PHYSICAL REVIEW E 92, 022148 (2015)

Anomalous transport on regular fracture networks: Impact of conductivity heterogeneity

and mixing at fracture intersections

Peter K. Kang,"? Marco Dentz,* Tanguy Le Borgne,* and Ruben Juanes'-"
"Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
2Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea

3 Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), 08034 Barcelona, Spain

4Université de Rennes 1, CNRS, Geosciences Rennes, UMR 6118, Rennes, France
(Received 22 April 2015; published 28 August 2015)

We investigate transport on regular fracture networks that are characterized by heterogeneity in hydraulic
conductivity. We discuss the impact of conductivity heterogeneity and mixing within fracture intersections on
particle spreading. We show the emergence of non-Fickian transport due to the interplay between the network
conductivity heterogeneity and the degree of mixing at nodes. Specifically, lack of mixing at fracture intersections
leads to subdiffusive scaling of transverse spreading but has negligible impact on longitudinal spreading. An
increase in network conductivity heterogeneity enhances both longitudinal and transverse spreading and leads to
non-Fickian transport in longitudinal direction. Based on the observed Lagrangian velocity statistics, we develop
an effective stochastic model that incorporates the interplay between Lagrangian velocity correlation and velocity
distribution. The model is parameterized with a few physical parameters and is able to capture the full particle

transition dynamics.
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I. INTRODUCTION

Understanding transport in network systems is of critical
importance in many natural and engineered processes, includ-
ing groundwater contamination and geothermal production in
fractured geologic media [1,2], disease spreading through river
networks [3], engineered flows and medical applications in
microfluidic devices [4], and urban traffic [5]. While particle
spreading has traditionally been described using a Fickian
framework, anomalous transport—characterized by the non-
linear scaling with time of the mean-square displacement and
the non-Gaussian scaling of solute distributions and fluxes—
has been widely observed in porous and fractured media at
various scales from pore [6-9] to column [10-12] to field
scale [13—18]. The observation of anomalous transport is not
limited to porous and fractured media and has been observed in
many different systems from diffusion of a molecule in a single
cell to animal foraging patterns [19-21]. Predictability of the
observed anomalous transport is essential because it controls
the early arrival and the long residence time of particles
[22—24]. This becomes especially important for environmental
and human-health-related issues, such as radionuclide trans-
port in the subsurface [25,26] or water quality evolution in
managed aquifer recharge systems [27-29].

Stochastic models that account for the observed non-
Fickian transport behavior in porous and fractured media
include continuous-time random walks (CTRW) [30-34],
fractional advection-dispersion equations (fADE) [35,36],
multirate mass transfer (MRMT) [17,37,38], stochastic con-
vective stream tube (SCST) models [39], and Boltzmann
equation approaches [40]. All of these models have played
an important role in advancing the understanding of transport
through porous and fractured geologic media.
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The CTRW formalism [41,42] offers an attractive frame-
work to describe and model anomalous transport through
porous media and networks [30,43,44] because it allows
incorporating essential flow heterogeneity properties directly
through the Lagrangian velocity distribution. The CTRW
approach successfully described average transport in quenched
random environments from purely diffusive transport (e.g.,
Ref. [23]) to biased diffusion (e.g., Refs. [45-48]). Most
studies that employ the CTRW approach assume that suc-
cessive particle jumps are independent of each other, therefore
neglecting velocity correlation between jumps [49]. Indeed, a
recent study showed that CTRW with independent transition
times emerges as an exact macroscopic transport model when
particle velocities are uncorrelated [48].

However, recent studies based on the analysis of Lagrangian
particle trajectories demonstrates conclusively that particle
velocities in mass-conservative flow fields exhibit correlation
along their trajectory [9,40,45,50-53]. Mass conservation
induces correlation in the Eulerian velocity field because fluxes
must satisfy the divergence-free constraint at each intersection.
This, in turn, induces correlation in the Lagrangian velocity
along a particle trajectory. To take into account velocity
correlation, Lagrangian models based on temporal [50,54]
and spatial [9,40,45,51,52] Markovian processes have recently
been proposed. These models successfully capture many
important aspects of the particle transport behavior. The
importance of velocity correlation has also been recently
shown for a field-scale tracer transport experiment [18].

Following the work by Le Borgne et al. [45], the spatial
Markov model for particle velocities at Darcy-scale has been
recently extended to describe multidimensional transport at
both pore and network scales [9,51]. The model captures
multidimensional features of transport via a multidimensional
velocity transition matrix. In these approaches, the transition
matrices are constructed utilizing Lagrangian velocity infor-
mation obtained from direct numerical simulations. Therefore,
for an effective parametrization in terms of the medium
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FIG. 1. (Color online) (a) Schematic of the fracture network studied here, with two sets of links with orientation £« = +m /4 and uniform
spacing /. The conductivity values are reflected in the link thickness. We study log-normal conductivity distributions with three different

2

conductivity variance values: o2, = 0.1,1,5. (b) Map of the spatially uncorrelated conductivity field with o2 , = 5 shown in a log-scale color
scheme. No flow boundary conditions on the top and bottom and constant hydraulic head on the left and right boundaries ensure a uniform

mean flow.

geometry and the statistical characteristics of the Eulerian
velocity, a model for the velocity transition process is crucial.
Furthermore, it is well known that the mixing at fracture
intersections and fracture conductivity distribution has major
impact on transport properties [55-58]. However, the impact of
the interplay between the network conductivity heterogeneity
and the mixing dynamics at fracture intersections on anoma-
lous transport, and the ability of spatial Markov models to
capture it, is still an open question.

The paper proceeds as follows. In the next section, we
present the heterogeneous fracture network, the flow and
transport equations, and details of the different mixing rules at
fracture intersections. In Sec. III, we investigate the emergence
of anomalous transport by direct Monte Carlo simulations of
flow and particle transport. In Sec. IV, we analyze the statistics
of the Lagrangian particle velocities measured equidistantly
along the particle trajectories to gain insight into the effective
particle dynamics and elucidate the origins of the observed
anomalous behavior. In Sec. V, we develop a spatial Markov
model that is characterized by the probability density function
(PDF) of Lagrangian velocities and their transition PDF, which
are derived from the Monte Carlo simulations. The resulting
correlated CTRW model is in excellent agreement with Monte
Carlo simulations. In Sec. VI, we then present a physics-based
spatial Markov model for the velocity transitions that is
characterized by only a few parameters, which are directly
related to the properties of the conductivity heterogeneity
and the mixing rules at fracture intersections. The predictive
capabilities of this model are demonstrated by comparison to
the direct Monte Carlo simulations. In Sec. VII, we summarize
the main findings and conclusions.

II. FLOW AND TRANSPORT THROUGH REGULAR
FRACTURE NETWORKS

We study a regular fracture network consisting of two
sets of parallel, equidistant fractures oriented at an angle of
+o with the x axis. The distance between the neighboring

nodes is / (Fig. 1). Flow through the network is modeled
by Darcy’s law [59] for the fluid flux u;; between nodes
iand j, u;j = —K;;(®; — ®;)/1, where ®; and ®; are the
hydraulic heads at nodes i and j, and K;; > 0 is the hydraulic
conductivity of the link between the two nodes. Imposing
mass conservation at each node i, ) juij = 0 (the summation
is over nearest-neighbor nodes), leads to a linear system of
equations, which is solved for the hydraulic heads at the
nodes. The fluid flux through a link from node i to j is
termed incoming for node i if u;; < 0 and outgoing if u;; > 0.
We denote by e;; the unit vector in the direction of the link
connecting nodes i and j. A realization of the random regular
network is generated by assigning independent and identically
distributed random conductivities to each link. Therefore, the
K;; values in different links are uncorrelated. The set of all
realizations of the quenched random network generated in this
way forms a statistical ensemble that is stationary and ergodic.
We assign a log-normal distribution of K values. We study the
impact of conductivity heterogeneity on transport by varying
the variance of In(K). The use of this particular distribution is
motivated by the fact that conductivity values in many natural
media can be described by a log-normal law [60].

We study a uniform flow setting characterized by constant
mean flow in the positive x direction by imposing no-flow
conditions at the top and bottom boundaries of the network
and fixed hydraulic head at the left (& = 1) and right (® = 0)
boundaries. Thus, the mean flow velocity is given by # = K,

where K, = exp(In K) is the geometric mean conductivity.
The overbar in the following denotes the ensemble average
over all network realizations. Even though the underlying
conductivity field is uncorrelated, the mass conservation
constraint together with heterogeneity leads to the formation of
preferential flow paths with increasing network heterogeneity
(Fig. 2).

Once the fluxes at the links have been determined, we sim-
ulate transport of a passive tracer by particle tracking. We ne-
glect the longitudinal diffusion along links, and thus particles
are advected with the mean flow velocity between nodes. Here
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FIG. 2. (Color online) (a) Normalized flow field (|u;;|/i) for log-normal conductivity distribution with variance 0.1. (b) Normalized flow
field for log-normal conductivity distribution with variance 1. (c) Normalized flow field for log-normal conductivity distribution with variance
5. Even though the underlying conductivity field is uncorrelated, the combined effect of network heterogeneity and the mass conservation
constraint at nodes leads to a correlated flow field with preferential flow paths.

we assume that Darcy’s law is valid in each link, which means
we assume that the links are filled with a porous medium char-
acterized by variable conductivity but constant porosity. This is
motivated also by the fact that the variability in porosity is typ-
ically much smaller than the conductivity variability [59,61].
When particles arrive at nodes, they follow either complete
mixing or streamline routing (no mixing) rule [56-58]. Com-
plete mixing assumes that Péclet numbers at nodes are small
enough that particles are well mixed within the node. Thus, the
link through which the particle exits a node is chosen randomly
with flux-weighted probability. Streamline routing assumes
that Péclet numbers at nodes are large enough that particles es-
sentially follow the streamlines and do not transition between
streamlines. The complete mixing and streamline routing rules
are two end members. In general, the local Péclet number and
the intersection geometry determine the strength of mixing at
nodes, which is in between these two end members.

In Fig. 3 we illustrate the fundamental difference between
the two mixing rules. When the two incoming and the two
outgoing links have equal fluxes, the particles from the
incoming link partition equally into the two outgoing links for
the complete mixing rule. However, for the streamline routing

(a) Streamline routing (b) Complete mixing

Uadj

FIG. 3. (Color online) Schematic for the two different mixing
rules for the case in which nodes at the two incoming and the two
outgoing links have equal fluxes. (a) The streamline routing rule
makes all the particles transit to the adjacent link because particles
cannot switch between streamlines. (b) The complete mixing rule
makes half of the particles move upward and the other half downward,
following flux-weighted probabilities.

case, all particles transit to the adjacent link. Therefore, we
anticipate that the degree of mixing at the nodes will lead to a
dramatically different global spreading behavior.

For complete mixing, the particle transfer probabilities p;;
from node i to node j are given by

P

VO ual’

where the summation is over outgoing links only and p;; =0
for incoming links. Particle transitions are determined only
by the outgoing flux distribution. Equation (1) applies to
both complete mixing and streamline routing rules for nodes
with three outgoing fluxes and one incoming. However, for

nodes with two outgoing fluxes, streamline routing implies
the transfer probabilites

1’
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» 0, Uadj > Win
= Uin —Uadj
BT T gy < Ui,
where p,q; is the probability of a particle transitiong to an
adjacent link and pop, is the probability of a particle transitiong
to an opposite link (Fig. 3).
The Langevin equations describing particle movements in
space and time are

V(Xn) l
e TR e
where x, is the position of the nth node visited by the
tracer particle and ¢, is the time at which the tracer particle
arrives the nth node. The transition velocity is equal to
v(X,) = u;;e;; with the transition probability p;; following
either Eq. (1) or Eq. (2) depending on the mixing rule.
The velocity vector v in the following is expressed in (v,0)
coordinates, in which v = |v| cos(¢)/| cos(¢)| is the velocity
along a link with ¢ = arcos(v,/|v|) and 6 = sin(¢)/| sin(¢)|,
so v = [vcos(a),|v|6 sin(w)]”. Superscript T denotes the
transpose. Note that ¢ can only assume values in {—c,0,m —
o, + a}. In short, v determines the velocity magnitude and
longitudinal directionality and 6 determines the transverse
velocity directionality.

Xpt1 =
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(a) Streamline routing (b) Complete mixing
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FIG. 4. (Color online) Particle distribution at ¢ = 157, for a given
realization after the instantaneous release of particles at the origin
(red star). f; is the mean advective time along one link. (a) Low
heterogeneity (o2, = 0.1) with streamline routing at nodes. (b) Low
heterogeneity (02, = 0.1) with complete mixing at nodes. (c) High
heterogeneity (02, = 5) with streamline routing at nodes. (d) High
heterogeneity (02, = 5) with complete mixing at nodes. For low
heterogeneity, complete mixing significantly enhances transverse
spreading. An increase in heterogeneity significantly enhances

longitudinal spreading.

The system of discrete Langevin equations (3) describes
coarse-grained particle transport for a single realization of
the quenched random network. Particle velocities and thus
transition times depend on the particle position. The particle
position at time ¢ is X(f) = X,,, where n, denotes the number
of steps needed to reach time 7. The particle density in a
single realization is P(X,t) = (6(X — X,,)), where the angular
brackets denote the noise average over all particles. We solve
transport in a single disorder realization by particle tracking
based on Eq. (3) with the point-wise initial condition xy = 0
and 7o = 0. x¢ is located at the center of the left boundary
(denoted by red star in Fig. 4). As shown in Fig. 4, both network
heterogeneity and mixing rule at nodes have significant impact
on particle spreading. An increase in network heterogeneity
leads to an increase in particle spreading in both the transverse
and longitudinal directions. The impact of the mixing rule
has a significant impact on transverse mixing, especially for
networks with low heterogeneity. Complete mixing at nodes
significantly enhances transverse spreading while longitudinal
spreading is much less sensitive to the mixing rule.

III. AVERAGE SOLUTE SPREADING BEHAVIOR

We study the average solute spreading behavior for three
different conductivity variances and the two mixing rules

PHYSICAL REVIEW E 92, 022148 (2015)

described above. We obtain the mean particle density, F(x,t),
by ensemble averaging over multiple realizations,

P(x,1) = (5(x — X)), “

where the overbar denotes the ensemble average over all
realizations. We run Monte Carlo particle tracking simulations
for 107 realizations for each combination of conductivity
variance and mixing rule. We consider three different In(K)
variances, 01%11( =0.1,1,5. The domain size is 100421 x

100«/§l with 20,201 nodes. In each realization, we release
10* particles at the origin (xo, marked by a red star in Fig. 4).
The average particle spreading behavior is studied in terms
of the mean-square displacement (MSD) of average particle
density, P(x,t). For the longitudinal direction (x), the MSD
is given by oxz(t) = ([x(t) — (x(¢))]?), where (-) denotes the
average over all particles for a given realization. The same
definition is applied to compute the transverse MSD, o2.

In Fig. 5, we show the time evolution of the longitudinal
and transverse MSDs. In both directions, spreading shows a
ballistic regime (~¢?) at early times, which then transitions to
a different preasymptotic scaling in an intermediate regime.
The transition occurs approximately at the mean advective
time over one link, 7;.

The Monte Carlo simulations show that, in the intermediate
regime, the longitudinal MSD increases linearly with time for
weak conductivity heterogeneity [Fig. 5(a)] and faster than
linearly (i.e., superdiffusively) for intermediate to strong het-
erogeneity [Figs. 5(c) and 5(e)]. An increase in In(K) variance
significantly increases the longitudinal MSD and induces a
change in its temporal scaling. The Monte Carlo simulations
also show that there is no noticeable difference between
complete mixing and streamline routing cases on longitudinal
MSD. This indicates that the network heterogeneity dictates
the longitudinal spreading in regular networks.

The transverse MSD evolves linearly in time for complete
mixing and slower than linearly with time (i.e., subdiffusively)
for streamline routing [Figs. 5(b), 5(d), and 5(f)]. In contrast
with the longitudinal MSD, the transverse MSD exhibits a
strong dependence on the mixing rule at fracture intersections.
For low heterogeneity, complete mixing induces a signifi-
cantly higher transverse MSD than streamline routing. This
difference, however, decreases as the network heterogeneity
increases. For streamline routing, the network heterogeneity is
the main driver for transitions in the transverse direction, and
thus we clearly observe that transverse spreading increases
as heterogeneity increases. The complete mixing rule, on the
other hand, already maximizes transitions in the transverse
direction so an increase in heterogeneity has no significant
impact.

In order to obtain complementary information on the
spreading process, we also consider the first-passage time
distribution (FPTD) of particles at a control plane x = y,
which acts like an absorbing barrier. The FPTD or, in other
words, the solute breakthrough curve, is obtained from the
individual particle arrival times t, = inf(z,| |x, — xo| > x) as

Jx(m) = (8(r — ). (&)

It provides an alternative measure of longitudinal spread-
ing. Figure 6 illustrates FPTDs for different conductivity
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FIG. 5. (Color online) Time evolution of MSDs for complete mixing (solid line) and streamline routing (dashed line). (a) Longitudinal
MSD for o ; = 0.1. (b) Transverse MSD for o2 , = 0.1. (c) Longitudinal MSD for 62 , = 1. (d) Transverse MSD for o2 ;, = 1. Inset: Change
in the time evolution of transverse MSD for complete mixing with increasing variance. (¢) Longitudinal MSD with o2 ; = 5. Inset: Change
in the time evolution of longitudinal MSD for complete mixing with increasing variance. (f) Transverse MSD with o2 , = 5. Inset: Change in
the time evolution of transverse MSD for streamline routing with increasing conductivity variance.
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FIG. 6. (Color online) First passage time distribution f, () for
ol = 0.1, 1, 5 and different mixing rules. Conductivity heterogene-
ity has a major impact on particle breakthrough curves, in contrast to
the mixing rules.

heterogeneities and mixing rules. Conductivity heterogeneity
has a clear impact on the FPTD by enhancing longitudinal
spreading. This is so because stronger conductivity hetero-
geneity leads to broader particle transition time distribution,
which in turn leads to enhanced longitudinal spreading. The
mixing rule, in contrast, has a negligible impact on FPTDs
and only influences transverse spreading. To understand this
behavior and further quantify transverse spreading, we define
the distribution of the transverse exit locations at a control
plane x = x as

fr(@) = (8(w = ye)). (6)

where y, is the transverse location of a particle at the control
plane at x = . The impact of the mixing rule on transverse
spreading is clearly visible in Fig. 7, which compares f, (w)
for different values of o, and different mixing rules. For
small In(K) variances, the mixing rule has a major impact on
transverse spreading, which here is manifested by the width

PHYSICAL REVIEW E 92, 022148 (2015)

of the transverse particle distribution. The difference between
the two mixing rules decreases as o2 ;. increases.

In summary, conductivity heterogeneity impacts both lon-
gitudinal and transverse spreading, whereas the mixing rule
mainly impacts transverse spreading. We now analyze the
Lagrangian particle statistics to understand the underlying
physical mechanisms that lead to the observed anomalous
particle spreading.

IV. LAGRANGIAN VELOCITY DISTRIBUTION AND
VELOCITY CORRELATION STRUCTURE

The mechanisms leading to anomalous transport can be
understood through the analysis of the statistics of Lagrangian
particle velocities [9,18,45,50-52]. We consider here the
particle velocities at fixed positions along their trajectories.
The Lagrangian velocity v (s,) at a distance s, = nl/ along
the particle trajectory is given by v.(s,) = v(x,) with x,, the
particle position in the network after n steps. Its absolute
value, i.e., the streamwise velocity, is vy (s,) = |v(s,)|. We
now analyze the Lagrangian velocity correlation structure and
the PDF of transition times between nodes along trajectories,
which is given by t, = [/v.(sy).

This is in contrast with the classical Lagrangian viewpoint,
which considers particle velocities at fixed times along
trajectories, uz (#) = v(x,,), where n, is the number of steps
needed to arrive at time ¢ through the time process in Eq. (3).
The distance covered along the streamline up to time ¢ then is
given by s(¢) = n,/, and the streamwise Lagrangian velocity
is given by uy(t) = |v(Xy,, ).

We compute the steady-state transition time and velocity
distributions along streamlines, ¥, (¢) and p (v), respectively,
through sampling the transition times and velocities along
all particle trajectories and among network realizations.
Figure 8(a) illustrates the PDF of transition times and velocities
for different In(K) variances. As o2 ;- increases, the transition
time and velocity PDFs become broader. The transition time
follows closely a truncated power-law distribution. Neither
velocity nor transition time distributions showed noticeable
differences between complete mixing [Fig. 8(a)] and stream-
line routing [not shown].

012} (@) ofx = 0.1 012/(b) o2 =1
0.1 01}
0.08 0.081
3 3
= 0.06 = 0.06}
<5 «Z
0.04 0.04}
4
0.02 0.021 /
0 0

2
012} (€ ojux =5 —e—complete mixing
streamline routing

01}
0.08]
1= 0.06}
o=
0.04] ﬂ,\\
R
a A
0.02 f‘ \
&
0 e

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
w

w

w

FIG. 7. (Color online) Transverse breakthrough positions distribution (TBPD) at the outlet plane. Comparison between the two different
mixing rules for (a) o2 = 0.1, (b) 024 = 1, and (¢) o x = 5. The impact of the mixing rule on transverse spreading diminishes as the

network heterogeneity increases.
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FIG. 8. (Color online) (a) Lagrangian transition time distributions for o2 , = 0.1, 1, 5 and complete mixing at the nodes. Inset: Lagrangian
velocity distributions for the three different values of o2 ... As the network conductivity becomes more heterogeneous, both the transition time
distribution and the velocity distribution become broader. (b) Velocity autocorrelation function in space. Error bars represent the coefficient
of variation. An increase in network heterogeneity leads to stronger correlation. Inset: Comparison between the velocity autocorrelation in
space and in time for o, = 5. Velocity autocorrelation in time is normalized with the mean advective time along one link, and velocity

autocorrelation in space is normalized with the link length.

A broad transition time distribution is known to be a
source of anomalous transport behavior and a key input
parameter for the CTRW framework [31,43]. For example,
an optimal distribution of transition times may be inferred by
interpreting first-passage time distributions [49]. However, the
transition time distribution alone does not have information
on the spatial velocity correlation structure, which may be an
important factor that controls anomalous transport behavior
[9,18,45,47,51,52]. To analyze the Lagrangian correlation
structure, we compute the velocity autocorrelation function.

The autocorrelation function for a given lag As = s — s’ is
defined as

Xs(s',s" + As)

_ Alve(s"+ As) — (vp(s" + As))][ve(s") — (vr(s))])
B oy(s" + As)oy(s’)

’

(N
where o2(s) is the variance of the Lagrangian velocity at
a travel distance s. It depends in general on the starting

J

position depending on the distribution of initial particle
velocities. Here particles are injected at the origin within
each realization. This implies that particles sample uniformly
from the heterogeneous flow velocity. The stationary stream-
wise velocity distribution, in contrast, is obtained by spatial
sampling along particle pathlines. As a consequence, here the
correlation function depends on the starting point s’. However,
with increasing streamwise distance from the injection point,
the autocorrelation becomes stationary. Thus, we define the
stationary autocorrelation function x,(s —s’) by averaging
over Eq. (7) as

1 a
Xs(As) = ;f dsy xs(s1,81 + As), ®)
0

where we use a = 100¢.

For comparison, we also consider the correlation of
Lagrangian velocities u;(t) sampled in time along particle
trajectories. It is defined analogously as

T

0t — 1) = 1 /Tdt,([uL(t’) = (u () ur (@' + At) — (u (1’ + A1))])
0 Gu(t/ + At)au(t,)

where At =t —+t'. Figure 8(b) illustrates the Lagrangian
autocorrelation function y,(s) for different In(K) variances
with a complete mixing rule. The correlation length scale £, is

defined by
=[x (10)

0

The correlation function x(s) is well represented by an
exponential that is characterized by £.. Under the complete

mixing rule, we find that £, increases as the network hetero-
geneity increases, indicating an increase in velocity correlation

, (©))

(

(¢, =1.01,1.34,2.13 for ali,( = 0.1,1,5, respectively). This
is mainly due to the emergence of preferential flow paths, as
shown in Fig. 2. The inset in Fig. 8(b) compares the correlation
functions x,(s) and x,(¢) plotted against distance normalized
by the link length / and time normalized by the mean advection
time across a link for ‘71%1 x = 5. Velocity correlation in time
is significantly stronger than velocity correlation in space and
closely follows a power law with slope 0.7. The reason for this
slow decay in the temporal velocity correlation structure is the
contribution from particles at stagnation zones (links with very
small velocity values).
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To further analyze and characterize the (spatial) Lagrangian
velocity series {v(s,)}, we compute the velocity transition
matrix. To this end, we determine the transition probability
density to encounter a velocity v after n 4 m steps given that
the particle velocity was v’ after n steps, which in the variables
(v,0) reads as

Fm(,010",0") = (8[V — V(X01:m) 186,00, v(x,)=17.006,)=6" -
(11)

To evaluate the transition probability numerically, the
particle velocity distribution is discretized into classes, v €
U?’:l(uj,vjﬂ], with N = 100. We may discretize velocity
equiprobably in linear or logarithmic scale. The logarithmic
scale provides a better discretization for low velocities, which
have a decisive role for the occurrence of anomalous transport
because they determine the tailing behavior in FPTDs and
spatial profiles. High velocities may be represented by only a
few characteristic values. We define the transition probability
matrix

Vit1 Vj+1
T,,(i,0]/,0") = / dv/ dv’rm(v,G|v/,9/)p(v',9’)/
Vi Vj

Vj+1
/ dv'p(v',0), (12)

J

where p(v,0) =
PDF of v and 6.

The transition matrices can be obtained numerically from
the ensemble of particle trajectories. In d = 2 dimensional
networks, there are 16 possible transitions, which are described
by a multidimensional transition matrix (Fig. 9). We measure
particle velocity transitions from link to link (equidistance in
space) and populate the respective entries in the transition
matrix. The one-step transition matrices 77(i,0]j,0") for two
different heterogeneity distributions and mixing rules with
equiprobable binning are shown in Figs. 10 and 11. For
small heterogeneity (o2, = 0.1, Fig. 10), the difference in the
transition matrix for complete mixing and streamline routing at
nodes is significant. This difference diminishes as heterogene-
ity increases (02, = 5, Fig. 11). Network heterogeneity also
exerts a significant impact on the particle transition matrix:
as conductivity distribution becomes more heterogeneous,
the probability of transitions with flow reversal (negative
x direction) increases. Higher probability values along the
diagonal of the transition matrix reflect the spatial velocity
correlation. Similarly, the upper triangular and lower triangular
matrices in the transitions with backward movement (A, F, K,
P) indicate that the velocity magnitude is typically smaller for
backward movements than for forward movements.

The clear differences between transition time matrices
for different mixing rules indicate the importance of taking
the directionality of particle transport into account. Nonlocal
theories of transport, including CTRW, are often invoked to
explain the observation that the first passage time distribution
(FPTD) is broad ranged [16—18,43]. Early arrival and slow
decay of the FPTD is also observed in our model system.
To develop a predictive transport model for the observed
average particle density P(x,t), we study average particle
movements from a CTRW point of view that incorporates the

(6[v — v(X,)189,0(x,)) 1 the joint single point
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FIG. 9. (Color online) Schematic of the velocity transition matrix
for d = 2 dimensional networks. The transition matrix considers
all 16 possible transitions to capture the full particle transport
dynamics. The matrix has information about the one-step correlation,
directionality, and velocity heterogeneity.

velocity correlation and velocity distribution (heterogeneity).
This approach has been recently proposed for lattice fracture
networks based on the finding that the series of particle
velocities {vy (s,)} sampled spatially along a particle trajectory
form in fact a Markov process [51].

V. SPATIAL MARKOV MODEL: A CORRELATED
CONTINUOUS-TIME RANDOM WALK

The series of Lagrangian velocities {v.(s,) = v,} along
particle trajectories can be approximated as a Markov process
if the transition matrix satisfies the Chapman-Kolmogorov
equation (e.g., Ref. [62]), which in matrix form reads as

T,0.01j.0) =Y Tom(Q.01i".0") TG’ 0"1.6).  (13)
i/,e//

For a Markov process, the m-step transition matrix T,, is
equal to the m-fold product of the one-step transition matrix
T, with itself as T,, = T™. Recent studies have shown that
the spatial Markov model accurately predicts the transition
probabilities, as well as the return probability for any number
of steps [45,51]. Therefore, a CTRW characterized by a
Markov velocity process in space is a good approximation
for describing average transport.

The average particle movements on the random network
can be described by the following system of equations:

Xp4+1 = X +l Int1 =t + (14)

| n| [Vl

The series of Lagrangian velocities {v,};°, is a spa-
tial Markov process and thus fully characterized by the

022148-8



ANOMALOUS TRANSPORT ON REGULAR FRACTURE ... PHYSICAL REVIEW E 92, 022148 (2015)

(a) Complete mixing, ot = 0.1 (b) Streamline routing,oan =0.1

FIG. 10. (Color online) (a) Velocity transition matrix with linear equiprobable binning for o2, = 0.1 and complete mixing at nodes. Of
16 transitions, only the four that have forward-forward movement in longitudinal direction (E, M, G, O) are possible. Note that the probability
for each possible transition is almost identical. (b) Velocity transition matrix with linear equiprobable binning for o2 , = 0.1 with streamline
routing. Again, only the four transitions that have forward-forward movement in the longitudinal direction (E, M, G, O) are possible. Also,
note that the probability for M and G transitions (0.89) is significantly higher than E and O transitions (0.11).

stationary velocity density ps(v) and the one-step transition in which we defined

PDF ri(v|v') = (8(v — V,11)}|v,=v. The particle density for 00
the correlated CTRW (14) can be written as R(x,v,t)) = Z(a(x —x,)8(v —v,)8(' —1,)). (16b)
n=0
P(x,t) = / dv(8(x — X, )8(V — Vp,)), (15) The latter satisfies the Kolmogorov-type equation

in which n, = max(n|t, < 1), X,, is the position of the node at R(x,v,t) = 6(X)po(v)&(¢) + / av'ri(vlv')
which the particle is at time ¢, and v,, is the velocity by which

the particle emanates from this node. The angular brackets % / dx's(x —x — IV /IV)RX, V.t —1/IV))
denote here the average over all realization of the stochastic
velocity time series {v, }. Equation (15) can be recast as (16¢)

where pg(v) denotes the distribution of initial particle veloc-

t
P(x,t) = / dv / dt'R(x,v,t), (16a) ities at step 0. For the injection condition applied here, the
=1/l initial velocities are sampled uniformly among the network

(a) Complete mixing, UIQHK =5

Ey

FIG. 11. (Color online) (a) Velocity transition matrix with linear equiprobable binning for o2 , = 5 and complete mixing at the nodes. Due
to strong heterogeneity, 12 different transitions, including backward movements, are possible. Also, note that up-up and down-down transitions
(A, F, K, P) have triangular matrices. This indicates that velocity magnitudes mostly increase when a particle changes direction from the —x
direction to the +x direction and vice versa. (b) Velocity transition matrix with linear equiprobable binning for o2 , = 5 and streamline routing.
Since strong heterogeneity dictates particle transitions, there is no significant difference between complete mixing and streamline routing.
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FIG. 12. (Color online) Time evolution of MSDs obtained from Monte Carlo simulations (solid lines) and the model predictions from the
correlated CTRW model (dashed lines). The developed correlated CTRW model is able to accurately capture the time evolution of the MSDs
for all levels of heterogeneity strength and mixing rules. (a) o2, = 0.1, (b) 02 x = 1, and (c) o2 x = 5 with complete mixing, where the red
line is longitudinal direction and the blue line is transverse direction. (d) o2 = 0.1, () 02, = 1, and (f) 62, = 5 with streamline routing,
where the black line is longitudinal and the green line is transverse direction.

realizations. Thus, po(v) is not equal to the stationary velocity
PDF p,(v), which is obtained by sampling the velocities
equidistantly along a particle path, as outlined above. The
correlated CTRW model (16) describes the evolution from an
initial PDF py(v) towards the steady-state PDF through the
transition matrix r;(v|v’).

For independent successive velocities, i.e., 11 (V|V) = p(V),
one recovers the CTRW model (e.g., Ref. [41])

P(x,t) =/ dt’R(x,t’)/ij dr/dmﬂ(x,r), (17a)
0 t—t'

where R(x,1) satisfies

R(x,t) = 8(x)8(t) + / dx// dt' R, Y(x — Xt — 1),
’ (17b)

and the joint transition length and time density is given by

v(x.1) = /dV/p(V/)tS(X—lV//IV/I)tS(t—l/IV'I)- (17¢)

In the following, we refer to system (16) as correlated
CTRW because subsequent particle velocities are correlated
in space and to model (17) as uncorrelated CTRW because
subsequent particle velocities are uncorrelated in space.

Based on the Markovianity assumption of particle transi-
tions, the developed correlated CTRW model is applied to
study particle transport in the random network. We compare
the results obtained from direct Monte Carlo simulations to
both the correlated and uncorrelated CTRW models. Corre-
lated CTRW is characterized by the one-step transition matrix
T, determined from numerical Monte Carlo simulations
(Figs. 10 and 11). Uncorrelated CTRW is characterized by
the Lagrangian velocity distribution p(v), which is obtained
from Monte Carlo simulations as well.

The predictions of the developed correlated CTRW model
show an excellent agreement with the Monte Carlo simula-
tions for all levels of heterogeneity and mixing rules under
consideration [Figs. 12, 13(a), 13(b), 13(c), and 14(a)]. Note
that the direct Monte Carlo simulations are performed by
solving Eq. (3) in 100 realizations for different mixing rules.
Correlated CTRW captures the time evolution of the particle
plume with remarkable accuracy, including spatial moments,
first-passage time distributions, and distributions of transverse
particle breakthrough positions. Figure 12 shows the time
evolution of the longitudinal and transverse MSDs. Both
the scaling and the magnitude of the longitudinal spreading
are captured accurately by the correlated CTRW model. The
model also reproduces accurately the magnitude and evolution
of the transverse MSD.
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FIG. 13. (Color online) Probability distributions of transverse particle breakthrough position for Monte Carlo simulations and model
predictions. (a) Correlated CTRW for o, = 0.1. (b) Correlated CTRW for o2 = 1. (c) Correlated CTRW for o2 = 5. (d) Uncorrelated
CTRW for o2, = 0.1. (¢) Uncorrelated CTRW for o2 , = 1. (f) Uncorrelated CTRW for o, = 5. Uncorrelated CTRW does not have a
capability of distinguishing complete mixing and streamline routing cases.

Ignoring the correlated structure of the Lagrangian velocity In contrast, these behaviors are accurately captured by the

leads to predictions of longitudinal and transverse spread- correlated model.

ing that deviate from the direct Monte Carlo simulation

[Figs. 13(d), 13(e), 13(f), and 14(b)]. The uncorrelated CTRW VI. PARAMETRIZATION OF THE CORRELATED
model is not able to predict transverse spreading for the CTRW MODEL

streamline routing case [Fig. 13(d), 13(e), and 13(f)] or In the previous section, we showed that the effective particle

the peak arrival time and spread of the FPTD [Fig. 14(b)]. movement can be described by a CTRW whose particle

(@) (b) .
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» - correlated CTRW 5 I --- uncorrelated CTRW
10 T 1 10 T . 1
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C C
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= =
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FIG. 14. (Color online) Particle breakthrough curves from Monte Carlo simulations and model predictions from (a) correlated CTRW and
(b) uncorrelated CTRW.
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velocities, or transition times, form a spatial Markov process.
The latter has been characterized by a velocity transition
PDF which has been sampled from the simulated particle
velocities. While the resulting correlated CTRW describes the
observed behavior well, the application of the approach to
experimental data (such as tracer tests) asks for a process
model that requires only a few parameters which may be
estimated from the available data. Thus, here we consider
an explicit Markov process model for subsequent transition
times that captures the essential features of correlation with
a minimal set of parameters. To accomplish this, we follow
the approach of Ref. [18], who recently proposed an effective
parametrization of the correlated CTRW model and applied it
to the interpretation of field-scale tracer transport experiments.

We consider the series of streamwise particle velocities
v, = |vp(s,)] and model them as a Markov process {v,}
through the steady-state velocity PDF, ¥, (v), and the transition
matrix T [63]. First note that v is discretized into N classes,
v e Ul{V:l(vc,i,UC!i_;_]], such that the transition probabilities
between the classes are represented by the N x N transition
matrix T. Here we choose equiprobable binning such that the
class limits v, ; are given implicitly by

Ue,i+1 1
/ dt ¥, (t) = N (18)

c,i

With this condition, T is a doubly stochastic matrix, which
satisfies Y N | Tj; = Z_II-V:, T;j = 1. For a large number of
transitions it converges towards uniformity,

1
s n

Jim [T, = —. (19)
whose eigenvalues are 1 and 0. Correlation is measured
by the convergence of T towards the uniform matrix. The
characteristic number of steps over which the Markov chain
is correlated is determined by the decay rate of the second
largest eigenvalue y, of T (the largest eigenvalue of a stochastic
matrix is always 1). The convergence towards uniformity can
be quantified by the correlation function C(n) = xj, which
can be written as

C(n) = exp (—1 (20)

), e = ———.
ne In(|x21)

The transition matrix is characterized by n., which de-
termines the characteristic number of steps for convergence
towards uniformity. Thus, we consider here a Markov model
whose transition matrix is characterized by just two eigenval-
ues, namely 1 and ;. Its transition matrix is given by

T, = asi; + (1 — a)—20 21

lj_alj+( _a)m~ ( )

It describes a Markov process that remains in the same
state with probability a and changes to a different state,
whose distribution is uniform, with probability 1 — a. The
diagonal value of a < 1 determines the correlation strength.
A value of a = 1 implies perfect correlation, which renders
the N-dimensional unity matrix, 7;; = §;;. For a = 1/N, all
transitions are equally probable, and the transition matrix is
equal to the uniform matrix with 7;; = 1/N. The eigenvalues

PHYSICAL REVIEW E 92, 022148 (2015)

of the transition matrix (21) are x; = 1 and

_ Na-1 22)
X2 = N_1'
Thus, the number n. of correlation steps is given by
1 N>1 1
e = — No— . (23)
ln(l\zila:ll) In(a)

It is uniquely determined by the value of a. The value
of a can be estimated from the correlation function y;(s)
of streamwise Lagrangian velocity given by Eq. (8). The
streamwise velocity correlation function is given in terms of
the velocity time series {v,} as

’ l
< vn +m Un >

(v,)
where we defined v, = v, — (v) with (v) the mean streamwise
velocity and s, = nl. Using the discretization (18) of stream-

wise velocities into N equiprobable bins and the transition
matrix T, the velocity correlation can be written as

1 N ’ ’
N Zi,j:l v [T 1ijve
1 N 2 :
N izt Vei
Note that the transition matrix T given by (21) is symmetric
and has only the two eigenvalues, x; =1 and x;, given

by (22) with x, of order N — 1. Thus, performing a base
transformation in (25) into the eigensystem of T, one sees that

X(anrm —5p) = (24)

Xs(sn+m - Sn) = (25)

Xs(Sntm — Sp) = €xp (_'SW"FWE—S"') ’ (26)
where the correlation length is given by £, = n.l. Thus, n,
is directly related to the correlation length of the streamwise
Lagrangian velocity. Note that £, = O for zero correlation and
£, = oo for perfect correlation. As illustrated in Fig. 8(b),
Xs(s) is well approximated by an exponential function. Thus,
we obtain a from the correlation length £, as a = exp(—I/¢.).
The transition matrix T is fully parameterized in terms of the
correlation length of the streamwise Lagrangian velocity.

To describe the observed steady-state velocity distribution
Y¥,(v) we consider the equivalent distribution ¥, (t) of transi-
tion times T = [ /v, which is illustrated in Fig. 8(a). It is well
described by the following truncated power-law distribution

exp(—1o/1)

(/7o) +F
where 7y determines the early time cutoff and 8 the power-law
slope. Note that 7y and § are both positive coefficients. The
slope B of the power-law regime describes the heterogeneity of
the velocity distribution. As 8 decreases, the transport becomes
more anomalous because the probability of experiencing
large transition times increases. Therefore, smaller S can be
understood to represent higher flow heterogeneity, as is well
known in the CTRW modeling framework [43]. Indeed, the
estimated § values decrease as the conductivity distribution
becomes more heterogeneous (we obtain § = 18,2.6,1.7 for
aﬁ ¢ = 0.1,1,5, respectively). We estimate the parameters
7o and B from the measured transition time distributions
[Fig. 8(a)]. As pointed out recently by [64], the tail behavior of
the transition time PDF as quantified by the exponent 8 may

Yo (1) ~ (27)
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FIG. 15. (Color online) Comparison between the time evolution of the MSDs obtained from the Monte Carlo simulations (solid lines) and
the model predictions from the parametric correlated CTRW model (dashed lines). The proposed model is able to accurately capture the time
evolution of the MSDs for all levels of heterogeneity and mixing rules under consideration. (a) o2, = 0.1, (b) 02, = 1, and (c) o2 =5
with complete mixing, where the red line is longitudinal direction and the blue line is transverse direction. (d) o2 z = 0.1, (¢) 02 = 1, and (f)
ol x = 5 with streamline routing, where the black line is longitudinal and the green line is transverse direction.

in principle be related to the lower end of the distribution of
hydraulic conductivity.

The velocity PDF is obtained from the transition time PDF
by ¥, (v) = (/v*)¥.(I/v) and quantifies together with the
transition matrix T the velocity heterogeneity and velocity
correlation structure. To honor the network geometry and to
accurately estimate transverse spreading we need one more
input parameter that quantifies the velocity directionality.
Since the majority of velocity transitions are forward-forward,
we only consider the E, M, G, and O transitions. We need a
additional parameter that quantifies the probability of changing
(either M or G) or maintaing the direction (either E or O)
and define y as the probability of changing and 1 — y is
the probability of maintaining the direction. The measured
y values for the complete mixing rule are in all cases ~0.5,
independently of conductivity distributions. This is because
the complete mixing rule maximizes transverse excursions.
However, for streamline routing y is very sensitive to the
underlying conductivity distribution. It decreases as the con-
ductivity distribution becomes more heterogeneous (we find
y = 0.89,0.71,0.58 for ‘71%11( = 0.1,1,5, respectively). This is
because the probability of transitioning to an adjacent link is
higher for the streamline routing case, and as the conductivity
heterogeneity increases the probability of transitioning to the
opposite link increases.

In summary, the correlated CTRW model for the random
network under consideration is characterized by four inde-
pendent parameters that determine the velocity distribution
and the velocity correlation strucuture: 8, which characterizes
the slope of the truncated power-law distribution; 7y, which
characterizes the early time cutoff of the transition time
distribution; a, which quantifies the velocity correlation; and
y, which quantifies the velocity transition directionality.

In order to test the predictive power of the parametric
correlated CTRW model, the model predictions are compared
to the results obtained from the direct Monte Carlo simulations.
We obtain and excellent agreement with the Monte Carlo
results for all the conductivity distributions and mixing rules
that we studied (Figs. 15 and 16). The model accurately
captures the time evolution of the particle plumes, including
spatial moments, first passage time distributions, and the
distributions of the transverse particle breakthrough positions
(Figs. 15 and 16).

The fact that the parametric correlated CTRW proves as
good here as the more complex correlated CTRW model
presented in the previous section is noteworthy, as the
parametric model involves only four parameters. In particular,
the previous CTRW model quantifies explicitly the transition
probability of each velocity class to the others, while the para-
metric correlated CTRW model only quantifies the probability
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FIG. 16. (Color online) Probability distributions of the transverse particle breakthrough positions obtained from Monte Carlo simulations,
and predictions from the parametric correlated CTRW model. (a) o2, = 0.1. (b) o2 ¢ = 1. (¢c) 02 x = 5. Inset: Particle breakthrough curves
from Monte Carlo simulations and model predictions from the parametric correlated CTRW model.

to stay in the same velocity class and it assumes that the prob-
ability to jump to any other class is independent of velocity.
This assumption is likely valid here since there is nearly no de-
pendence of the velocity correlation properties on the velocity
(Fig. 11). This assumption would break down in systems where
transitions from one velocity to the other are strongly depen-
dent on velocity. For instance, in highly channelized systems,
the probability for particles to stay in high-velocity channels
may differ from their probability to stay in low-velocity
areas (see discussion in Ref. [65]). This result represents an
important step towards the application of this framework to
the field. As discussed in Ref. [18], the model parameters
can be estimated by analyzing jointly cross-borehole and
push-pull tracer tests. In particular, velocity correlation is key
to distinguishing reversible from irreversible dispersion, which
is linked to the difference between spreading and mixing.

VII. CONCLUSIONS

Fracture networks characterized by conductivity hetero-
geneity and different mixing rules at fracture intersections
lead to nontrivial transport behavior often characterized by
non-Fickian dispersion properties in both longitudinal and
transverse directions. The divergence-free condition arising
from mass conservation leads to a correlated flow field with
preferential paths, even when the underlying conductivity field
is completely uncorrelated. Mixing rules at nodes are shown
to have a major impact on transverse mixing. In particular,
the streamline routing rule leads to subdiffusive transverse
spreading behavior. While velocity distributions are mainly
controlled by the underlying conductivity distributions, the
velocity correlation structure is determined by the interplay
between network heterogeneity and mixing rule at nodes.

Here we propose and validate a spatial Markov model that
is fully parameterized from the velocity field distribution and
spatial correlation properties and explicitly captures the multi-
dimensional effects associated with changes in direction along
the particle trajectory. In particular, we discuss the impact of
spatial velocity correlations, which are typically not included
in the classical CTRW framework, on the transport behavior.
To make this model amenable to field applications, we develop

a parametric model formulation containing a minimum set of
parameters that still captures the main properties of the velocity
field relevant for transport: B8 characterizes the slope of the
truncated power-law velocity distribution, ty characterizes the
early time cutoff of the transition time distribution, a quantifies
the velocity correlation, and y quantifies the velocity transition
directionality.

The excellent agreement between the model and the
numerical simulations provides a validation of this parametric
correlated CTRW approach, whose parameters can be deter-
mined from field tracer tests [18] to assess the respective role
of velocity distributions and velocity correlations in sifu. It is
important to note that, in its current formulation, the parametric
correlated CTRW model assumes an identical correlation
length over all velocity classes. This assumption allows us to
quantify velocity correlation with a single parameter but could
be an oversimplified approach for certain cases. For example,
correlated conductivity field with strong preferential paths may
lead to longer velocity correlation length for high velocities
compared to small velocities. This should be investigated
in future research and we conjecture that assigning variable
correlation length as a function of velocity class could be a
promising approach.

Finally, our study shows how the interplay between fracture
geometrical properties (conductivity distribution and network
geometry) and physical transport mechanisms (the balance
between advection and diffusion that determines mixing at
the fracture scale) controls average particle transport via
Lagrangian velocity statistics. We conjecture that the proposed
correlated CTRW model may provide an avenue to link
the model parameters to geometrical and physical transport
mechanisms.
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