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We report a direct lattice QCD calculation of the strange nucleon electromagnetic form factors Gs
E and

Gs
M in the kinematic range 0 ≤ Q2 ≲ 1.2 GeV2. For the first time, bothGs

E andGs
M are shown to be nonzero

with high significance. This work uses closer to physical lattice parameters than previous calculations, and
achieves an unprecedented statistical precision by implementing a recently proposed variance reduction
technique called hierarchical probing. We perform model-independent fits of the form factor shapes using
the z-expansion and determine the strange electric and magnetic radii and magnetic moment. We compare
our results to parity-violating electron-proton scattering data and to other theoretical studies.
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The nucleon electromagnetic form factors describe how
electric charge and current are distributed inside protons
and neutrons, and are therefore among the most important
observables characterizing these building blocks of
ordinary matter. Because nucleons contain only up and
down valence quarks, these two quark flavors dominate the
electromagnetic form factors. Isolating the small contribu-
tions from the other quark flavors is a significant challenge
for both experiment and theory, but is of fundamental
importance for our understanding of the structure of
protons and neutrons, and of the nonperturbative dynamics
of QCD. After the up and down quarks, strange quarks are
expected to give the next-largest contribution to the
electromagnetic form factors. The cross section of elastic
electron-proton scattering used to extract the form factors is
dominated by photon exchange, which probes the sum of
all quark-flavor contributions weighted according to
their electric charges. However, by analyzing the small
parity-violating effects arising from interference with
Z-boson exchange, the strange-quark contribution to the
electromagnetic form factors can be isolated [1,2]. The
available experimental results, which focus on momentum
transfersQ2 in the vicinity of 0.2 GeV2, are consistent with
zero but constrain the relative contribution of the strange
quarks to be within a few percent [3–15].

Ab initio calculations of the nucleon electromagnetic
form factors Gq

E and Gq
M of an individual quark flavor q

(see, e.g., Ref. [16] for the definitions) are possible using
lattice QCD. The form factors can be extracted from
Euclidean three-point functions of the form

X

z;y

e−ip
0·ðz−yÞe−ip·ðy−xÞhNβðzÞVμ

qðyÞN̄αðxÞi; ð1Þ

whereN is an interpolating field with the quantum numbers
of the nucleon, Vμ

q ¼ q̄γμq is the vector current for quark
flavor q, and p, p0 are the spatial momenta of the initial and
final states. In the three-point function (1), performing the
path integral over the quark fields leaves a path integral
over the gauge fields, which contains the product of the
fermion determinants and the nonperturbative quark propa-
gator contractions illustrated in Fig. 1. The connected
contraction arises only for q ¼ u; d and is numerically
large, while the disconnected contraction is present for all
quark flavors (and is the origin of the strange-quark
contribution to the electromagnetic form factors). The
disconnected quark loop in Fig. 1 has the form

Tμ
q ¼ −

X

y

eiðp0−pÞ·yTr½γμD−1
q ðy; yÞ�; ð2Þ

where Dq is the lattice Dirac operator, and the trace is over
color and spin indices. The numerical computation of the
propagator D−1

q ðy; yÞ for all spatial lattice points y using
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standard methods is prohibitively expensive for lattices of
realistic size, and therefore most lattice calculations of
nucleon form factors have been restricted to the connected
contractions (and therefore q ¼ u; d) only. In Ref. [17], the
strange-quark contribution was estimated by combining
experimental data for the complete electromagnetic factors
with lattice QCD results for the connected u- and d-quark
contractions. This method relies on a delicate cancellation
between large quantities, and is therefore limited in its
statistical precision and rather susceptible to systematic
errors in the lattice calculation.
A direct lattice QCD calculation of the strange-quark

contribution can be performed by evaluating the discon-
nected loop in Eq. (2) stochastically. An unbiased estimate
is given by

Tμ
q ≈ −

1

N

XN

n¼1

X

y

eiðp0−pÞ·yξ†nðyÞγμψnðyÞ; ð3Þ

where ξn are suitable noise vectors (for example with
random components ∈ Z2) with support on the time slice
y0, and ψn are the corresponding solutions of the lattice
Dirac equation, Dqψn ¼ ξn. Previous unquenched lattice
QCD calculations of the strange nucleon electromagnetic
form factors using variants of this approach can be found in
Refs. [18,19]. The calculation of Ref. [18] was performed
on a 163× 32 lattice with dimensions ð1.9 fmÞ3× ð3.9 fmÞ,
and at rather heavy u, d quark masses corresponding to pion
masses in the range 600–840 MeV. For these parameters,
the strange magnetic form factor Gs

M was found to be
negative with a significance of 2 − 3σ in the region
Q2 ≲ 1 GeV2, while the strange electric form factor Gs

E
was found to be consistent with zero [18]. The authors of
Ref. [19] used an anisotropic 243 × 64 lattice with dimen-
sions ð2.6 fmÞ3 × ð2.3 fmÞ and a pion mass of 416 MeV.
The corresponding results for Gs

M and Gs
E have large

uncertainties and are consistent with zero.
In this article, we report a new direct lattice QCD

calculation of Gs
M and Gs

E with closer-to-physical param-
eters and with very high statistical precision. For the first
time, both Gs

M and Gs
E are shown to be nonzero with high

significance and in a wide range of Q2. We also obtain
similarly precise results for the analogous disconnected
light (equal for up and down) quark contributions, which
need to be included in precision lattice calculations of the

total electromagnetic form factors of the proton, and are
therefore of relevance for the proton charge radius puzzle
[20,21]. Our calculation is performed on a large 323 × 96
lattice of dimensions ð3.6 fmÞ3 × ð10.9 fmÞ and includes
2þ 1 flavors of dynamical sea quarks, implemented using
a clover-improved Wilson action. The up and down quark
mass corresponds to a pion mass of 317 MeV, and the
strange-quark mass is consistent with the physical value
(determined using the “ηs” mass [22]) within five percent.
The unprecedented statistical precision is achieved as
follows: (i) we use 1028 gauge-field configurations and
compute the three-point function in Eq. (1) for 96 different
source locations, x, on each configuration, and (ii) we use a
novel variance reduction method, hierarchical probing [23],
to evaluate the disconnected quark loops Tμ

q. Similarly to
dilution [24,25], this method is based on the observation
that the fluctuations in Eq. (3) due to the random noise
vectors originate from the off-diagonal elements of
D−1

q ðx; yÞ, which decay with the Euclidean distance
jx − yj. By partitioning the noise vectors into multiple
vectors with support only on subsets of the lattice sites, the
variance can be reduced (at the cost of additional solutions
of the lattice Dirac equation). While dilution is based on a
fixed partitioning scheme, hierarchical probing allows one
to continuously increase the level of partitioning, elimi-
nating the variance in order of importance while reusing the
results from prior levels [23]. This is achieved using a
special sequence of Hadamard vectors, zn, which have
values �1 on the lattice sites. Examples of zn are shown in
Fig. 2. In Eq. (3), we make the replacement

ξn → zn ⊙ ξ; ð4Þ
where ξ is a single noise vector and⊙ denotes the element-
wise Hadamard product [23]. As mentioned earlier, we use
noise vectors with support only on selected time slices, and
we therefore perform three-dimensional hierarchical prob-
ing. We use N ¼ 128 Hadamard vectors, which eliminates
the variance from neighboring lattice sites up to distance 4.
For the electromagnetic form factors, we observe a variance

FIG. 1. Nonperturbative quark propagator contractions
obtained from Eq. (1) by performing the path integral over the
quark fields: connected (left) and disconnected (right).

FIG. 2 (color online). The first 16 Hadamard vectors for
hierarchical probing on a 43 lattice; red ¼ þ1, black ¼ −1.
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reduction by approximately a factor of 10 compared to the
traditional noise method with the same N (at equal
computational cost). Our calculation employs complex
Z2 × Z2 noise and also uses color and spin dilution for
the noise vectors ξ.
We use the lattice conserved vector current [generalizing

Eqs. (2)–(3) for currents that are not site local] including an
improvement term [26,27] to reduce OðaÞ lattice artifacts,
where a is the lattice spacing, with the improvement
coefficient set to its tree-level value. We independently
vary the momenta p and p0 to obtain 59 different values of
Q2. For clarity in plots we bin the nearest points that have
the same ðp0 − pÞ2 and jp02 − p2j, and thus differ in Q2 by
less than 0.006 GeV2. The three-point function (1) receives
contributions from the desired nucleon ground state and
from excited states; the excited-state contributions decay
exponentially faster with the source-sink separation,
jz0 − x0j, than the ground-state contribution. We use
jz0 − x0j ≈ 1.14 fm for our main results, and estimate the
remaining excited-state contamination using a second
separation of jz0 − x0j ≈ 1.37 fm.
Our calculated form factors are shown in Fig. 3.

Gs
EðQ2Þ is consistent with zero at Q2 ¼ 0 and positive

for all other values ofQ2. It rises withQ2 until it reaches a
maximum value around 0.003, somewhere between 0.2
and 1.0 GeV2, above which the data hint at a decrease. In
the same range, Gs

MðQ2Þ is negative, with a decrease in
magnitude with Q2 up to around 0.5 GeV2. Above that,
the data are consistent with a constant. Note that data with
the same spatial momentum transfer q ¼ p − p0 tend to
have strongly correlated errors, meaning that, e.g., the
points below Q2 ¼ 0.4 GeV2 form three clusters of
correlated data that should not be interpreted as “bumpy”
behavior in the form factor. The disconnected light-quark
form factors have similar dependence on Q2 but their

magnitude is two to three times that of the strange-quark
form factors.
We fit the Q2-dependence of each form factor using the

z-expansion [28,29],

GðQ2Þ ¼
Xkmax

k

akzk; z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
−

ffiffiffiffiffiffi
tcut

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
þ ffiffiffiffiffiffi

tcut
p ; ð5Þ

which conformally maps the complex domain of analyticity
in Q2 to jzj < 1. Although for physical quark masses the
isoscalar threshold is tcut ¼ ð3mπÞ2, at our pion mass we
expect that the ω resonance is a stable particle below
threshold; therefore, we use the isovector threshold tcut ¼
ð2mπÞ2 in our fits. The intercept and slope of the form
factor at Q2 ¼ 0 can be obtained from the first two
coefficients, a0 (which we fix to zero for GE) and a1.
We impose Gaussian priors on the remaining coefficients,
centered at zero with width equal to 5 maxfja0j; ja1jg. We
truncate the series with kmax ¼ 5, but we have verified that
using kmax ¼ 10 produces identical fit results in our probed
range of Q2. The resulting fit curves are shown in Fig. 3.
The uncertainties are estimated as follows:
(1) Statistical uncertainties are computed using jack-

knife resampling, using samples binned from four
gauge configurations. These are shown as the inner
error bands in Fig. 3.

(2) Fitting uncertainties are estimated by doubling and
halving the widths of the fit priors, as well as
performing the fits using different estimations of
correlations in the data.

(3) For the light-quark disconnected form factors, we
estimate excited-state errors by computing the form
factors using a larger source-sink separation,
1.37 fm. We assign the same relative error due to
excited states to the strange-quark form factors.

FIG. 3 (color online). Strange-quark and disconnected light-quark electric and magnetic form factors, with statistical error bars. The
curves result from the z-expansion fits; the inner bands show the statistical uncertainty and the outer error bands show the combined
statistical and systematic uncertainties (added in quadrature). The charge factors are not included.
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(4) Uncertainties due to discretization effects are esti-
mated by comparing against the form factors com-
puted using the unimproved current.

The outer error bands in Fig. 3 show the sum of these
uncertainties in quadrature. We neglect finite-volume
effects since they are highly suppressed by e−mπL,
with mπL ¼ 5.9. Our resulting strange radii ðr2E;MÞs ≡
−6dGs

E;M=dQ
2jQ2¼0 and strange magnetic moment μs ≡

Gs
Mð0ÞμlatN at pion mass 317 MeV are the following:

ðr2EÞs ¼ −0.0054ð9Þð6Þð11Þð2Þ fm2;

ðr2MÞs ¼ −0.0147ð61Þð28Þð34Þð5Þ fm2;

μs ¼ −0.0184ð45Þð12Þð32Þð1ÞμlatN ; ð6Þ

where the four uncertainties are given in the same order as
listed above, and μlatN is the nuclear magneton using the
lattice nucleon mass, 1067(8) MeV.We find that the leading
sources of uncertainty are statistics, as expected for dis-
connected diagrams, and excited-state effects, which have
been found to be important for many nucleon observables
(see, e.g., [16,30–33]). Our estimate of discretization
effects is negligible by comparison, which is consistent
with calculations of other nucleon observables that used
multiple lattice spacings to probe the continuum limit (see,
e.g., [30,32–39]).
Although a controlled extrapolation to the physical

point would require several lattice ensembles with varying
quark masses, an estimate can be made by combining
strange-quark data with the equivalent obtained from the
disconnected light-quark form factors. By itself, the latter
can be understood in the framework of partially quenched
QCD [40,41] by introducing a third light-quark flavor
(which couples to the current in the quark-disconnected
loop) and a bosonic ghost quark (which cancels all other
loops). The dependence of the strange radii and magnetic
moment on quark masses has been studied in SU(3)
heavy-baryon chiral perturbation theory (ChPT) [42–44],
and its partially quenched generalization [45–47]. At
leading one-loop order, these observables depend only
on the mass mloop of a pseudoscalar meson composed of a
nucleon valence quark and a quark from the vector
current. For strange-quark and disconnected light-quark
observables, mloop is mK and mπ , respectively, and we
can interpolate to the physical kaon mass. However,
using typical values of the meson decay constant and
meson-baryon couplings from phenomenology predicts a
much stronger dependence on mloop than we observe,
suggesting that the quark masses are too large for ChPT at
this order. Therefore, we resort to a simple linear
interpolation in m2

loop. We also adjust to the physical
nuclear magneton, and obtain the following estimates at
the physical point:

ðr2EÞs ¼ −0.0067ð10Þð17Þð15Þ fm2;

ðr2MÞs ¼ −0.018ð6Þð5Þð5Þ fm2;

μs ¼ −0.022ð4Þð4Þð6ÞμN; ð7Þ

where the first two uncertainties are statistical and sys-
tematic (as estimated above). The third error is the differ-
ence between the value at the physical point and our lattice
ensemble (using the physical nuclear magneton), and
serves as an estimate of the uncertainty due to extrapolation
to the physical point. As a cross-check, we also performed
extrapolations including only our strange-quark data
at mπ ¼ 317 MeV and the strange-quark data at mπ ¼
600 MeV from Ref. [18]. The results are consistent with
Eq. (7) within the given extrapolation uncertainties.
The experiments run at forward scattering angles were

sensitive to a particular linear combination of form factors,
Gs

E þ ηGs
M, which we show in Fig. 4. Our results and the

experimental data are both broadly consistent with zero,
although the lattice data have much smaller uncertainties.
This suggests that it will be quite challenging for future
experiments to obtain a clear nonzero strange-quark signal
at forward angles.
Figure 5 shows a comparison with some other determi-

nations of the strange magnetic moment. The value from
experiment has the largest uncertainty and is consistent with
the other shown results. This work is in agreement with the
other values within 2σ, except for two of the dispersion-
theory scenarios [48], and has the smallest uncertainty.
The techniques used in this work have proven effective

in dealing with the longstanding problem of noise in
disconnected contributions to matrix elements. Although

FIG. 4 (color online). Linear combination of form factors,
Gs

E þ ηGs
M, probed by forward-angle parity-violating elastic ep

scattering experiments [6–8,10–12,14,15]. The coefficient η
depends on the scattering angle and Q2; for the lattice data we
use the approximation η ¼ AQ2, A ¼ 0.94 GeV−2 [11]. In the
low Q2 region we also show the linear dependence on Q2

resulting from the estimated charge radius and magnetic moment
at the physical point.
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future calculations at near-physical quark masses will be
needed to confirm our physical-point estimates, we have
found very small contributions from strange quarks to
proton electromagnetic observables: including the charge
factor of −1=3 yields a roughly 0.3% effect in the proton
r2E, μr

2
M, and μ.

ACKNOWLEDGMENTS

Computations for this work were carried out on facilities
of the USQCD Collaboration, which are funded by the
Office of Science of the U.S. Department of Energy (DOE),
and on facilities provided by XSEDE, funded by the
National Science Foundation Grant No. ACI-1053575.
During this research J. G., S. M., J. N., and A. P. were
supported in part by the U.S. Department of Energy Office
of Nuclear Physics under Award No. DE–FG02–
94ER40818; M. E. was supported in part by DOE
Award No. DE–FG02–96ER40965; J. L. was supported
in part by DOE Award No. DE–FC02–12ER41890 and
NSF Grant No. CCF-121834; K. O. was supported in part
by DOE Award No. DE-FG02-04ER41302 and also DOE
Award No. DE-AC05-06OR23177, under which JSA
operates the Thomas Jefferson National Accelerator
Facility; S. S. was supported in part by DOE Award
No. DE–AC02–05CH11231 and the RIKEN Foreign
Postdoctoral Researcher Program; and S. K. was supported
in part by Deutsche Forschungsgemeinschaft through Grant
No. SFB–TRR 55. J. G. was also supported in part by the
PRISMA Cluster of Excellence at the University of Mainz,
and S. M. was also supported in part by the RHIC Physics
Fellow Program of the RIKEN BNL Research Center.
Calculations were performed with the Chroma software
suite [54], using QUDA [55] with multi-GPU support [56].

[1] D. B. Kaplan and A. Manohar, Strange matrix elements in
the proton from neutral current experiments, Nucl. Phys.
B310, 527 (1988).

[2] R. McKeown, Sensitivity of polarized elastic electron
proton scattering to the anomalous baryon number magnetic
moment, Phys. Lett. B 219, 140 (1989).

[3] R. Hasty et al. (SAMPLE Collaboration), Strange magnet-
ism and the anapole structure of the proton, Science 290,
2117 (2000).

[4] D. Spayde et al. (SAMPLE Collaboration), The strange
quark contribution to the proton’s magnetic moment, Phys.
Lett. B 583, 79 (2004).

[5] E. Beise, M. Pitt, and D. Spayde, The SAMPLE experiment
and weak nucleon structure, Prog. Part. Nucl. Phys. 54, 289
(2005).

[6] K. Aniol et al. (HAPPEX Collaboration), Parity-violating
electroweak asymmetry in polarized ~ep scattering, Phys.
Rev. C 69, 065501 (2004).

[7] F. Maas et al. (A4 Collaboration), Measurement of Strange
Quark Contributions to the Nucleon’s Form Factors at
Q2 ¼ 0.230 ðGeV=cÞ2, Phys. Rev. Lett. 93, 022002
(2004).

[8] F. Maas, K. Aulenbacher, S. Baunack, L. Capozza,
J. Diefenbach et al., Evidence for Strange Quark

Contributions to the Nucleon’s Form Factors at
Q2 ¼ 0.108 ðGeV=cÞ2, Phys. Rev. Lett. 94, 152001 (2005).

[9] K. Aniol et al. (HAPPEX Collaboration), Parity-Violating
Electron Scattering from 4He and the Strange Electric Form
Factor of the Nucleon, Phys. Rev. Lett. 96, 022003 (2006).

[10] K. Aniol et al. (HAPPEX Collaboration), Constraints on the
nucleon strange form factors at Q2 ∼ 0.1 GeV2, Phys. Lett.
B 635, 275 (2006).

[11] D. Armstrong et al. (G0 Collaboration), Strange Quark
Contributions to Parity-Violating Asymmetries in the
Forward G0 Electron-Proton Scattering Experiment, Phys.
Rev. Lett. 95, 092001 (2005).

[12] A. Acha et al. (HAPPEX Collaboration), Precision
Measurements of the Nucleon Strange Form Factors at
Q2 ∼ 0.1 GeV2, Phys. Rev. Lett. 98, 032301 (2007).

[13] D. Androic et al. (G0 Collaboration), Strange Quark
Contributions to Parity-Violating Asymmetries in the
Backward Angle G0 Electron Scattering Experiment, Phys.
Rev. Lett. 104, 012001 (2010).

[14] S. Baunack, K. Aulenbacher, D. Balaguer Rios, L. Capozza,
J. Diefenbach et al., Measurement of Strange Quark
Contributions to the Vector Form Factors of the Proton
at Q2 ¼ 0.22 ðGeV=cÞ2, Phys. Rev. Lett. 102, 151803
(2009).

μ s (μN)

lattice QCD (this work, mπ 317 MeV)

lattice QCD (this work, physical point)

lattice QCD [18]

connected LQCD + octet μ from expt. [17]

. . . same, with quenched lattice QCD [49]

finite-range-regularized chiral model [50]

light-front model + deep inelastic scattering data [51]

perturbative chiral quark model [52]

dispersion analysis [48]

parity-violating elastic scattering [53]

FIG. 5 (color online). Determinations of the strange magnetic
moment: from direct lattice QCD calculations (this work and
Ref. [18]; red circles), models and phenomenology [17,48–52]
(green squares), and from a recent global analysis of parity-
violating elastic scattering data [53] (blue diamond).

HIGH-PRECISION CALCULATION OF THE STRANGE … PHYSICAL REVIEW D 92, 031501(R) (2015)

031501-5

RAPID COMMUNICATIONS

http://dx.doi.org/10.1016/0550-3213(88)90090-9
http://dx.doi.org/10.1016/0550-3213(88)90090-9
http://dx.doi.org/10.1016/0370-2693(89)90364-X
http://dx.doi.org/10.1126/science.290.5499.2117
http://dx.doi.org/10.1126/science.290.5499.2117
http://dx.doi.org/10.1016/j.physletb.2004.01.002
http://dx.doi.org/10.1016/j.physletb.2004.01.002
http://dx.doi.org/10.1016/j.ppnp.2004.07.002
http://dx.doi.org/10.1016/j.ppnp.2004.07.002
http://dx.doi.org/10.1103/PhysRevC.69.065501
http://dx.doi.org/10.1103/PhysRevC.69.065501
http://dx.doi.org/10.1103/PhysRevLett.93.022002
http://dx.doi.org/10.1103/PhysRevLett.93.022002
http://dx.doi.org/10.1103/PhysRevLett.94.152001
http://dx.doi.org/10.1103/PhysRevLett.96.022003
http://dx.doi.org/10.1016/j.physletb.2006.03.011
http://dx.doi.org/10.1016/j.physletb.2006.03.011
http://dx.doi.org/10.1103/PhysRevLett.95.092001
http://dx.doi.org/10.1103/PhysRevLett.95.092001
http://dx.doi.org/10.1103/PhysRevLett.98.032301
http://dx.doi.org/10.1103/PhysRevLett.104.012001
http://dx.doi.org/10.1103/PhysRevLett.104.012001
http://dx.doi.org/10.1103/PhysRevLett.102.151803
http://dx.doi.org/10.1103/PhysRevLett.102.151803


[15] Z. Ahmed et al. (HAPPEX Collaboration), New Precision
Limit on the Strange Vector Form Factors of the Proton,
Phys. Rev. Lett. 108, 102001 (2012).

[16] J. R. Green, J. W. Negele, A. V. Pochinsky, S. N. Syritsyn,
M. Engelhardt, and S. Krieg, Nucleon electromagnetic form
factors from lattice QCD using a nearly physical pion mass,
Phys. Rev. D 90, 074507 (2014).

[17] P. E. Shanahan, R. Horsley, Y. Nakamura, D. Pleiter, P. E. L.
Rakow, G. Schierholz, H. Stüben, A. W. Thomas, R. D.
Young, and J. M. Zanotti, Determination of the Strange
Nucleon Form Factors, Phys. Rev. Lett. 114, 091802 (2015).

[18] T. Doi, M. Deka, S.-J. Dong, T. Draper, Keh-Fei Liu, D.
Mankame, N. Mathur, and T. Streuer, Nucleon strangeness
form factors from Nf ¼ 2þ 1 clover fermion lattice QCD,
Phys. Rev. D 80, 094503 (2009).

[19] R. Babich, R. C. Brower, M. A. Clark, G. T. Fleming, J. C.
Osborn, C. Rebbi, and D. Schaich, Exploring strange
nucleon form factors on the lattice, Phys. Rev. D 85,
054510 (2012).

[20] R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben
et al., The size of the proton, Nature (London) 466, 213
(2010).

[21] A. Antognini, F. Nez, K. Schuhmann, F. D. Amaro, F.
Biraben et al., Proton structure from the measurement of
2S − 2P transition frequencies of muonic hydrogen,
Science 339, 417 (2013).

[22] R. Dowdall et al. (HPQCD Collaboration), The Upsilon
spectrum and the determination of the lattice spacing from
lattice QCD including charm quarks in the sea, Phys. Rev. D
85, 054509 (2012).

[23] A. Stathopoulos, J. Laeuchli, and K. Orginos, Hierarchical
probing for estimating the trace of the matrix inverse on
toroidal lattices, SIAM J. Sci. Comput. 35, S299 (2013).

[24] W. Wilcox, Numerical Challenges in Lattice Quantum
Chromodynamics, edited by A. Frommer, T. Lippert, B.
Medeke, and K. Schilling, Lecture Notes in Computational
Science and Engineering, Vol. 15 (Springer, Berlin Heidel-
berg, 2000), p. 127.

[25] J. Foley, K. Jimmy Juge, A. Ó. Cais, M. Peardon, S. M.
Ryan, and Jon-Ivar Skullerud, Practical all-to-all propaga-
tors for lattice QCD, Comput. Phys. Commun. 172, 145
(2005).

[26] G. Martinelli, C. T. Sachrajda, and A. Vladikas, A study of
“improvement” in lattice QCD, Nucl. Phys. B358, 212
(1991).

[27] S. Boinepalli, D. Leinweber, A. Williams, J. Zanotti, and J.
Zhang, Precision electromagnetic structure of octet baryons
in the chiral regime, Phys. Rev. D 74, 093005 (2006).

[28] R. J. Hill and G. Paz, Model-independent extraction of the
proton charge radius from electron scattering, Phys. Rev. D
82, 113005 (2010).

[29] Z. Epstein, G. Paz, and J. Roy, Model-independent extrac-
tion of the proton magnetic radius from electron scattering,
Phys. Rev. D 90, 074027 (2014).

[30] S. Capitani, M. Della Morte, G. von Hippel, B. Jäger, A.
Jüttner, B. Knippschild, H. B. Meyer, and H. Wittig, The
nucleon axial charge from lattice QCD with controlled
errors, Phys. Rev. D 86, 074502 (2012).

[31] J. R. Green, M. Engelhardt, S. Krieg, J. W. Negele, A. V.
Pochinsky, and S. N. Syritsyn, Nucleon structure from

lattice QCD using a nearly physical pion mass, Phys. Lett.
B 734, 290 (2014).

[32] G. S. Bali, S. Collins, B. Gläßle, M. Göckeler, J. Najjar,
R. H. Rödl, A. Schäfer, R. W. Schiel, W. Söldner, and
A. Sternbeck, Nucleon isovector couplings from Nf ¼ 2
lattice QCD, Phys. Rev. D 91, 054501 (2015).

[33] M. Constantinou, Hadron structure, Proc. Sci., LAT-
TICE2014 (2015) 001.

[34] J. R. Green, J. W. Negele, A. V. Pochinsky, S. N. Syritsyn,
M. Engelhardt, and S. Krieg, Nucleon scalar and tensor
charges from lattice QCD with light Wilson quarks, Phys.
Rev. D 86, 114509 (2012).

[35] C. Alexandrou, M. Constantinou, S. Dinter, V. Drach, K.
Hadjiyiannakou, K. Jansen, G. Koutsou, and A. Vaquero,
Strangeness of the nucleon from lattice QCD, Phys. Rev. D
91, 094503 (2015).

[36] C. Alexandrou, M. Brinet, J. Carbonell, M. Constantinou, P.
A. Harraud, P. Guichon, K. Jansen, T. Korzec, and M.
Papinutto, Nucleon electromagnetic form factors in twisted
mass lattice QCD, Phys. Rev. D 83, 094502 (2011).

[37] S. Collins, M. Göckeler, P. Hägler, R. Horsley, Y. Nakamura
et al., Dirac and Pauli form factors from lattice QCD, Phys.
Rev. D 84, 074507 (2011).

[38] S. Syritsyn, J. Bratt, M. Lin, H. Meyer, J. Negele et al.,
Nucleon electromagnetic form factors from lattice QCD
using 2þ 1 flavor domain wall fermions on fine lattices
and chiral perturbation theory, Phys. Rev. D 81, 034507
(2010).

[39] T. Bhattacharya, V. Cirigliano, S. Cohen, R. Gupta, A.
Joseph et al., Isovector and isoscalar tensor charges of the
nucleon from lattice QCD, arXiv:1506.06411.

[40] C. W. Bernard and M. F. Golterman, Partially quenched
gauge theories and an application to staggered fermions,
Phys. Rev. D 49, 486 (1994).

[41] M. Della Morte and A. Jüttner, Quark disconnected
diagrams in chiral perturbation theory, J. High Energy
Phys. 11 (2010) 154.

[42] M. Musolf and H. Ito, Chiral symmetry and the nucleon’s
vector strangeness form factors, Phys. Rev. C 55, 3066
(1997).

[43] T. R. Hemmert, U.-G. Meissner, and S. Steininger, Strange
magnetism in the nucleon, Phys. Lett. B 437, 184 (1998).

[44] T. R. Hemmert, B. Kubis, and U.-G. Meissner, Strange
chiral nucleon form factors, Phys. Rev. C 60, 045501
(1999).

[45] J.-W. Chen and M. J. Savage, Baryons in partially quenched
chiral perturbation theory, Phys. Rev. D 65, 094001 (2002).

[46] D. Arndt and B. C. Tiburzi, Charge radii of the meson and
baryon octets in quenched and partially quenched chiral
perturbation theory, Phys. Rev. D 68, 094501 (2003).

[47] D. B. Leinweber, Quark contributions to baryon magnetic
moments in full, quenched and partially quenched QCD,
Phys. Rev. D 69, 014005 (2004).

[48] H. Hammer and M. Ramsey-Musolf, KK̄ continuum and
isoscalar nucleon form factors, Phys. Rev. C 60, 045204
(1999).

[49] D. B. Leinweber, S. Boinepalli, I. C. Cloet, A. W. Thomas,
A. G. Williams, R. D. Young, J. M. Zanotti, and J. B. Zhang,
Precise Determination of the Strangeness Magnetic Moment
of the Nucleon, Phys. Rev. Lett. 94, 212001 (2005).

JEREMY GREEN et al. PHYSICAL REVIEW D 92, 031501(R) (2015)

031501-6

RAPID COMMUNICATIONS

http://dx.doi.org/10.1103/PhysRevLett.108.102001
http://dx.doi.org/10.1103/PhysRevD.90.074507
http://dx.doi.org/10.1103/PhysRevLett.114.091802
http://dx.doi.org/10.1103/PhysRevD.80.094503
http://dx.doi.org/10.1103/PhysRevD.85.054510
http://dx.doi.org/10.1103/PhysRevD.85.054510
http://dx.doi.org/10.1038/nature09250
http://dx.doi.org/10.1038/nature09250
http://dx.doi.org/10.1126/science.1230016
http://dx.doi.org/10.1103/PhysRevD.85.054509
http://dx.doi.org/10.1103/PhysRevD.85.054509
http://dx.doi.org/10.1137/120881452
http://dx.doi.org/10.1016/j.cpc.2005.06.008
http://dx.doi.org/10.1016/j.cpc.2005.06.008
http://dx.doi.org/10.1016/0550-3213(91)90538-9
http://dx.doi.org/10.1016/0550-3213(91)90538-9
http://dx.doi.org/10.1103/PhysRevD.74.093005
http://dx.doi.org/10.1103/PhysRevD.82.113005
http://dx.doi.org/10.1103/PhysRevD.82.113005
http://dx.doi.org/10.1103/PhysRevD.90.074027
http://dx.doi.org/10.1103/PhysRevD.86.074502
http://dx.doi.org/10.1016/j.physletb.2014.05.075
http://dx.doi.org/10.1016/j.physletb.2014.05.075
http://dx.doi.org/10.1103/PhysRevD.91.054501
http://dx.doi.org/10.1103/PhysRevD.86.114509
http://dx.doi.org/10.1103/PhysRevD.86.114509
http://dx.doi.org/10.1103/PhysRevD.91.094503
http://dx.doi.org/10.1103/PhysRevD.91.094503
http://dx.doi.org/10.1103/PhysRevD.83.094502
http://dx.doi.org/10.1103/PhysRevD.84.074507
http://dx.doi.org/10.1103/PhysRevD.84.074507
http://dx.doi.org/10.1103/PhysRevD.81.034507
http://dx.doi.org/10.1103/PhysRevD.81.034507
http://arXiv.org/abs/1506.06411
http://dx.doi.org/10.1103/PhysRevD.49.486
http://dx.doi.org/10.1007/JHEP11(2010)154
http://dx.doi.org/10.1007/JHEP11(2010)154
http://dx.doi.org/10.1103/PhysRevC.55.3066
http://dx.doi.org/10.1103/PhysRevC.55.3066
http://dx.doi.org/10.1016/S0370-2693(98)00889-2
http://dx.doi.org/10.1103/PhysRevC.60.045501
http://dx.doi.org/10.1103/PhysRevC.60.045501
http://dx.doi.org/10.1103/PhysRevD.65.094001
http://dx.doi.org/10.1103/PhysRevD.68.094501
http://dx.doi.org/10.1103/PhysRevD.69.014005
http://dx.doi.org/10.1103/PhysRevC.60.045204
http://dx.doi.org/10.1103/PhysRevC.60.045204
http://dx.doi.org/10.1103/PhysRevLett.94.212001


[50] P. Wang, D. Leinweber, and A. Thomas, Strange
magnetic form factor of the nucleon in a chiral effective
model at next-to-leading order, Phys. Rev. D 89, 033008
(2014).

[51] T. Hobbs, M. Alberg, and G. A. Miller, Constraining
nucleon strangeness, Phys. Rev. C 91, 035205 (2015).

[52] V. E. Lyubovitskij, P. Wang, T. Gutsche, and A. Faessler,
Strange nucleon form factors in the perturbative chiral quark
model, Phys. Rev. C 66, 055204 (2002).

[53] R. González-Jiménez, J. Caballero, and T. Donnelly, Global
analysis of parity-violating asymmetry data for elastic
electron scattering, Phys. Rev. D 90, 033002 (2014).

[54] R. G. Edwards and B. Joó (SciDAC, LHPC, UKQCD
Collaboration), The Chroma software system for lattice
QCD, Nucl. Phys. B, Proc. Suppl. 140, 832 (2005).

[55] M. Clark, R. Babich, K. Barros, R. Brower, and C. Rebbi,
Solving lattice QCD systems of equations using mixed
precision solvers on GPUs, Comput. Phys. Commun. 181,
1517 (2010).

[56] R. Babich, M. A. Clark, B. Joó, G. Shi, R. C. Brower, and
S. Gottlieb, Scaling lattice QCD beyond 100 GPUs, in
Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analy-
sis (ACM, New York, 2011), p. 70.

HIGH-PRECISION CALCULATION OF THE STRANGE … PHYSICAL REVIEW D 92, 031501(R) (2015)

031501-7

RAPID COMMUNICATIONS

http://dx.doi.org/10.1103/PhysRevD.89.033008
http://dx.doi.org/10.1103/PhysRevD.89.033008
http://dx.doi.org/10.1103/PhysRevC.91.035205
http://dx.doi.org/10.1103/PhysRevC.66.055204
http://dx.doi.org/10.1103/PhysRevD.90.033002
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.254
http://dx.doi.org/10.1016/j.cpc.2010.05.002
http://dx.doi.org/10.1016/j.cpc.2010.05.002

