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ABSTRACT

A tantalum tungsten (Ta-W) solid solution alloy, Ta 3% W, based 2D photonic crystal (PhC) was designed
and fabricated for high-temperature energy conversion applications. Metallic PhCs are promising as high per-
formance selective thermal emitters for solid-state thermal-to-electricity energy conversion concepts including
thermophotovoltaic (TPV) energy conversion, as well as highly selective solar absorbers/emitters for solar ther-
mal and solar TPV applications due to the ability to tune their spectral properties and achieve highly selective
emission. The mechanical and thermal stability of the substrate was characterized as well as the optical proper-
ties of the fabricated PhC. The Ta 3% W alloy presents advantages compared to the non-alloys as it combines
the better high-temperature thermo-mechanical properties of W with the more compliant material properties of
Ta, allowing for a direct system integration path of the PhC as selective emitter/absorber into a spectrum of
energy conversion systems. Furthermore, the thermo-mechanical properties can be fine-tuned by the W content.
A 2D PhC was designed to have high spectral selectivity matched to the bandgap of a TPV cell using numerical
simulations and fabricated using standard semiconductor processes. The emittance of the Ta 3% W PhC was
obtained from near-normal reflectance measurements at room temperature before and after annealing at 1200◦C
for 24h in vacuum with a protective coating of 40nm HfO2, showing high selectivity in agreement with simula-
tions. SEM images of the cross section of the PhC prepared by FIB confirm the structural stability of the PhC
after anneal, i.e. the coating effectively prevented structural degradation due to surface diffusion.
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1. INTRODUCTION

An increased interest in thermophotovoltaics (TPV), solar TPV, and solar-thermal energy conversion systems
in general has led to new investigations of photonic crystals (PhCs) as selective emitters/absorbers made from
refractory metals that can maintain optical properties at high temperatures over operational lifetime. These two-
dimensional (2D) PhCs are fabricated by etching a periodic pattern into a metallic substrate, such as tungsten
(W)1–6 or tantalum (Ta)7 which are suitable substrates for PhCs for energy applications due to their high
long-wavelength reflectance as well as high melting point and low vapor pressure. These metallic 2D PhCs can
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be designed to exhibit precisely tailored optical properties and a highly selective spectral emittance which is
matched to the band gap of a suitable small band gap photovoltaic cell. This way, the PhCs produce spectrally
confined selective emission of light at high operating temperatures (> 900◦C).2,3, 6–8 High reflectance, i.e. low
emittance, in the infrared (IR) wavelength range of the substrate material is critical for high-temperature nano-
photonic devices, to reduce losses due to waste heat at wavelengths longer than the bandgap of a TPV cell
(typically 2-3 µm). Similarly, for selective solar absorbers low emittance at long wavelengths minimizes re-
radiation. In advanced TPV or solar TPV systems, selective absorbers/emitters have to be integrated into the
system by welding onto the the heat source/sink. The heat source can be a micro-reactor fueled by hydrocarbon
combustion,9 a radio-isotope general purpose heat source (GPHS),10 or thermal fluid in the case of a solar
absorber.

A tantalum tungsten solid solution alloy, Ta 3% W, was investigated as a substrate for a 2D PhC for
high-temperature high-efficiency TPV. The Ta 3% W alloy presents critical advantages compared to non-alloys
as it combines better thermo-mechanical properties of W with the more compliant material properties of Ta,
allowing a direct system integration path, i.e. machining and welding. In addition, the mechanical stability
of the selective emitters is greatly enhanced at high temperature using Ta-W alloy substrates as opposed to
pure Ta, which is beneficial for overall system stability where degradation such as creep and deflection can
play a critical role in system failure. A 2D PhC on a pre-annealed polycrystalline Ta 3% W alloy substrate
was designed using finite-difference time-domain (FDTD) numerical simulations11 and fabricated using standard
semiconductor processes.12 The emittance of Ta 3% W was obtained from near-normal reflectance measurements
at room temperature before and after annealing at 1200◦C for 24 h in vacuum with a protective dielectric coating
of 40 nm HfO2. A slight degradation of the initial high spectral selectivity of the emittance spectrum after
anneal was attributed to the beginning of carbide formation on the surface of the HfO2 coating, which is greatly
decelerated in contrast to the surface reaction on Ta without the coating.13 Scanning electron microscope (SEM)
images of the cross section of the PhC prepared by focused ion beam milling (FIB) compared before and after
anneal confirm the structural stability of the HfO2 coated Ta 3% W PhC. No degradation (i.e. rounding of the
sharp features) was observed, which confirms that the coating effectively prevents structural degradation due to
surface diffusion.

2. DESIGN AND FABRICATION

2.1 2D Photonic Crystal Design

In order to maximize the efficiency of a TPV system such as a micro-reactor fueled by hydrocarbon combustion,9

a 2D PhC is welded directly on the source of heat. The emittance spectrum of the PhC is tailored so that the
cutoff wavelength λcutoff of the high emittance band matches the bandgap λPV of a PV cell, such as a GaSb or
InGaAsSb TPV cell. The thermal emission of previously fabricated Ta PhCs shows high selectivity as well as a
marked emission peak below the target cutoff wavelength while emission at higher wavelengths λ ≥ 3µm is kept
low13 (Fig. 1), which enables TPV systems to have unprecedented high efficiencies.

The PhC consists of a periodic array of etched cylindrical cavities with period a, radius r, and depth d in the
substrate (Ta 3% W). The geometric parameters of the cavity array define the cutoff wavelength which is tuned
by selecting the appropriate r and d. Prior to fabrication, the PhCs are simulated and the geometric parameters
are optimized using a FDTD algorithm14 implemented in Meep.11 For the optimized set of parameters r and
d, the quality (Q) factors of the radiative and absorptive modes of the PhC are matched so that the emittance
below the cutoff wavelength is maximized.6,8 At the same time, the emittance above the cutoff wavelength is
kept low in order to minimize losses in the IR due to waste heat and to achieve high selectivity with a sharp
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Figure 1. (color online) PhCs are designed to selectively emit in the region of interest, i.e. below λPV . Left axis:
Comparison of measured normal spectral emission of a Ta PhC at 982◦C with the calculated blackbody emission at 982◦C.
Right axis: Measured Quantum Efficiency (QE) of a InGaAsSb quaternary PV cell with a bandgap λPV = 2.3µm.

cutoff between the two regions. The optical dispersion of the substrate is taken into account in the simulation
using a Drude-Lorentz model fit to the measured reflectance of polished Ta 3% W, which is almost identical to
that of a pure Ta substrate.

2.2 Materials and Fabrication

The intended use of the selective emitters in high-temperature energy conversion applications with target oper-
ating temperatures > 900◦C and expected lifetimes of years imposes strict requirements on both the thermal sta-
bility of the fabricated microstructures and their optical properties as well as the thermal and thermo-mechanical
stability of the emitter substrates in the context of system integration. Refractory metals are preferred at high
temperatures due to their high melting point, low vapor pressure and advantageous high reflectivity in the IR.
W has high yield strength and Young’s Modulus however it is very brittle and therefore hard to machine or
weld. Ta on the other hand is soft and more compliant, in addition to being easily weldable and machinable. In
order however for a Ta based system to achieve the same mechanical stability as for a W based system, a thicker
substrate is required due to Ta’s softness, which in turn adds to the system weight and cost. The use of Ta-W
alloys allows one to achieve the same thermo-mechanical stability while keeping the required material thickness
low. The substrates used in this study were prepared from an alloy of high purity polycrystalline Ta and W
(2 − 3.5% concentration) which we refer to as Ta 3% W in this manuscript. Fig. 2 illustrates the mechanical
properties of Ta, Ta 3% W and Ta 10% W and their dependence on temperature and shows the increasing
mechanical stability with increasing W content of the alloy for all temperatures.15 The substrates were annealed
in a Ta-lined high vacuum furnace at 1755◦C for 8 h under high vacuum to achieve thermal stability of the
polycrystalline substrate material with large grain size. The substrates were cut, lapped to a thickness of 1 mm,
and chemo-mechanically polished to achieve a roughness Ra of less than 10 Å.

The PhC fabrication process for the Ta 3% W substrates is similar to the one developed for Ta and W
substrates using interference lithography and reactive ion etching (RIE) of a hard mask and a subsequent deep
RIE (DRIE) of Ta.5,6, 12 A 100 nm layer of Chrome (Cr) and 40 nm layer of SiO2 were deposited by e-beam
evaporation onto the cleaned substrates to be used as a hard mask for the Ta etching. An anti-reflection coating
(ARC, AZ BARLi) of about 270 nm was then spin coated and another 10 nm layer of SiO2 was e-beam evaporated
onto the sample. The SiO2 layer on top of the ARC serves as a protection layer when etching and ashing the
ARC. Finally a layer of about 250 nm of negative photoresist (THMR-iNPS4, OHKA America) was spin coated
onto the sample for the lithography process. Interference lithography (IL) is a relatively simple, inexpensive and
precise method for maskless lithography with high resolution for large areas. Two coherent laser beams interfere
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Figure 2. Comparison of (a) Ultimate Tensile Strength (UTS), (b) Yield Strength (YS) and (c) percent elongation of Ta,
Ta 3% W and Ta 10% W and their dependence on temperature. (d) Comparison of Young’s modulus of Ta and W.

with each other creating an interference pattern that is recorded in the photoresist by exposure, creating a 1D or
2D pattern. For small samples, a Lloyd’s mirror (LM) setup16 can be used for the exposure. For a larger periodic
pattern with high uniformity, such as the one required for our substrates, IL is performed using a Mach-Zehnder
(MZ) setup with a 325 nm HeCd Laser.17 The periodicity of the pattern p is defined by the interference angle
θ as p = λ/2 sin θ. The exposure is performed once, and then once more after the samples are rotated by 90◦ to
create a square array of cylindrical cavities. The target diameter of the cylindrical cavities for a cutoff wavelength
of 2.0 µm is 1.08 µm and the target period 1.3 µm based on simulations discussed in Section 3. Due to the
Gaussian distribution of the intensity of the exposure beam, the diameter of the holes is not completely uniform
across the sample. Since the exposure dose is decreasing with the distance from the center of the substrate, the
hole diameter is increasing slightly towards the edges of the sample. The starting diameter after exposure is on
the order of 500 nm (limited by the nature of IL) and has to be increased in order to achieve the target size in
the Cr layer, which will then be used as a mask for etching the Ta 3% W substrate. The increase in hole size
is achieved by isotropic plasma ashing of the photoresist and the ARC layers. After the photoresist is exposed
using commercial CD-26, it is partially removed by O2 plasma ashing. Longer ashing times result in larger hole
diameters, however this is limited by the thickness of the resist. Generally an increase of the cavity diameter of
about 200 nm is achieved by ashing the photoresist for 90 s at 200 W. The pattern is transferred by RIE into the
SiO2 and ARC layers using a CHF3 and He/O2 process respectively, in a Plasmatherm 790. Once the desired
diameter is obtained by ashing the ARC (with a rate of approximately ∆2r = 2nm/s at 200 W) the cavities
are etched into the underlying SiO2 layer by the same CHF3 based RIE process, and subsequently into the Cr
layer by a Cl2/O2 based RIE process using a Nexx Cirrus 150. It was observed that Ta 3% W can be etched
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Figure 3. SEM top views of the Ta 3% W PhC demonstrating the high quality of the the RIE and DRIE. Previously
observed grass effects are no longer present.

in the same way as pure Ta. The final pattern transfer into the Ta 3% W substrate is done by DRIE (Alcatel
AMS100) with a Bosch process using SF6 (200 sccm) and C4F8 (100 sccm) with 3 s/1.5 s pulses as the etching
and passivating species, respectively, power 1200 W, pressure ∼3 mTorr, substrate bias 75 W, and temperature
20◦C. The pulse duration was optimized to achieve complete passivation of the sidewalls and a straight sidewall
etch profile, and the etch time was limited to 5 min cycles to prevent overheating of the substrate. An etch depth
of about 6 µm corresponding to an aspect ratio of about 6 was achieved in an overall etch time of 10 min. After
DRIE of Ta 3% W, the remaining Cr layer is removed by Cr-7 (Cyantek) liquid etchant.

Surface diffusion and surface chemical reactions are known high-temperature PhC degradation mechanisms.
Previous studies have shown that the addition of a protective dielectric coating such as HfO2 onto the fabricated
selective emitters prevented both structural degradation by surface diffusion and grain boundary grooving as well
as surface reactions such as the formation of Ta carbide on the surface of the PhC at high temperatures.13,18,19 In
this study an additional coating of 40 nm HfO2 is deposited on the fabricated PhCs by atomic layer deposition
(ALD, Cambridge NanoTech Savannah) at a substrate temperature of 250◦C using (Tetrakis)dimethylmino
Hafnium and water as a precursor. The ALD deposition ensures completely conformal deposition of the coating
in the high aspect ratio cavities.

3. RESULTS

3.1 Photonic Crystal Characterization

The Ta 3% W PhC is designed for a cutoff wavelength λcutoff= 2.0 µm which corresponds to a band gap of
0.62 eV (InGaAs TPV cell). The optimized geometrical parameters for this case are a period a = 1.3 µm, radius
r = 0.54 µm and cavity depth d = 8 µm. In the optimization, fabrication constraints were taken into account by
ensuring a minimum space between the cavities and limiting the cavity depth. The benefit of increased selectivity
of the emittance diminishes for cavity depths above d ∼8.0 µm. The measured cavity radius of the fabricated
PhCs was r = 0.53 µm, with a period a=1.37 µm. The depth is experimentally measured by milling into the
substrate using a focused ion beam (FIB) microscope. In order to achieve a cleaner cross-section, the cavities
are filled with Pt and then milled. The etch depth measured by FIB was 6µm on average, corresponding to
an aspect ratio of 6 to 1. In our previous study a grass formation was present inside the cavity.20 This effect
was since reduced by optimizing the etch parameters, as shown in Fig. 3 where a PhC with r = 0.48 µm and
a=1.0 µm was fabricated with the same method as described in Section 2.2.

The simulation using the previously measured cavity radius and period of the fabricated PhC (r = 0.53 µm
and a=1.37 µm) and a cavity depth of d=6.7 µm shows good agreement to the emittance obtained from room
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Figure 4. (Color online) (a) Comparison of the emittance obtained from reflectance measurements at room temperature
of the Ta 3% W PhC without and with an HfO2 coating of 40 nm thickness, and simulations using a period a = 1.37 µm,
cavity depth d = 6.7 µm, and radius r = 0.53 µm and radius r = 0.57 µm respectively for the uncoated and coated PhC.
(b) Comparison of the emittance of the Ta 3% W PhC with an HfO2 coating before and after anneal at 1200◦C for 24 h
in a vacuum furnace with the emittance of the polished substrate.

temperature reflectance measurements as shown in Fig. 4 a) with a cutoff wavelength of about λcutoff= 2.0 µm,
demonstrating high emittance below the cutoff wavelength while maintaining low emittance above, with a steep
cutoff between. The spectral efficiency (defined as the ratio of useful emission to total emission) can be found
from the simulated hemispherical data using high temperature material properties. Very good selectivity is
observed for the PhC emitters which increases with temperature as expected. The total calculated hemispherical
spectral efficiency is found to be greater than 50% above ∼ 1100◦C. System modeling shows that the expected
TPV thermal-to electrical efficiency using an InGaAsSb TPV cell and a matched PhC emitter (with no further
spectral components such as filters) can reach 29.1% for ideal TPV cell properties, and 13.0% for actual measured
TPV cell properties, both at an operating temperature of ∼ 1170◦C.21

3.2 Emittance with and without HfO2 ALD layer

As mentioned in Section 2.2, surface diffusion and surface chemical reactions are known high-temperature PhC
degradation mechanisms and previous studies have shown a protective dielectric coating such as HfO2 can
reduce these unwanted effects. In this study a protective coating of 40 nm HfO2 is used in an attempt to prevent
structural degradation by surface diffusion, grain boundary grooving, as well as surface reactions such as the
formation of Ta carbide on the surface of the PhC at high temperatures. While the additional layer influences the
emittance, causing the cutoff wavelength to shift slightly to a higher wavelength, the sharp cutoff, low emittance
at longer wavelengths and high selectivity are preserved. Fig. 4 a) shows the emittance of the fabricated PhC
with and without the coating as obtained from room temperature (RT) reflectance measurements, showing a
shift of the cutoff from 2.0 to 2.15 µm. This shift of the cutoff wavelength is reproduced by simulations of the
PhC with the coating. For simplification, it can be taken into account in the simulations by using a larger cavity
radius r as the optical path length in the cavity is effectively increased by the addition of a high index material
(n∼1.8). Thus, to achieve the target cutoff wavelength with the coated PhC a slightly smaller cavity radius has
to be fabricated than given by the optimization without the coating.

To study the thermal stability, the fabricated PhCs were annealed at 1200◦C for 24 h in a vacuum setup under
Ar atmosphere (10−7 Torr base pressure, 10−4 Torr flowing UHP Ar). To prevent convection and conduction
losses, as well as oxidation and degradation of the microsructured materials, any high-temperature TPV system
is preferably run under vacuum. The reflectance of the Ta 3% W PhCs with the HfO2 ALD coating was obtained
experimentally at room temperature before and after annealing by spectroradiometric measurement. Note that
the emittance can be obtained from the measured reflectance by using Kirchhoff’s law (E = 1 − R for non
transmitting substrates). As shown in Fig. 4 b), the spectral emittance of the Ta 3% W PhC and its selectivity
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Figure 5. FIB cross section of the Ta 3% W PhC after 24h anneal at 1200◦C for 24 h in a vacuum furnace. Note that Pt
was deposited prior to FIB milling in order to improve the cross-sectional imaging. The inset is a close up of the cavity
wall.

is essentially preserved after the 24 h anneal at 1200◦C. A small degradation of the cutoff tail is observed after
anneal, as well as a slight increase of the emittance above the cutoff wavelength. The furnace used was limited
to 1200◦C preventing us to go to higher temperatures, but longer term annealing studies are under way.

Thermal degradation of the reflectance spectra could be due to a rounding of structure profiles due to surface
diffusion or surface reactions like carbide formation, as observed in a previous study on Ta samples without
coating.13 The structural stability of the Ta 3% W PhC with the HfO2 ALD coating was studied through
the FIB cross sectional images before and after annealing. Very little change was observed after annealing at
1200◦C for 24 h under Ar atmosphere, as shown in Fig. 5. Therefore we conclude that surface diffusion was
effectively prevented by the HfO2 coating at least for the observed time and temperature scale. We could,
however, observe the beginning of localized carbide formation on the surface of the HfO2 coating, as confirmed
by Auger spectroscopy. This is the reason for the degradation of the emittance spectrum of the PhC and thus a
surface passivation carbide barrier is needed. Although the reaction is significantly slower than on the Ta surface
(without the coating) the carbide formation at higher temperatures could eventually compromise the spectral
selectivity of the emitter. Further investigation on the source of carbon and the prevention of this reaction is
under way.

4. CONCLUSION

In conclusion, in this paper a tantalum tungsten solid solution alloy, Ta 3% W, was investigated as a substrate for
2D PhCs for high-temperature energy applications. The Ta 3% W alloy presented advantages compared to the
non-alloys as it combined better high-temperature thermo-mechanical properties of W with the more compliant
material properties of Ta, allowing for a direct system integration path. The mechanical stability of the selective
emitters as part of a high temperature system was found to be greatly enhanced using the Ta-W alloy substrates
instead of pure Ta, reducing potential degradation such as creep and deflection which can play a critical role
in system failure. Furthermore, Ta 3% W is advantageous as the thermo-mechanical properties can be tuned
by the W content. A 2D PhC on a Ta 3% W alloy substrate was designed using FDTD numerical simulations
and its spectral emittance was optimized to match a PV cell with a bandgap at 2.3 µm. The PhC emitter
was fabricated using a process similar to that used previously for Ta PhCs, however the fabrication process was
further tuned to minimize grass effects and results in PhCs with unprecedented uniformity. The emittance of Ta
3% W was obtained from near-normal reflectance measurements at room temperature before and after annealing
at 1200◦C for 24 h in vacuum with a protective dielectric coating of 40 nm HfO2, showing high spectral selectivity
as predicted by simulations. A slight degradation of the emittance spectrum was attributed to the beginning
of carbide formation on the surface of the HfO2 coating, which is greatly decelerated in contrast to the surface
reaction on Ta without the coating. At this time, it still appears that the observed surface degradation is only
due to contamination, but more tests are being conducted in regards to substrate preparation. Scanning electron
microscope images of the cross section of the PhC prepared by focused ion beam milling compared before and
after anneal confirm the structural stability of the HfO2 coated Ta 3% W PhC and no degradation, i.e. rounding
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of the profile, was observed, which confirms that the coating effectively prevents structural degradation due
to surface diffusion. All in all, these results confirm that Ta 3% W based PhCs with an HfO2 coating are a
promising solution for spectrally selective optical components for high-temperature applications.
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