.
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Figure 14. RG flows for u([) (solid, blue), 2 (1) (dotted,black), and g () (dashed, red) with interaction profile (a)
u(0) = 0.5, i 0) = & (0) = 0.05; (b) u(0) = 0.05, & 0) = & (0) = 0.5.Inboth cases, f = 2.

Appendix B. The proof of non-trivial Z, index for the quantum spin Hall phase

The existence of the QSH state can be justified by a non-trivial Z,-valued invariant v = 1. This Z, index
represents the topological nature of the QSH state and leads to topologically protected gapless edge states when
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Table 1. The expressions for the coefficients of | 4, ) with x; =
k - a; (i=1,2).For k = M, thelisted expressions break down
with ambiguity and hence we single them out,

ltam) = (0,1/32, i/N2)T, lu_m) = (0,1/3/2, —i/N2)T
and |ugm) = (1, 0, 0)7. Note that the upper (lower) sign in
the square bracket refers to spin-up (down) fermions.

b=y [2t cos(k, a)]

9ax € (k) — 450w

qpk 2t [€, (k) cos x; + 2idgo Wy cos x; ]
dek 2t [e, (k) cos xo F 2idsowy cos x1]
G e} (k) [e2 (k) — 442w + by]

+4A2owi (by + 42 & wi)

the 2D system is made open with boundaries. Here, we present a method, first invented by Fu and Kane [9], to
derive Z, index explicitly. This method essentially takes the advantage of IS such that the index can be related to
the parity eigenvalues &, ,,, (I7 ) of 2 m occupied energy bands at four TRIM: I; = I', X, Y, and M.

For the purpose of instruction, we focus on 1/3 filling with £ 4 g ¢ = 0 and hence only the lower band is
relevant. As shown in section 3, the presence of V, can dynamically generate the ‘spin—orbit’ interaction, which
is equivalent to add the following term into equation (2).

Hso = ZW]IUHSO (&) vy (B.1)
k,c
with Hgo (k)=
0 0 0
1/150 0 0 ZiWk S (B.Z)
0 =2iwx O

2 4 . . .
where wy = 2j=1(—1)1+1 cos(k - aj) with a; = a; + a,,and a) = a, — a;. The +( —) sign refers to spin-up

(down) fermions. The eigenvalues of H (k) = Hy (k) + Hso (k) are e,.(k) = /by + 44w and €y (k) = 0
and their corresponding eigenstates can be written in the form,

|unk> = Gnk(qua qB10> QCk)T, (B.3)

where the expressions of the components g,, (I = A, B, C) and the normalization factor G, for each band n
(=0,%)aregiven in table 1.

At TRIM, we have eigenstates [u_p) = (\/5 R )T lu_x) = (\/— \/—)T lu_y)=,and

1 —i . . .
lu_m) = (0, Nk T;)T according to table 1, respectwely. Now, let us make a gauge transformation on

eigenstates such that only one coordinate R would be assigned to each unit cell (instead of R + a, for each atom
within the cell), and the Bloch Hamiltonian H (k) now obeys H (k + G) = H (k) and, with the inversion
operator P, H (—k) = PH (k) P, resultingin [H (k = I;), P] = 0. Thus, the parity eigenvalue now becomes a
good quantum number at TRIM. Under such transformation the eigenstates are rewritten as
l

lu_r)=(— )T lux)=(—=,0, =) luy) = (—= ’,and

7 75 v
[u_m) = (0, _—;, —Z)T. Picking up any one of A-sites as our inversion center, we can determine the parity
eigenvalue for each TRIM by examining the wave functions (eigenstates) in real space. Since moving a unit cell
by R is simply multiplying our eigenstate at I; by a factor e”"R, we now see the parity eigenvalues for I;=
(I', X, Y, M), are, respectively, P = (+,+,+,-). The Z, index v is then determined by

4
= H 5 =—1, (B.4)

i=1

where §; = HN &m (I7), and N = 1 indicating either spin-up or spin-down band in our example here.
Therefore, v = 1 suggests that the ground state of our system at 1/3 filling has topological nature. We summarize
the parity eigenvalue of each band in table 2. Finally, for €4 # 0, one can follow similar procedure and the
conclusion of v = 1is unchanged.
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Table 2. The parity eigenvalue for nth
band at TRIM I;.

I; n =+ n=- n=0
r + + +
X + + -
Y + + -
M - - +
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