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Abstract: In composite Higgs models the pseudo-Nambu-Goldstone Boson (pNGB) na-

ture of the Higgs field is an interesting alternative for explaining the smallness of the

electroweak scale with respect to the beyond the Standard Model scale. In non-minimal

models additional pNGB states are present and can be a Dark Matter (DM) candidate,

if there is an approximate symmetry suppressing their decay. Here we assume that the

low energy effective theory (for scales much below the compositeness scale) corresponds

to the Standard Model with a pNGB Higgs doublet and a pNGB DM multiplet. We de-

rive general effective DM Lagrangians for several possible DM representations (under the

SM gauge group), including the singlet, doublet and triplet cases. Within this frame-

work we discuss how the DM observables (relic abundance, direct and indirect detection)

constrain the dimension-6 operators induced by the strong sector assuming that DM be-

haves as a Weakly Interacting Particle (WIMP) and that the relic abundance is settled

through the freeze-out mechanism. We also apply our general results to two specific cosets:

SO(6)/SO(5) and SO(6)/SO(4)×SO(2), which contain a singlet and doublet DM candidate,

respectively. In particular we show that if compositeness is a solution to the little hierarchy

problem, representations larger than the triplet are strongly disfavored. Furthermore, we

find that composite models can have viable DM candidates with much smaller direct de-

tection cross-sections than their non-composite counterparts, making DM detection much

more challenging.
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1 Introduction

Despite being an enormous triumph to the Standard Model (SM), the discovery of the Higgs

boson [1–5] has established the question of how the electroweak scale is stabilized under the

large corrections from new physics at ultra-violet (UV) scales. The quadratic sensitivity of

the Higgs mass to UV physics, also known as the hierarchy problem, has been one of the

leading motivations for searches of new physics at the LHC. One of the most investigated

solutions to the hierarchy problem is Supersymmetry. Besides providing a mechanism for

stabilizing the electroweak (EW) scale, the Minimal Supersymmetric Standard Model (for

reviews see [6–8]) or MSSM also has several attractive features, such as gauge coupling
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unification and viable dark matter candidates. However, current LHC searches and the

measured Higgs mass impose severe constraints on the MSSM.

Composite Higgs models [9–14] are also an interesting solution to the hierarchy prob-

lem. Unlike the MSSM, where the Higgs boson is a fundamental scalar, in composite models

the Higgs doublet is a pseudo-Nambu-Goldstone Boson (pNGB) appearing in the low en-

ergy theory as a result of the spontaneous breaking of a global symmetry (G → H) by a new

strong sector dynamics. In analogy to the pions in QCD, the Higgs doublet only has deriva-

tive couplings and is exactly massless, except for corrections due to the explicit breaking of

G. In the Minimal Composite Higgs Model (MCHM) [15], based on the coset SO(5)/SO(4),

the four pNGBs correspond to the complex Higgs doublet. Nonetheless, other cosets are

possible and may contain a higher number of pNGBs degrees-of-freedom. It is then an

interesting question whether one of the additional pseudo Nambu-Goldstone bosons may

explain the observed dark matter component of the universe. Since this requires at least

five pNGBs (the Higgs doublet plus one DM state), one must consider extensions of the

MCHM. The simplest scenario corresponds to the SO(6)/SO(5) coset [16, 17], which pro-

vides exactly one additional pNGB. For a model based on the coset SO(7)/G2, see e.g. [18].

Possible explanations to the DM question can now be tested by an impressive number

of experiments, possibly bringing us at the edge of discovery. Four complementary ap-

proaches are followed to identify DM as a new WIMP. Direct searches are looking for DM

scattering off heavy nuclei in underground detectors. For the mass ranges that we are inter-

ested in, LUX is for the time being the most sensitive experiment [19], reaching scattering

cross-sections of the order of 10−45cm2 (for masses around 30 GeV). In this field, the next

data releases are expected for 2015 (LUX-1 year data) increasing the sensitivity by a fac-

tor 5. From 2018, the next generation of experiments with multi-tonne Xenon (Xenon1T,

LUX-Zeplin) should reach cross-sections down to 10−47cm2. Indirect searches aim at de-

tecting the products of DM annihilation or decay in the form of gamma-rays, neutrinos or

antimatter cosmic rays. The Fermi-LAT telescope, which is studying the gamma-ray flux

from multiple astrophysical sources, has provided the first strong exclusion limits on DM

annihilation cross-sections excluding 〈σann.v〉 ∼ 3×10−26 cm3/s for candidates with masses

up to ∼ 100 GeV for a 100% annihilation into b̄b [20, 21]. It is very likely that new data

will soon be available with e.g. AMS-02 for antimatter cosmic rays, Ice-Cube for neutrinos,

HESS-II for gamma-rays and with a new generation of experiments, such as Gamma-400

and the CTA. From 2018 onwards, see e.g. [22] for a review, the new generation of indirect

detection experiments will improve considerably the current results. Collider searches can

also constrain DM scenarios through missing energy searches, although in most cases the

constraints are strongly model dependent. In addition, if dark matter has non-negligible

couplings to the Higgs field, the current measurement of the Higgs decays can also be

relevant for testing DM scenarios [23–25]. Finally, astro-cosmo probes can provide comple-

mentary constraints, testing e.g. distortions of the Cosmic Microwave Background (CMB)

signal due to energy injection from DM annihilation in the early universe, see e.g. [26–29].

All the data provided by the complementary searches listed above strongly constrains

dark matter models. In particular, the composite Higgs model SO(6)/SO(5) can only

satisfy all the current DM and LHC constraints if the compositeness scale (F ) is & 1 TeV
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and if mDM & 200 GeV, as discussed in detail in refs. [16, 17]. Due to the large amount of

data available from direct, indirect and LHC searches, it is possible to formulate even more

general statements on the possible composite scenarios, if these are required to provide a

DM candidate behaving as a WIMP and accounting for all the DM abundance. This is

the main purpose of this work. Here we consider the class of composite models where the

only composite states present in the low energy effective theory are the Higgs doublet and

the DM multiplet, and both are pNGBs. The possible strong resonances and remaining

pNGBs are assumed to be decoupled in the effective Lagrangian, either because they are

significantly heavier than the Higgs and the DM multiplet or because they correspond to

gauge degrees of freedom, due to a partly gauged G. We discuss this possibility with a

minimal knowledge of the UV completion. In particular, we do not specify the fermion

representations under G, but parametrize their effects instead. Within this framework,

any composite Higgs model containing a DM candidate can be mapped at low energies

(� Λ ' 4πF ) to an effective Lagrangian containing the Standard Model (including the

Higgs doublet) and the DM multiplet.

In section 2 we define the class of models we will consider and present the basic

framework used to compute our results. In section 3 we classify the different scenarios

according to the DM representation under SO(4) and discuss each case separately. The

simplest case, consisting of a singlet DM, is discussed in detail in section 3.1. A minimal

realization of this scenario can be obtained for G/H = SO(6)/SO(5), as shown in refs. [16,

17]. The next simplest scenario consistent with SO(4) ⊂ H is the complex doublet DM

case, discussed in section 3.2. Although we once again present our results in a model

independent way, we also discuss a realization of the doublet DM case, corresponding to

the SO(6)/SO(4) × SO(2) coset. In section 3.3 we present the results for the triplet and

general constraints on higher representations. Finally, in section 4 we summarize our results

and present the conclusions. In the appendix A we define our notation and discuss in detail

the derivation of the effective Lagrangians used in our calculations.

2 General composite Dark Matter

In composite Higgs models [30–36], the strong interactions responsible for compositeness

are assumed to break a global symmetry group G down to a smaller symmetry group

H at the F scale. The low energy spectrum, at energies � Λ ' 4πF , consists of the

massless Nambu-Goldstone Boson (NGB) modes with an effective Lagrangian completely

fixed by the symmetry breaking pattern G → H. For a general G/H breaking, the effective

interactions of the Nambu-Goldstone modes to lowest order in O(1/F ) are given by the

Callan, Coleman, Wess, Zumino (CCWZ) Lagrangian [37, 38]. In order to avoid large

corrections to EW precision observables, we assume SO(4) ⊂ H, which implies that the

CCWZ Lagrangian considered here is SO(4) invariant.

If one of the NGBs must play the role of the Higgs doublet, G must be explicitly

broken, resulting in a non-flat potential for the pseudo-Goldstone fields. Here we assume

the partial compositeness scenario, where the explicit breaking is restricted to Yukawa

and gauge interactions between the SM and the strong sector. Once these interactions
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are determined, the effective scalar potential for the pNGBs can be computed up to form

factors describing the strong dynamics. Since the effective scalar potential is generated

only at loop level, the pNGBs are expected to have masses . F . The fine-tuning in the

Higgs potential is given by the separation between the F and EW scales. A fine-tuning

not worse than 1% implies:

F . 3 TeV , (2.1)

but the upper bound in realistic models is usually stronger [39]. Currently the strongest

lower bound on F comes from EW precision tests and direct searches for the strong reso-

nances at the LHC, typically resulting in F > 800 GeV [40]. Although one may argue that

incalculable UV effects may hinder the impact of EW precision data on compositeness, at

this point Higgs data alone can set F ∼> 700 GeV [41].

In the MCHM [15], where G/H = SO(5)/SO(4), the four pNGBs correspond to the

degrees-of-freedom of the Higgs doublet. Larger cosets can provide a stable DM candidate,

as shown in refs. [16–18]. In such cases, in order for one of the pseudo-Goldstone bosons to

be a viable DM candidate, we must assume that both the strong sector and the SM respect

an exact (or approximate) Z2 symmetry, so the lightest Z2-odd pNGB is (quasi-)stable.1

Furthermore, since current LHC data points to a SM-like Higgs, we assume the Higgs to be

the lightest Z2-even pNGB, transforming as a bi-doublet under SO(4). On the other hand,

the DM candidate can in general be a mixture of distinct SO(4)-multiplets after electroweak

symmetry breaking (EWSB). Here we only consider the cases where the DM state (mostly)

belongs to a single SO(4) multiplet, so the mixing with other multiplets can be ignored.2

Therefore, the low energy spectrum consists of the Higgs doublet and the DM multiplet.

We assume all possible remaining pNGBs and strong sector resonances to be decoupled in

the effective Lagrangian. This approximation is exact in minimal cosets, where the Higgs

and the DM multiplet correspond to all the pNGBs, as in the particular examples discussed

in section 3. Additionally, note that higher derivative terms in the G/H chiral Lagrangian,

such as the Wess-Zumino-Witten term [31], can potentially break the Z2 symmetry. Since

these terms strongly depend on the coset G/H and the representation of the fermions under

G, which we do not specify, they can not be computed in our model independent approach.

Hence, we make the simplifying assumption that only those that preserve the Z2 symmetry

are present, so the stability of DM is maintained. Furthermore, there are particular choices

of cosets G/H and fermion representations, where the Z2-violating interactions are zero and

the ξ → −ξ parity is unbroken, see refs. [16, 17] for a specific realization.

Any composite Higgs model satisfying these assumptions, detailed in the appendix A,

can be mapped to a low energy effective theory valid for scales� Λ, as shown schematically

by figure 1. Below we discuss the general form of the effective operators relevant for

computing the DM observables and their impact on the DM phenomenology.

1Notice that the Z2 symmetry could already be present within the G global symmetry group, see e.g. [16].
2In models where, after EWSB, there is a significant mixing between the lightest Z2-odd multiplets,

the lightest Z2-odd state is usually charged, so there is no viable DM candidate, see e.g. [42] in the non-

composite case.
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Figure 1. Schematic representation of the spectrum for the class of models considered here. At low

energies (� F ) the effective theory we consider only contains the SM (including the composite Higgs

bi-doublet) and the DM multiplet. The two possibilities for the DM mass are shown: mDM > mh

or mDM < mh.

2.1 Aspects of the effective Dark Matter Lagrangian

The most general effective Lagrangian consistent with the assumptions discussed in the

previous section (see appendix A for more details) contains a large number of unknown

parameters. The latter correspond to the coefficients of all the possible dimension six

operators involving SM fields as well as those involving the DM multiplet. Fortunately,

only a small subset of operators is relevant for computing the DM observables. We also

consider the minimal scenario, where DM is a cold thermal relic and the observed DM

abundance is generated through the standard freeze-out mechanism. We only consider tree

level diagrams in our calculations. In addition, processes where DM annihilates into more

than two final states, such as ξ + ξ → X + Y + Z are usually phase space suppressed

with respect to ξ + ξ → X + Y . Hence we neglect operators with more than four fields.

Notice though that in some cases, annihilation into three body final states are well known

to be important [43–47]. In particular, here we will take into account the contribution

of annihilations into off-shell gauge bosons ξ + ξ → V + V ∗. Let us also emphasize that

dimension five and six operators can become relevant if they contain one or more Higgs

fields, since after EWSB these operators generate 4-field operators (with H → 〈H〉 = v).

Furthermore, the Z2 symmetry, under which ξ is odd and H is even, requires all operators

to contain an even number of ξ’s.

Given all the assumptions above, the operators containing more than two powers of ξ

do not affect the relic abundance or the detection rates. We just need to consider operators

with zero or two DM fields. Hence, for convenience, we split the effective DM Lagrangian

in a ξ-independent sector (L(0)) and a part containing two powers of ξ (L(2)):

Leff = L(0)(H, . . .) + L(2)(H, ξ, . . .) , (2.2)

with L(0) given by

L(0)(H, . . .) = LSM + L6 , (2.3)
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where LSM is the SM Lagrangian and L6 contains the relevant dimension-6 operators

induced by the strong dynamics. Since L6 is independent of ξ, its operators are common

for all the cases to be discussed later. The SM dimension-6 operators have been explored

at length in the literature [48–53] and are briefly discussed in appendix A. Below we simply

list the higher dimensional operators considered in our analyses. We use

L6 =
a2H

F 2

(
∂µ|H|2

)2 − λ1λH6

F 2
|H|6 − c4

F 2
|H|2

[(
ytQ̄LH

ctR + ybQ̄LHbR
)

+ h.c.
]
, (2.4)

where a2H , c4 and λH6 are generated after we integrate out the strong sector, while λ1 is

the dim-4 Higgs self-coupling. As we assume a CP -even Higgs, c4 is real. The coefficients

a2H , c4 and λH6 are considered as O(1) parameters. Notice that the operators in eq. (2.4)

are weakly constrained by the LHC data [49, 54].

In order to reduce the number of parameters that would potentially affect the DM

observables and simplify our analysis, we consider one single coefficient c4 multiplying the

dimension-6 operators involving a direct coupling between the Higgs particle and the top

and bottom quarks. As far as relic abundance and indirect dark matter detection searches

are concerned, our choice could be justified by the fact that this extra coupling to top

and bottom quarks are relevant in different regions of the parameter space. The impact of

similar operators involving light quarks would be suppressed by the Yukawas (yψ). Let us

emphasize though that this is however not true for direct dark matter searches in which case

the relevant Higgs-nucleon coupling is dominated by heavy quarks (b, t and c) contributions.

The latter are due to heavy quark currents coupling to gluons through triangle diagrams

involving heavy quark loops, see e.g. [55] and references therein.3

As it is well known, after EWSB the operator proportional to a2H generates a non-

canonical kinetic term for the Higgs field. The rescaling to a physical Higgs introduces

the factor

R = 1/

√
1 + 2a2H

v2

F 2
(2.5)

in all Higgs interactions. Even though we include R in our numerical calculations, for

simplicity we will typically neglect it in the analytic expressions. Indeed R is ' 1 for

F & 1 TeV.

Notice that we do not consider the dimension-6 operators that modify the gauge cou-

plings to fermions, such as (H†σj
←→
D µH)

(
Q̄Lσ

jγµQL
)
, and those which contribute to the

electroweak parameters at tree level, like
(
H†σjH

)
(W j

µνBµν) [48–52]. As it is well known,

these operators are strongly constrained by the electroweak fit [40].

Since we assume that ξ is a SO(4) ∼ SU(2)L × SU(2)R multiplet, the possible repre-

sentations for ξ are

(2jL + 1, 2jR + 1) = (1, 1) , (2, 2) , (3, 1) , (1, 3) , (3, 3) , (2, 4) , . . . . (2.6)

3Let us mention though that the contribution to the amplitude of DM-nucleon scattering related to the

coupling c4 is always expected to be a subdominant correction compared to other operators as it appears

in the following combination: λξH(1 + c4v
2/F 2) (where λξH is the Higgs-DM coupling). We expect thus

the impact of choosing a common dimension-6 coefficient c4 to all quarks to be marginal.
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In the following we limit our results to the cases

• Singlet DM: ξ ∼ (1, 1)

• Doublet DM: ξ ∼ (2, 2)

• Real Multiplet DM (ξC = ξ): ξ ∼ (n, 1), where n = 3, 5, . . ..

Our restriction to real representations (except in the doublet case) is justified by the fact

that the phenomenology associated to complex multiplets would be very similar to the real

multiplet case; the complex multiplet being equivalent to two degenerate real multiplets.

A real DM multiplet also implies that ξ is not charged under any U(1) symmetry, since

ξC = Cξ∗ = ξ. Consequently, ξ is not charged under U(1)Y and since the hypercharge

operator is a linear combination of T 3
R ⊂ SU(2)R and U(1)X ,4 it means that ξ is a singlet

under SU(2)R. Hence ξ ∼ (n, 1).

Finally we briefly comment on the validity region of the effective Lagrangian used in

our analysis. The energy involved in the relevant DM processes is typically
√
s . 2mDM,

where the upper limit corresponds to non-relativistic annihilation at zero velocity today. In

the early universe, energies involved are usually slightly larger given that v ∼ 0.2 while for

direct searches the energies involved are much smaller. Therefore, we expect the effective

Lagrangian approach used here to be valid as long as the new physics states (which could

affect the DM observables) are well above 2mDM. In composite Higgs models one naively

expects the strong resonances to have masses of order Λ ' 4πF . However, the composite

partners of the top quark must be lighter in order to avoid re-introducing a large fine-

tuning in the Higgs potential [39]. Here we assume that the spinorial resonances have

masses mΨ & F , hence our effective Lagrangian is valid for mDM � mΨ or mDM � F ,

which we use as a strict upper limit in our study. It is also important to point out that,

for mDM < F , all the operators used in our analysis are far away from any unitarity

bounds [57, 58].

2.2 The effect of higher dimensional operators

The specific form of the dimension-4 and 6 relevant operators5 consistent with SO(4) ⊂ H
are derived in detail in the appendix A and will be discussed in section 3. It is instructive,

however, to first comment on the general properties of these operators and how they can

affect the DM observables. Since we are only interested in 4-field operators after EWSB,

the relevant dimension-6 operators generated by integrating out the strong sector heavy

resonances are of the following types

yf
v

v2

F 2
ξ2ψ̄ψ, λ

v3

F 2
ξ2h, λ

v2

F 2
ξ2h2, g2 v

2

F 2
ξ2VµV

µ, g
vpµ
F 2

Vµh,
vp2

F 2
ξ2h and

p2

F 2
ξ2h2, (2.7)

where h is the Higgs boson field, Vµ represents a SU(2)L × U(1)Y gauge field, ψ is a SM

fermion, g is the corresponding gauge coupling, λ represents the corresponding dimension-4

4As it is well known in composite Higgs models, it is often necessary to enlarge the G group with an

additional U(1)X symmetry in order to obtain the correct hypercharges for the SM fermions [48, 56].
5We always mean by dimension-6 operators, the operators suppressed by 1/F 2.
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coupling and pµ refers to the typical momentum scale for the process. As all the above

operators are presumed to have coefficients . 1, one would expect such operators to be

irrelevant with respect to the corresponding dimension-4 operators for F � v. However

it is often the case that, in order to generate the correct relic abundance, the dimension-

4 operators coefficients need to be suppressed. In such cases, the dimension-6 operators

may still play a significant role. Furthermore, the derivative operators can be enhanced if

p2 ∼ m2
DM � v2.

In order to illustrate the above arguments more concretely, we take the singlet DM

case as an example. In the non-composite limit (F → ∞), there is only one relevant

dimension-4 operator, corresponding to the Higgs-DM coupling (λξh), also known as the

Higgs portal coupling. As a result, the parameter space in the non-composite singlet case

consists only of λξh and mDM. As it is well known, requiring the DM relic energy density

ΩDMh
2 ' 0.12 [26, 59] fixes the Higgs-DM coupling for a given DM mass and the solutions

with the correct relic abundance correspond to a line in the λξh-mDM plane. This is shown

by the black solid line in figure 2, where we plot the value of the Higgs-DM coupling in

the non-composite case (λNC
ξh ) required to generate the correct relic abundance. As we

can see, λNC
ξh does indeed take values � 1 in most of the parameter space, which may

render the operators in eq. (2.7) relevant in these regions even though they are suppressed

by 1/F 2. In order to estimate for which values of mDM the inclusion of the dimension-6

operators may affect the DM observables, we compare their potential effective strength

with respect to λNC
ξh .

Assuming that the coefficients multiplying the operators in eq. (2.7) are O(1), the blue

shaded areas in figure 2, for F = 0.8 TeV (left) and F = 2.5 TeV (right), correspond to the

windows of the parameter space in which these operators can potentially drive the relic

abundance. In the regions below the continuous horizontal blue line λNC
ξh . v2/F 2, i.e. the

non-derivative operators can be dominant, while the regions below the blue dotted curves

λNC
ξh . 4m2

DM/F
2, i.e. the derivative operators can become dominant. As we can see, for

F = 0.8 TeV, the dimension-6 operators can potentially affect the DM cross-sections for

mDM & 35 GeV. On the other hand, for higher values of F this contribution becomes

limited to the Higgs resonance, where λNC
ξh � 1, or the heavy DM region, where the

derivative operators can be enhanced. Furthermore, for F = 2.5 TeV, we see that the

non-derivative operators play no role, except around the resonance. We stress that the

results shown in figure 2 are purely schematic and are intended only to illustrate the

potential impact of including the higher dimensional operators in our analyses. However,

as it will be shown in the next section, the overall features described above do appear in

our numerical computations.

It is also interesting to point out that the dimension-6 operators can have very distinct

contributions to the annihilation and nucleon scattering rates. On the one hand, while the

momentum transferred in DM-nucleon scattering is O(keV-MeV), the momentum scale

involved in DM annihilations in the early universe is of order mDM. Hence, the derivative

operators which scale as p2/F 2 only contribute significantly to DM annihilations and not

to the direct detection rate. On the other hand, dimension-6 operators involving Yukawa
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Figure 2. Singlet DM model : the black continuous line denotes the values of the DM-Higgs coupling

in the non-composite case (λNC
ξh ) as a function of mDM giving rise to the right relic abundance. The

blue shaded areas correspond to the windows of the parameter space in which the dimension-

6 operators of eq. (2.7) can potentially affect the DM observables for F = 0.8 TeV (left) and

F = 2.5 TeV (right). In the regions below the continuous horizontal blue line λNC
ξh . v2/F 2 while

in the regions below the blue dotted curves λNC
ξh . 4m2

DM/F
2.

type of interactions such as

Cq
F 2
|ξ|2

(
yqQ̄LH

cqR
)
, (2.8)

where yq is the Yukawa coupling of the q-quark and Cq a coefficient of O(1), give important

contributions to the dark matter-nucleon scattering cross section, σDMp, for q = c, b and t

(through triangle diagrams processes that are, by default, taken into account using dark

matter tools such as micrOMEGAS, see [60]).

Let us mention that, in the following, we have considered interactions of the type

of (2.8) with couplings to the 3rd generation of quarks only (Cu,d,c,s = 0). This assumption

does not affect the relic density and the indirect detection results, since the contributions

from light quarks is always suppressed by their Yukawas. The couplings to light quarks can

however impact σDMp, especially in the regions where λξh is small. Given the values of the

parameters driving the nucleon matrix element considered in our analysis,6 we expect that

including a coupling to all quarks would at most enhance σDMp by a factor of ∼ 4 and only

if |λξh| � m2
h/F

2|Cq| (see also [17] for a similar discussion). In order to reduce the number

of free parameters in our analysis, we have however neglected this possibility. Finally, we

make one additional simplifying assumption: Ct = Cb. Once again, this assumption does

not affect the relic density or direct detection rate, since annihilations to tops or bottoms

are relevant at distinct regions of parameter space. While σDMp could change for non-

universal couplings, we do not expect that our results are significantly affected by this

assumption, since we expect Ct ∼ Cb . O(1).

6We took the default values of micrOMEGAS3.3 corresponding to fpd = 0.0191, fpu = 0.0153 and

fps = 0.0447 in the notations of ref. [60].

– 9 –



J
H
E
P
0
6
(
2
0
1
5
)
1
5
4

3 Results

Using the effective Lagrangians derived in appendix A, we now compute the DM observables

and discuss how this constrains the effective operators for a given DM representation. The

DM relic abundance and other observables have been computed using FeynRules [61] and

micrOMEGAS [62]. The calculation of the relic abundance includes all possible annihilation

channels into two body as well as annihilation into off-shell V = W or Z boson (ξ + ξ →
V ∗ + V ), which can be relevant for mDM . mV . Even though radiative corrections are

already known to affect DM observables in similar non-composite DM scenarios, especially

the dark matter-nucleon scattering cross section [63–65], it is beyond the scope of this

paper to evaluate all loop contributions within the composite framework (the exception

being the well known contributions from triangle diagrams of heavy quark loops included

by default in micrOMEGAS for the computation of the DM-nucleon scattering cross section).

One should keep in mind though that such corrections are expected to give rise to the lower

bound σDM p ∼> 10−47 cm2 for non-composite models in e.g. the doublet case [64].

In order to be as model independent as possible, we parametrize the effective La-

grangian according to the results in appendix A and scan over the O(1) coefficients of

the dimension-6 operators in the range [−1, 1]. The unknown parameters for effective

dimension-4 operators (denoted with λ couplings) in the DM Lagrangian are also allowed

to vary freely within a range restricted to [−4π, 4π]. We also require all the solutions to

satisfy: 0.0941 < ΩDMh
2 < 0.127.7

In addition to the above conditions, directly taken into account in the scans, we will

superimpose several constraints from LHC, direct and indirect DM searches. Furthermore,

the low DM mass region is limited by the Higgs invisible width, which has been recently

constrained by ATLAS [24] and CMS [25]. Here we use the 95% C.L. upper limit from

CMS: BR(h → invisible) < 0.58. For the direct detection constraints, we consider the

latest LUX results [19] on the spin-independent DM-nucleon elastic cross-section as well

as the projected sensitivity of Xenon1T, both at 95% CL. The DM annihilation into SM

particles in our galaxy could copiously produce stable particles, such as photons, neutrinos,

positrons or antiprotons. In that framework, indirect detection searches constraints from

Fermi-LAT [20, 21] and PAMELA [67, 68] can be relevant here. Indeed, a previous analysis

of composite DM models [17] showed that the bound on the DM annihilation cross-section

derived from PAMELA measurements of the antiproton spectrum could provide constraints

complementary to LHC and direct detection searches. The bounds associated to charged

cosmic rays are, however, well known to suffer from astrophysical uncertainties [69, 70]

affecting the propagation model. Here we use the 3σ upper bound constraints derived in

ref. [70] (figure 6c) for the DM annihilation cross-section into b̄b.8 Let us mention that such

a bound has been derived assuming an uncertainty of 50% in the solar modulation of the

antiproton flux and we take the limits associated to the so called CON propagation model

7We used the 2σ WMAP 5-year range [66]. For a reference, the 3σ WMAP 9-year range is 0.1003 <

ΩDMh
2 < 0.1273 [59] and the 3σ PLANCK range is 0.1103 < ΩDMh

2 < 0.1289 [26].
8The PAMELA constraints are thus imposed on σv(ξξ → b̄b)|v=0 rescaling the constraints of ref. [70] by

the associated branching ratio.
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(green curve in figure 6c of ref. [70]), which usually corresponds to conservative bounds.

Let us emphasize that even though similar bounds were derived for other annihilation

channels such as e.g. ξξ →W+W−, we checked that they provide weaker constraints than

the direct detection searches. We have thus neglected them. Let us also mention that the

current preliminary constraints on gamma-ray flux from the Fermi-LAT [21] measurements

provide even stronger bounds on σv(ξξ → b̄b)|v=0. We have checked that the impact of

these preliminary results are negligible, so we only consider the constraints from PAMELA.

The LHC constraints from monojet and monophoton searches are still insufficient

to compete with the direct detection or invisible Higgs decay searches. Nonetheless, for

both the doublet and triplet representations, the DM multiplet contains charged states,

which can decay to DM and be detectable at the LHC. The main final states are then

missing ET plus W ’s, Z’s and/or Higgses. Using SModelS [71] we were able to recast

the LHC constraints for SUSY searches and apply them to the scenarios considered. We

have explicitly computed the relevant production cross-sections and verified that the LHC

constraints do not lead to any new excluded region. Therefore we will not consider them

in the following results.

3.1 Singlet DM

3.1.1 The generic composite singlet DM

The singlet DM case corresponds to the following effective Lagrangian (for details see

appendix A.1)

L(2) =
1

2
∂µξ∂

µξ − 1

2
µ2
ξξ

2 − λ3

2

(
1 +

λ′3
F 2
|H|2

)
ξ2|H|2 +

ad1

F 2
∂µξ

2∂µ|H|2 (3.1)

− 1

2

[
d4

F 2
ξ2
(
ytQ̄LH

ctR + ybQ̄LHbR
)

+ h.c.

]
,

resulting in the following DM mass after EWSB:

m2
DM = µ2

ξ + λ3

(
1 +

λ′3
2

v2

F 2

)
v2

2
. (3.2)

The coefficients ad1, d4, λ
′
3 are taken to be real O(1) parameters, while the λ3 coupling is

allowed to vary in the window [−4π, 4π] and µξ is the DM bare mass. Except for ad1,

which is fixed by G/H, all the other coefficients depend on the fermion embedding in G.

Therefore in our model independent approach we take these to be free parameters. As

discussed in section 2.2, we neglect dimension-6 operators involving light quarks and we

assume a universal coefficient (d4) for the top and bottom couplings.

For mDM < mt, the DM observables are mostly determined by the effective ξ(p1) −
ξ(p2)− h(ph) coupling, which in the composite case is given by:

λξh =

(
λ̄

2
− ad1

p2
h

F 2

)
, (3.3)

where

λ̄ = λ3

(
1 + λ′3

v2

F 2

)
(3.4)

and p2
h is the (off-shell) Higgs momentum.
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It is important to point out that the effective DM-Higgs coupling relevant for the direct

detection (DD) rate and the relic density (RD) (or 〈σann.v〉) can take very different values,

due to the momentum dependence in eq. (3.3). While for annihilations through the Higgs

s-channel we have p2
h ' 4m2

DM, for direct detection we have t-channel scattering, hence

p2
h ' 0. Therefore it is convenient to define the effective couplings in each of these regimes:

λξh|ph∼2mDM ≡ λ
RD
ξh =

λ̄

2
− 4ad1

m2
DM

F 2
,

λξh|ph∼0 ≡ λDDξh =
λ̄

2
, (3.5)

where λRDξh (λDDξh ) is the relevant coupling for the calculation of the relic abundance (DD

cross-section).9

In the low mass region, where annihilations to tops are closed, both the DM-nucleon

spin independent scattering cross-section, σDMp, and the thermally averaged annihilation

cross-section times the relative velocity at the freeze-out time, 〈σann.v〉, are proportional

to the Higgs-DM effective coupling:

〈σann.v〉 ∝
(
λRDξh

)2 ' ( λ̄
2
− 4ad1

m2
DM

F 2

)2

,

σDMp ∝
(
λDDξh

)2 ' ( λ̄
2

)2

. (3.6)

In analogy to the non-composite case, once we impose ΩDMh
2 ' 0.12, λRDξh is fixed for each

value of mDM. Denoting by λNC
ξh the value of the coupling required to generate the correct

relic abundance in the non-composite case (shown by the black curve in figure 2), we have:(
λRDξh

)2'(λNC
ξh

)2 ⇒ (
λ̄

2

)2

'
(
λNC
ξh ± 4ad1

m2
DM

F 2

)2

(3.7)

⇒ σDMp ∝
(
λNC
ξh ± 4ad1

m2
DM

F 2

)2

or σDMp/σ
NC
DMp =

(
1± 4

ad1

λNC
ξh

m2
DM

F 2

)2

,

where σNC
DMp is the DM-nucleus cross-section in the non-composite case. From the above

result we see that σDMp can be either enhanced or suppressed with respect to its non-

composite value, depending on the values of ad1 and mDM. Let us stress that the above

results are only approximate, since we have neglected the contributions from d4, both for

relic abundance and direct detection considerations. The impact of d4 is, however, included

in our numerical analysis.

3.1.2 Scan results

We now present the full numerical results for the DM observables for a random scan over

the coefficients of the effective Lagrangian. Since in some cases the correct relic abundance

requires extremely small values of λ3, λ
′
3 and λH6, we scan logarithmically over their allowed

9Let us mention that, since we have not considered DM contact interactions with light quarks, the d4
coupling has only a minor impact on the general DD picture. If couplings to light quarks were included,

the results could be modified in some small regions of parameter space, where |λξH | � |d4|m2
h/F

2, see

section 2.2 for a brief discussion.
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Figure 3. Generic composite singlet DM : values of the DM annihilation cross-section at zero

velocity for F = 0.8 TeV (left) and F = 2.5 TeV (right) satisfying to 0.941 < ΩDMh
2 < 0.127. The

channels giving rise to the largest branching ratio to the annihilation cross-section are shown with

different colors. We also show as a solid gray line the value of 〈σann.v〉 for the non-composite case

(F →∞).

range. All the other parameters are scanned linearly within the ranges:

10 GeV < mDM < F ,

−4π < λ3 < 4π ,

−1 < λ′3 < 1 ,

10−6 < λH6 < 1 ,

−1 < c4, a2H , d4, ad1 < 1 . (3.8)

First, in figure 3, we show the results for the DM annihilation cross-section (〈σann.v〉)
today at zero velocity as a function of mDM. For comparison purposes we also show the

respective values for 〈σann.v〉 in the non-composite case (solid gray line). As we can see,

for both F = 0.8 TeV (left plot) and 2.5 TeV (right plot), the annihilation rate follows

closely the non-composite case, as expected from the relation ΩDMh
2 ∝ 1/〈σann.v〉. We

notice, however, that while in the F = 2.5 TeV case the dominant annihilation channels

are the same as in the non-composite case (ξξ → b̄b or ξξ → W−W+), for F = 0.8 TeV,

both annihilations to t̄t and hh can be dominant at large DM masses. This is mostly due

to the fact that, for small values of F , the non-derivative operators d4ξ
2Q̄LH

ctR can be

comparable to λξh, as schematically shown in the left hand (LH) side plot of figure 2. On

the other hand, for F = 2.5 TeV, these operators are always suppressed.

The DM-nucleon scattering cross-section (σDMp) is shown as a function of mDM in

figure 4 for F = 0.8 TeV (left) and 2.5 TeV (right). All points give the correct DM relic

abundance. Once again the non-composite case is shown by the solid gray line. Going

from low to high mDM it is possible to recognize in figure 4 some known features [16, 17]:

the Higgs resonance region (mDM = mh/2), the ξξ → WW threshold (mDM ' mW ) and

the high mass region (mDM ∼> mt). We also show by distinct colors the absolute value of

the coefficient ad1 for each point. As we can see, the low mass region (mDM . 50 GeV)

is unaffected by the dimension-6 operators induced by the strong sector. This is already
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Figure 4. Generic composite singlet DM : values of the DM-nucleon scattering cross-section as a

function of mDM. All points satisfy 0.0941 < ΩDMh
2 < 0.127. The absolute values of the dimension-

6 coefficient ad1 are shown with the gradient of colors. The LUX 95% CL bound is also shown.

expected from the discussion in section 2.2, where we have shown that the low mass region

is mostly insensitive to these operators.

Once mDM&50 GeV, σDMp can take values drastically different from the non-composite

case. As expected from eq. (3.7), this is due to the contribution of the derivative oper-

ator proportional to ad1 (at least for mDM . mt). Indeed, given that we can get the

right abundance with 4ad1m
2
DM/F

2 ' λNC
ξh , i.e. for small values of λ̄, σDMp can become

very suppressed, as seen in figure 4. In addition, since ad1 can take both negative and

positive values, we can also have the correct DM abundance with λ̄ larger than in the

non-composite case, resulting in an enhancement of σDMp, as shown by the points above

the gray line in figure 4.

For mDM > mt, annihilations to top pairs become kinematically allowed and 〈σann.v〉
receives a contribution from the operator proportional to d4. In this case, we can once

again generate the correct relic abundance, even when λξh � λNC
ξh . This corresponds to

all the points at large masses with small values of σDMp and ad1 in the LH side plot of

figure 4. Notice though that this feature is not as strongly present in the right hand (RH)

side plot of figure 4 for F = 2.5 TeV. This is simply due to the fact that for such large F

values and mDM > mt, non-derivative operators, such as the one proportional to d4, are

always subdominant, as already anticipated by the RH side plot of figure 2. Finally, we also

emphasize that for F = 2.5 TeV, σDMp only deviates significantly from its non-composite

value for higher DM masses (mDM & 150 GeV), as expected from eq. (3.7) and in agreement

with the discussion in section 2.2. From figure 4 we already see that for mDM > 200 GeV

to be consistent with LUX we need |ad1| ∼< 0.2 for F = 0.8 TeV, higher values are however

possible if we increase the scale of compositeness.

3.1.3 Experimental constraints

We now discuss the current and future constraints on the generic composite singlet DM

scenarios. As seen in figure 4, the direct detection cross-section can be significantly sup-

pressed or enhanced in the composite case. Nonetheless, the low mass region still behaves
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Figure 5. Generic composite singlet DM : experimental constraints in the |λ̄| − mDM (top) and

ad1 −mDM (bottom) planes. We show results for F = 0.8 TeV (left) and 2.5 TeV (right). See text

for details.

mostly as Higgs portal DM, being strongly constrained by direct, indirect DM searches and

invisible Higgs decays.

We summarize the constraining potential of each of the experiments mentioned at the

beginning of section 3 in the planes λ̄ − mDM and ad1 − mDM of figure 5. Let us first

mention that, in some regions of the parameter space, very small values of λ̄ are necessary

to account for the right relic abundance. Although this is typically consistent with most

experimental constraints, in the composite framework, both λ1 (the Higgs self-coupling)

and λ̄ are expected to be generated by the explicit breaking of G and to be of similar

size, i.e. O(λ1) ∼ O(|λ̄|) ' 0.1. An explicit example can be found in ref. [17], where

λ̄ ' 0.13 for G/H = SO(6)/SO(5). Therefore we consider the region with |λ̄| < 10−2 as

theoretically disfavored.

In figure 5, the top (bottom) plots illustrate, in the plane |λ̄| − mDM (ad1 − mDM),

for F = 0.8 (left) and 2.5 TeV (right), which regions are currently excluded by direct

DM searches (with LUX in red), by indirect DM searches (with PAMELA in magenta)

and due to large contributions to the Higgs invisible width (in yellow). The pink regions

are currently allowed and will eventually be probed by Xenon1T. The gray regions are

experimentally allowed by current data and outside the planned sensitivity of Xenon1T,
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but they are theoretically disfavored. In the bottom plots (for ad1) most of the gray points

are hidden behind the region that will be probed by Xenon1T.

As expected from the discussion above, the low mass region (mDM . 100 GeV) is

almost entirely excluded either by indirect, direct searches or the Higgs invisible width

constraints. Let us emphasize that this is valid for both small and large values of F . The

only points still allowed in the low mass region lie around the Higgs resonance and will

be tested by Xenon1T. However most of these points have |λ̄| . 0.01, which is difficult

to realize in specific models without tuning. Interestingly, for mDM ∼> 200 GeV, a large

portion of the parameter space (blue points) with |λ̄| & 0.1 evade all current experimental

constraints as well as the projected Xenon1T sensitivity, in contrast with the non-composite

Higgs portal scenarios.

Let us emphasize though that the allowed values of ad1 are already highly constrained

by LUX and have good prospects to be tested by Xenon1T. Since in a specific model

(where G/H is specified), ad1 is no longer a free parameter, the allowed region of parameter

space will be strongly constrained by direct DM searches. For example, in the case of

G/H = SO(6) × SO(5) discussed below, ad1 = 1/2 and a large portion of the parameter

space is already excluded for low values of F . For F = 2.5 TeV, if no DM signal is observed

in Xenon1T, there will be most probably only a small range of DM masses allowed for a

given ad1 value.

3.1.4 Specific case: G/H = SO(6)/SO(5)

Although we have taken ad1 as a free parameter, in a specific composite model, ad1 is

completely fixed by the choice of the coset G/H. Therefore it is instructive to discuss how

the general results presented above apply to a specific model. The minimal coset consistent

with H ⊂ SO(4) is G/H = SO(6)/SO(5), where the 5 pNGBs correspond to the Higgs bi-

doublet and the DM singlet. This case has been discussed in detail in refs. [16, 17], so

we limit our discussion to re-interpreting the results obtained previously according to the

general parametrization introduced in eq. (3.1).

The G/H = SO(6)/SO(5) case corresponds to the particular choice of values:

a2H = ad1 = 1/2 . (3.9)

Notice that we keep c4, d4, λH6, λ3 and λ′3 as free parameters in our analysis. Once ad1

and a2H are fixed, we can derive from eq. (3.7) a simple expression for the enhancement

(or suppression) of σDMp with respect to its non-composite value:

σDMp/σ
NC
DMp = (1± r)2 , where r =

2

λNC
ξh

m2
DM

F 2
, (3.10)

where once again λNC
ξh is the value of the Higgs-DM coupling in the non-composite case

required to produce the correct relic abundance. Unlike the general case discussed above,

now the enhancement or suppression factor r is fixed (for a given value of mDM). Hence,

instead of spanning a wide range of values, σDMp now lies in two possible branches, one for

the case 1 + r (enhancement) and one for 1− r (suppression).
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Figure 6. Singlet DM with G/H = SO(6)/SO(5): values of the DM-nucleon scattering cross-section

as a function of mDM. All points satisfy 0.0941 < ΩDMh
2 < 0.127 while the black continuous lines

correspond to the approximation of eq. (3.10). We also show with different colors the channels

contributing with the largest branching ratio to the effective annihilation cross-section relevant at

the time of freeze-out.

In figure 6, we plot σDMp as a function of mDM, but now for the particular case of

G/H = SO(6)/SO(5). We also show with black lines the approximation of eq. (3.10) for

the enhanced (σDMp = σNC
DMp (1 + r)2) and suppressed (σDMp = σNC

DMp (1− r)2) values of

the DM-nucleus cross-section. As we can see, the solutions obtained through the random

scan follow closely the approximation of eq. (3.10). It is interesting to notice that for

F = 0.8 TeV all of the enhanced solutions have already been excluded by LUX, while only

the low mass region (mDM . 120 GeV) of the suppressed branch is allowed. The situation

is however quite different for higher values of F , where we see that most of the parameter

space for both branches has not yet been probed.

Finally we point out that, for F = 0.8 TeV, we find no viable solutions for mDM >

500 GeV, even before applying the direct, indirect and Higgs experimental constraints.

Once mDM > mh, the annihilation into two Higgses can contribute significantly to 〈σann.v〉,
which can be large even if λDDξh ' 0 due to derivative coupling between DM and Higgs [16].

As a result, the annihilation cross-section becomes too large, suppressing the relic abun-

dance below the WMAP value. However this only happens for small enough values of F ,

as seen in figure 6.

3.2 Doublet DM

If we consider non-minimal cosets, such as e.g. G/H = SO(6)/SO(4) × SO(2) (see

section 3.2.3 and e.g. ref. [56]), it is possible to have non-singlet representations for the DM

multiplet. Models with multiplet DM differ greatly from the singlet case in two aspects:

• they include tree level (unsuppressed) DM-gauge boson couplings;

• they allow for co-annihilations between the DM multiplet components.
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Since we require invariance under SO(4), the simplest DM multiplet representation corre-

sponds to a complex doublet. In this case, the non-composite limit (F →∞) corresponds

to the Inert Two Higgs Doublet Model or IDM [72].

3.2.1 Generic composite doublet DM

The generic doublet case Lagrangian corresponds to eq. (2.4) with the addition of

L(2) = (Dµξ)
†Dµξ − µ2

ξ |ξ|2 − λ3

(
1 +

λ′3
F 2
|H|2

)
|ξ|2|H|2 − λ4

(
1 +

λ′4
F 2
|H|2

)
|ξ†H|2

− λ5

2

(
1 +

λ′5
F 2
|H|2

)[(
ξ†H

)2
+ h.c.

]
+
ad1

2F 2
∂µ|H|2∂µ|ξ|2 (3.11)

+
ad2

F 2

(
H†Dµξ + h.c.

)(
ξ†DµH + h.c.

)
+
ad3

F 2

[
∂µ

(
ξ†H + h.c.

)]2

+
ad4

F 2

[
ξ†
←→
D µξH

†←→D µH + ξ†
←→
D µξ

CHC†←→D µH − ξ†~σ
←→
D µξH

†~σ
←→
D µH + h.c.

]
−
[
d4

F 2
|ξ|2

(
ytQ̄LH

ctR + ybQ̄LHbR
)

+ h.c.

]
− d6

F 2

[
ξ†~σξ

(
ytQ̄L~σH

ctR−ybQ̄L~σHbR
)
+ybξ

c†~σξQ̄L~σH
cbR+ytξ

†~σξcQ̄L~σHtR+h.c.
]
,

where the coefficients ad1,...,d4, d4, d6, λ
′
3,4,5 are taken to be real O(1) parameters, the cou-

plings λ3,4,5 are allowed to vary in the window [−4π, 4π] and µξ is the DM bare mass.

The Pauli matrices are denoted by ~σ = {σ1, σ2, σ3} and φ†
←→
D µψ ≡ φ†Dµψ− (Dµψ)†φ. We

also define

ξ =
1√
2

(
−iH+

H0 + iA0

)
, (3.12)

see section A.2 for more details. After EWSB, the DM multiplet acquires the following

masses:

m2
DM ≡ m2

H0 = µ2
ξ +

v2

2

(
λ3 + λ4 + λ5 +

λ3λ
′
3 + λ4λ

′
4 + λ5λ

′
5

2F 2
v2

)
, (3.13)

m2
A0 = µ2

ξ +
v2

2

(
λ3 + λ4 − λ5 +

λ3λ
′
3 + λ4λ

′
4 − λ5λ

′
5

2F 2
v2

)
, (3.14)

m2
H± = µ2

ξ +
v2

2
λ3

(
1 +

λ′3
2F 2

v2

)
. (3.15)

In the results presented below we consider only the cases where mH0 < mA0 ,mH± , so H0

is always the DM.10 From eqs. (3.13)–(3.15) we see that the three masses are in principle

independent. However, large mass splittings are limited by the perturbativity requirements

on the λi, λ
′
i couplings.

Although the inclusion of the dimension-6 operators induced by the strong sector

introduces 9 new coefficients, most of the DM properties depend on a subset of these (or

appropriate linear combinations). For instance, the Higgs-DM coupling is given by:

λξh =
λ̄

2
− (ad1 + 2ad2 + 4ad3)

p2
h

4F 2
+ ad3

p2
h − 2m2

DM

F 2
, (3.16)

10However we expect all the results derived below to remain valid in the case A0 is the DM particle.
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where ph is again the Higgs momentum and

λ̄ ≡
∑
i=3,5

λi

(
1 + λ′i

v2

F 2

)
. (3.17)

It is useful to distinguish between the DM-Higgs coupling which enter s-channel annihila-

tions (p2
h ' 4m2

DM) and t-channel scattering (p2
h ' 0). The first case is relevant to 〈σann.v〉,

while the latter enters the calculation of σDMp, hence we define:

λξh|p2h=4m2
DM
≡ λRDξh =

λ̄

2
− (ad1 + 2ad2 + 2ad3)

m2
DM

F 2
,

λξh|p2h=0 ≡ λDDξh =
λ̄

2
− 2ad3

m2
DM

F 2
. (3.18)

While λRDξh is very similar to eq. (3.3) for the singlet case, the coupling relevant for direct

detection now contains a contribution from ad3. The latter, however, is only relevant for

large DM masses. Also notice that the H0H0VµV
µ vertex is not modified by the dimension-

6 operators driven by the ad4 or ad2 coefficients, since the corresponding operators vanish

for ξ → (0, H0)/
√

2 and H → (0, h+ v)/
√

2.

In the large mass region (mDM � mW ) the annihilation to gauge bosons is open

and become the dominant annihilation channel. Even in the pure gauge limit, i.e. when

all quartic couplings are set to zero, 〈σann.v〉 always gets a non-zero contribution from

H0H0 → WW,ZZ. Let us focus on the analysis of the latter channel, neglecting the co-

annihilations, and the H0H0 → hh, tt channels. The annihilation cross-section into gauge

bosons in the high mass region can be approximated by:

〈σann.v〉|H0H0→V V '
1

32πm2
DM

(
2|MT |2 + |ML|2

)
, where

MT

(
H0H0 → VTVT

)
'
g2
V

2

(
1 +

v2

2m2
DM

λRDξh

)
'
g2
V

2
,

ML

(
H0H0 → VLVL

)
'
g2
V

2

m2
DM

m2
V

[
v2

m2
DM

λRDξh +
m2

DM

m̄2
ξ

(
∆m2

ξ

m2
DM

+ 2ad2
v2

F 2

)]
, (3.19)

whereMT andML are the contributions to the amplitude from transverse and longitudinal

modes respectively and gV = g(g/cw), m̄2
ξ ≡

(
m2

DM +m2
H+(A0)

)
/2, ∆m2

ξ ≡ m2
H+(A0) −

m2
DM, for V = W (Z). From the above expressions we have:

〈σann.v〉 >
1

16πm2
DM

|MT |2 '
g2
V

32πm2
DM

, (3.20)

resulting in too small relic abundances, unless mDM & 500 GeV. This is a well known result

from the IDM [42, 73] and it still holds in the composite case, since the contributions from

the dimension-6 operators to MT are negligible. Notice that, in contrast with the non-

composite case [42], for sufficiently large mDM the annihilation cross-section is driven by

the term proportional to ad2. Let us stress though that, as mentioned in section 2, our

effective Lagrangian approach is only valid for mDM . F .

– 19 –



J
H
E
P
0
6
(
2
0
1
5
)
1
5
4

From eq. (3.19) we see that if the ML contribution had to be suppressed one would

need small mass splittings among the components of the DM doublet (∆m2
ξ/m̄

2
DM � 1)

and the combination

λRDξh
v2

m2
DM

+ 2ad2
v2

F 2
(3.21)

should be small. Since |λRDξh | can not be made arbitrarily large (otherwise H0H0 → hh en-

hances 〈σann.v〉), we will see below that the above condition limits the possible values of ad2.

3.2.2 Scan results and experimental constraints

For the numerical results presented below we scan over all the parameters in eq. (3.11) plus

the ones in the Higgs effective Lagrangian (eq. (2.4)) within the following ranges:

2 GeV < mDM < F ,

mDM < mA0 < F ,

max(70 GeV,mDM) < mH± < F ,

−4π < λ̄ < 4π ,

10−6 < λH6 < 1 ,

−1 < λ′3, λ
′
4, λ
′
5 < 1 ,

−1 < c4, a2H , d4, d6 < 1 ,

−1 < ad1, ad2, ad3, ad4 < 1 .

Again, we scan logarithmically over λ’s ranges and linearly on all the other parameters

range. Notice that we have conveniently replaced λ1, λ2, λ3 and µ2
ξ by mDM, mA0 , mH±

and λ̄. We have also imposed on the scans that viable models have a stable EW vacuum with

〈ξ〉 = 0 [74] and are consistent with LEPII constraints on BSM states, following ref. [75].

We require that new charged scalar particles (H±) have masses larger than 70 GeV, see [76–

78]. Furthermore, as it is well known from IDM results [73], for mDM ∼> 500 GeV the correct

relic abundance can only be obtained for small mass splittings within the DM multiplet. In

this mass region we have imposed that mH±−mDM < 30 GeV and mA0−mDM < 30 GeV.11

We can divide the discussion into two mass regions: a low mass region for mDM < mh and

a high mass region for mDM > mh.

In figure 7, we show the DM-nucleus scattering cross-section for F = 0.8 TeV and

2.5 TeV for mDM < mh in the top plots. For reference, we also show the corresponding

non-composite limit, F →∞, in the bottom LH plot. In this region of the parameter space,

LEPII [75, 76] constraints require a large mass splitting between H0 and A0 or H±. In

particular, all the region with mDM +mA0 < mZ is excluded due to the constraints on the

Z-invisible width. This combined with the lower bound on mH± makes co-annihilations

negligible for mDM . 60 GeV. Since annihilations to gauge bosons are kinematically for-

bidden in this region, the main features distinguishing the doublet and singlet cases —

co-annihilations and DM gauge couplings — are negligible for small DM masses and the

doublet DM behaves effectively as singlet DM.

11We have checked that the mass splittings obtained in the scans are always below 35 GeV for all F scales

assumed here. For the purpose of this work, the range used in the scans (< 30 GeV) is sufficient to discuss

the composite DM phenomenology.
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Figure 7. Generic composite doublet DM : values of the DM-nucleon scattering cross-section (σDMp)

as a function of mDM satisfying 0.0941 < ΩDMh
2 < 0.127. In the top plots (F = 0.8 and 2.5 TeV)

and the bottom LH plot (F →∞), we show the low mass region. The channels contributing to the

largest branching ratios to the effective annihilation cross-section at freeze out are depicted with

different colors. In the bottom RH side plot, we show σDMp in the high mass region for F = 0.8 TeV

(dark blue), 2.5 TeV (light blue) and the non-composite case (F →∞ in gray) superimposed.

Once mDM & mW , the H0H0 → V V process rapidly enhances the DM annihilation

cross-section.12 For mDM . 110 GeV this enhancement is still partially suppressed by

kinematics and can result in the correct relic abundance if there is destructive interference

between the H0H0 → h∗ → V V and H0H0 → V V amplitudes [79], which happens for

λRDξh < 0. For larger values of the DM mass, the contribution from annihilation into gauge

bosons is no longer suppressed and generates too small relic abundances, independently

of the choice of parameters. This is a well known feature of the IDM and remains valid

in the composite scenario. Nonetheless, in the region where H0H0 → V V is (partially)

suppressed, the contributions from the dimension-6 operators to λRDξh allow for a wider

range of λ̄ values consistent with ΩDMh
2 ' 0.12. As a consequence we obtain larger viable

parameter space in figure 7 for F = 0.8 TeV and F = 2.5 TeV (top plots), when compared

to the non-composite case (bottom LH plot). Also, the allowed low mass region extends

to slightly higher values of mDM due to the presence of the dimension-6 operators.

12Since we include the effects of annihilation to off-shell W ’s and Z’s (H0H0 → V ∗V ), this channel

becomes relevant for slightly smaller values of the DM mass (mDM & 60 GeV), as seen in figure 7.
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Figure 8. Generic composite doublet DM in the high mass range : values for the dimension-6

coefficient ad2 in the λRDξh -mDM plane for F = 0.8 TeV (left) and 2.5 TeV (right).

In the bottom RH side plot of figure 7 we show values of σDMp in the high mass region.

We see that viable solutions are only obtained for mDM ∼> 500 GeV. The relative mass

splittings between the dark components has to be small. Typically we obtain ∆mξ <

20 GeV � mDM. Since ad2 can take negative values, the allowed mass splittings in the

composite case are slightly larger than in the IDM, due to the cancellation between the ad2

and ∆m2
ξ terms in eq. (3.19). In addition, in order to properly quantify the correlations

between λRDξh and ad2, we show in figure 8 the values of ad2 with gradient colors in the

λRDξh − mDM plane for F = 0.8 and 2.5 TeV. We see that ad2 and λRDξh typically have

opposite signs guaranteeing a suppression of the combination (3.21). We thus see that

all the contributions to ML need to be suppressed in order to account for the right relic

abundance. For F = 0.8 TeV, all points have |ad2| . 0.3, while for F = 2.5 TeV |ad2| can

be as large as 1, due to the suppression factor v2/F 2 ' 0.01.

From figure 7 we see that σDMp can take larger values in composite scenarios (F = 0.8

or 2.5 TeV) than in the non-composite case (F → ∞). This is particularly visible in the

large mass range in the bottom RH side plot where we have σDMp ∼< 10−44 (10−43) cm2

for F → ∞ (F = 0.8 TeV). This is easily understood looking at eq. (3.18). In the non-

composite case λRDξh = λDDξh = λ̄/2 and σDMp ∝ λ̄2, while in composite scenarios we have

λRDξh − λDDξh = − (ad1 + 2ad2)
m2

DM

F 2
. (3.22)

As a result, |λDDξh |, the quartic coupling driving σDMp, can get extra contributions due to

the adi terms in composite models.

Figure 9 illustrates the experimental constraints on the generic composite doublet

case, the color code is the same as the one used in section 3.1.3. Once again, points

with |λ̄| < 0.01 are theoretically disfavored in realistic composite models, where we expect

O (λ1) ' O (λi) ∼ 0.1. Similarly, unless the ad3 and λ̄ contributions cancel each other

in eq. (3.18), at the price of some fine tuning, we will typically have O
(
λ̄
)
∼ O

(
λDDξh

)
and too low values of λDDξh will also be disfavored. Hence, we consider all points with
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Figure 9. Generic composite doublet DM : experimental constraints in the |λDDξh | −mDM plane for

F = 0.8 TeV (left) and 2.5 TeV (right). See text for details.

min(|λDD
ξh |, |λ̄|) < 10−2 as theoretically disfavored and they are shown in gray. As we

can see, in the low mass region all points are either excluded by current experimental

constraints or involve too small values of |λDDξh |, |λ̄| to be theoretically acceptable, except

for a small number of points (with min(|λDD
ξh |, |λ̄|) > 10−2) lying between the resonance

region and the W threshold for large values of F . Therefore, most of the low mass region of

generic composite doublet DM models is already experimentally excluded or theoretically

disfavored. In contrast, the high mass region has just been marginally probed by LUX and

it even Xenon1T will not be able to test it in its entirety.

3.2.3 Specific case: G/H = SO(6)/SO(4)× SO(2)

Once again it is interesting to apply the general results presented above to a specific

model. Here we take G/H = SO(6)/SO(4) × SO(2), where the only pNGBs are the Higgs

bi-doublet and the complex doublet DM. This case corresponds to the effective Lagrangians

in eqs. (2.4) and (3.11) with:

a2H =
1

2
, ad2 = 1 and ad1 = ad3 = ad4 = 0 . (3.23)

Notice that, according to the results of figure 9, we do not expect many allowed solutions in

the low mass range after the LUX constraints have been imposed for |λ̄| > 10−2. Therefore

here we only discuss the high mass (mDM > 500 GeV) solutions.

One important consequence from specifying the G/H coset is that it fixes the value of

ad2. As we have seen above, the high mass region requires either large values of F or small

values of ad2 (see figure 8). Hence, for G/H = SO(6)/SO(4)×SO(2), where ad2 = 1, we do

not expect viable solutions for large DM masses and small values of F . This is highlighted

in the LH of figure 10, where we allow ΩDMh
2 to vary outside the 0.09 . ΩDMh

2 . 0.12

range and show the relic density as a function of mDM for different F values, shown by

the color gradient. For this plot, we take mA0 = mH± = mDM and λ̄ = λ′i = 0 since this

choice approximately maximizes (minimize) the relic abundance (〈σann.v〉) and we take

d4 = d6 = 0, since these coefficients play no major role in the high mass region.
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Figure 10. Doublet DM with G/H = SO(6)/SO(4)×SO(2). Left : values of the DM relic density as a

function of mDM for 2.0 TeV < F < 2.4 TeV fixing λ̄ = d4 = d6 = λ′i = 0 and mA0 = mH± = mDM.

The gray points correspond to the non-composite case with λ̄ = 0. We also show by dashed lines

the 2σ CMB bounds on ΩDMh
2. Right : σDMp as a function of mDM for points in agreement with

the CMB bounds for F = 2.5 TeV and F → ∞ leaving all quartic and derivative couplings as

free parameters.

We can understand the behavior of ΩDMh
2 in the LH of figure 10 by analyzing the

mDM and F dependence of 〈σann.v〉(ξξ → V V ) derived in eq. (3.19), but in the “pure

gauge limit” (all quartic couplings set to zero). The relic abundance first grows with

mDM due to the usual dependence ΩDMh
2 ∝ 1/〈σann.v〉 ∝ m2

DM. This is indeed what we

observe for the lowest range of masses in figure 10 (LH side). The non-composite case

in the same limit is plotted for reference with gray points and also show this growing

dependence in mDM. When mDM becomes comparable to F , the dimension-6 derivative

operator starts to dominate 〈σann.v〉 and the contribution from the ad2 term results in

ΩDMh
2 ∝ 1/〈σann.v〉 ∝ 1/m2

DM. For a given F scale there is thus a fixed mass range,

bounded from below and above, of viable DM candidates, i.e. in agreement with the CMB

bound depicted with vertical dashed gray lines in figure 10 (LH side). This viable mass

range widen with increasing F . Indeed, we see that for e.g. F = 2.4 TeV we have 550 GeV

. mDM . 1.2 TeV, while for e.g. F = 2.1 TeV we have 600 GeV . mDM . 800 GeV. In

addition, once F < 2 TeV, ΩDMh
2 < 0.09 for any value of mDM in the large mass range.

Therefore, for viable composite scenarios with G/H = SO(6)/SO(4)× SO(2) one needs to

consider F > 2 TeV.

In figure 10 (RH side) we show results for a scan on the parameter space of G/H =

SO(6)/SO(4) × SO(2), where the non-derivative coefficients are still free parameters. We

have explicitly verified that even when all non-derivative parameters are allowed to vary

there are no viable solutions for F = 0.8 TeV. We thus present points only for F = 2.5 TeV

and F → ∞. As shown by the results, for F = 2.5 TeV, we only obtain the correct relic

abundance for 500 GeV . mDM . 1.1 TeV, as expected from our discussion above.

3.3 Triplet DM and higher representations

In sections 3.1 and 3.2 we have discussed the cases of the singlet and complex doublet

DM, which can be realized for specific choices of the coset G/H, such as the SO(6)/SO(5)

– 24 –



J
H
E
P
0
6
(
2
0
1
5
)
1
5
4

and SO(6)/SO(4) × SO(2) ones discussed above. If one wants to consider even larger

symmetry groups G, it is possible that in the low energy effective theory one ends up

with a triplet DM or even higher SU(2)L representations. As it is well known from non-

composite models [42, 63], such cases are highly constrained and tend to require multi-TeV

DM masses. In this section we will discuss how these features are affected by the inclusion of

the dimension-6 operators induced by the strong sector. As discussed in section 3, we focus

here on real representations, which correspond to ξC = ξ and simplify considerably the

analysis. Also, after EWSB, the lightest component of the DM candidate from a complex

representation usually is a charged field and do not provide a viable DM candidate [42].

The effective DM Lagrangian for any real DM multiplet is given by:

L(2) = (Dµξ)
†Dµξ − µ2

ξ |ξ|2 − λ3

(
1 +

λ′3
F 2
|H|2

)
|ξ|2|H|2

− λ4

F 2
ξ†
{

Γi,Γj
}
ξH†σiHH†σjH − λ5

F 2
ξ†
{

Γi,Γj
}
ξHc†σiHH†σjHc (3.24)

+
ad1

2F 2
∂µ|ξ|2∂µ|H|2 −

ad4

F 2
ξ†~Γ
←→
D µξH†~σ

←→
D µH

− d4

F 2
|ξ|2

(
ytQ̄LH

ctR + ybQ̄LHbR + h.c.
)
,

where the coefficients ad1,d4, d4 and λ′3,4,5 are taken to be real O(1) parameters, the cou-

plings λi with i = 3, 4, 5 are allowed to vary in the window [−4π, 4π] and µξ is the DM

bare mass. The Pauli matrices are again denoted by ~σ = {σ1, σ2, σ3} while the Γ matri-

ces are the generators of the representation n of SU(2)L satisfying [Γi,Γj ] = iεijkΓk (see

appendix A.3 for more details).

3.3.1 Generic composite triplet DM

In order to provide some insight on the general behavior of a composite DM multiplet

of dimension n > 2 of SU(2)L we first focus on the case of the triplet. Later we will

discuss how these results generalize to larger representations. In the triplet case, we use

the following generators (in the spherical basis):

Γ1 =
1√
2

 0 −1 0

−1 0 1

0 1 0

 , Γ2 =
1√
2

 0 i 0

−i 0 −i
0 i 0

 , Γ3 =

1 0 0

0 0 0

0 0 −1

 , (3.25)

and ξ = (T+, T 0, T−)T . Using eq. (3.24) with the above representation for the Γ matrices,

we obtain the following scalar mass spectrum:

m2
DM ≡ m2

T 0 = µ2
ξ + v2

(
1

2
λ3 +

1

4
λ3λ

′
3

v2

F 2
+ λ5

v2

F 2

)
, (3.26)

m2
T± = µ2

ξ + v2

(
1

2
λ3 +

1

4
λ3λ

′
3

v2

F 2
+

1

2
(λ4 + λ5)

v2

F 2

)
. (3.27)

Notice that in the triplet case, once the values of mDM, λ4 and λ5 are given, the value of

mT± is fixed.

In the non-composite case (F →∞), the triplet is exactly degenerate (except for small

EW loop corrections, see [63]). In the latter case, either LEP constraints excluding the

existence of low mass new charged particles or too strong annihilation into gauge (virtual)
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bosons13 prevent the existence of viable DM candidate in the low mass range (i.e. for

mDM < mh). In the composite scenario, however, this is no longer the case since the

dimension-6 operators induce a mass splitting, given by:

m2
T± −m

2
DM =

v4

2F 2
(λ4 − λ5) . (3.28)

Therefore, assuming |λ4,5| . 1, we can have mDM < 60 GeV imposing mT± > 70 GeV, if

F . 1.5 TeV. Larger values of F , however, will not generate sufficient mass splitting to

allow for viable solutions in the low mass region. We will analyze this in more details in

section 3.3.2.

The effective Higgs-DM coupling in the triplet case is simply:

λξh =
λ̄

2
− ad1

p2
h

4F 2
, (3.29)

where λ̄ = λ3

(
1 + λ′3

v2

F 2

)
+ 4λ5

v2

F 2
. (3.30)

Unlike the doublet case, the DM-gauge boson couplings are only affected by one single

coefficient (ad4) in eq. (3.24). While the contributions to the quartic vertices (ξ2VµV
µ) are

usually negligible:

Ltriplet ⊃ 2g2

(
1− ad4

v2

F 2

)
T 0T 0W+W− , (3.31)

as they are always suppressed by v2/F 2, the triple vertex couplings (ξ2Vµ) can be enhanced

at large mDM. In addition let us emphasize that, for the triplet and higher representations,

the coupling to the gauge bosons is always larger than in the doublet case because it

scales like (n2 − 1)2. In the case of the doublet, we saw that once mDM ' mW , the

(co-)annihilation into gauge bosons generate too large 〈σann.v〉, resulting in too low relic

densities until mDM & 500 GeV. This feature is only enhanced in the triplet case, since its

couplings to gauge bosons are larger, as it is well known in the non-composite case [42, 63].

We also point out that, due to CP -invariance, Z decays to DM pairs are always forbidden,

so the Z-width constraints do not apply to the case of real triplets.

3.3.2 Scan results and experimental constraints

In order to fully cover the allowed parameter space in a model independent approach, we

once again scan over the effective Lagrangian couplings within the following ranges:

20 GeV < mDM < F ,

10−6 < λH6 < 1 ,

−4π < λ3 < 4π ,

−1 < λ′3, λ4, λ5 < 1 ,

−1 < c4, a2H , d4 < 1 ,

−1 < ad1, ad4 < 1 .

Again, we scan logarithmically over λ’s ranges and linearly on all the other parameters.

13In the triplet case T 0T 0 → V V ∗ is already dominant for mDM & 50 GeV.

– 26 –



J
H
E
P
0
6
(
2
0
1
5
)
1
5
4

Figure 11. Generic composite triplet DM in the low mass range. Left : values of the DM-nucleon

scattering cross-section as a function of mDM satisfying to 0.0941 < ΩDMh
2 < 0.127. The channels

contributing with the largest branching ratio to the annihilation cross-section at the time of freeze-

out are depicted with different colors. Right : experimental constraints on the low mass region. See

text for details.

The results of these scans for the low mass region are shown in the LH side of figure 11,

where we show the mass splitting and the DM-nucleus scattering cross-section as a function

of mDM. We take F = 0.8 TeV, since higher values of F will only reduce the allowed

region, due to the suppression of the mass splitting between the neutral and the charged

component. We also show by blue (red) points the region where T 0T 0 → b̄b (T 0T 0 →
W (∗)W ) dominates the annihilation cross-section in the early universe. We see that, for

mDM ' 50 GeV, annihilations to (off-shell) gauge bosons become dominant and, for mDM &
60 GeV, 〈σann.v〉 becomes too large, resulting in relic abundances below the CMB bounds.

In the RH side of figure 11 we show the experimental constraints on the low mass region.

As we can see, most of the parameter space is excluded by experimental constraints, or

theoretically disfavored for extremely low values of λ̄ (< 10−2). Only a small number of

points within Higgs-resonance and W threshold and with λ̄ > 10−2 are still viable and

will eventually be tested by Xenon1T experiment. We conclude that, despite allowing for

large mass splittings, the composite triplet scenario, alike the non-composite case, remains

mostly excluded in the low mass region.

In a way analogous to the doublet scenario, for mDM � mW , the annihilation cross-

section into gauge bosons becomes suppressed enough to give rise to the right relic abun-

dance. In this high mass region, it takes the following form:

〈σann.v〉|T0T0→V V '
1

32πm2
DM

(
2|MT |2 + |ML|2

)
, where

MT

(
T 0T 0 → VTVT

)
' 2g2

V

[
1− ad4

v2

F 2
+
λ̄

8

v2

m2
DM

− ad1
v2

2F 2
m2

DM

]
' 2g2

V

(
1− ad4

v2

F 2
+

v2

2m2
DM

λξh

)
,

ML

(
T 0T 0 → VLVL

)
'
g2
V

2

v2

m2
V

λξh ' λξh , (3.32)
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Figure 12. Generic composite triplet DM in the large mass range : values of the DM-nucleon

scattering cross-section as a function of mDM satisfying to 0.0941 < ΩDMh
2 < 0.127. Right : values

of |ad1| in the σDMp −mDM plane for F = 2.5 TeV.

where we have taken mDM ' mT+ , since the small mass splitting can be neglected in the

high mass region. Notice that in the large mass regime, we typically have λξhv
2/(2m2

DM)�
1, and for the F � v considered here we also have ad4v

2/F 2 < 1. These two contributions

to MT will thus typically be small.

In the LH side of figure 12 we show the high mass region results for F = 2.5 TeV and

the non-composite case (F → ∞). As we can see, the lowest mDM values which generate

the correct relic abundance are mDM & 1.7 TeV. Hence there are no possible solutions for

F = 0.8 TeV, since our effective Lagrangian assumes mDM < F . We also show the LUX

and projected Xenon1T constraints. As we can see, the large mass region has not yet

been probed by LUX and will only be partially tested by Xenon1T. From this plot, we see

that while in the non-composite case a non-observation of signal in Xenon1T would imply

mDM . 2.1 TeV, in the composite scenario this upper bound can be easily avoided due to

the presence of the dimension-6 derivative operator.

Let us emphasize that for such large triplet masses the Sommerfeld effect can be non-

negligible [80]. A full treatment of the Sommerfeld enhancement within composite dark

matter scenarios is however beyond the scope of this work. Let us mention though that,

already in the non-composite case, one expects a non-perturbative enhancement factor of

the effective coupling driving the annihilation cross section which is approximately constant

away from the resonances and is about 1.6 in the triplet case [42, 80]. This implies an even

stronger lower bounds on mDM in the high mass region. For instance, if the Sommerfeld

enhancement [81] is included in the non-composite limit, one would obtain mDM & 2.1 TeV,

instead of 1.7 TeV.

The effective Lagrangian in the non-composite limit contains only two parameters (λ3

and mDM) and, as in the singlet case, the DM-nucleus cross-section value is fixed (for a

given mDM) once the constraint on the relic abundance is imposed. The band seen in the LH

side of figure 12 for F →∞ is simply due to the fact that we allow ΩDMh
2 to vary within

the interval [0.0941, 0.127]. For the composite case, however, λξh receives contributions
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from the dimension-6 coefficients λ′3 and ad1. In this case, we can have larger or smaller

values of σDMp (when compared to the non-composite case), depending on the values of

ad1. In the RH side of figure 12 we show the values of |ad1| in the σDMp −mDM plane. We

can clearly see that values of |ad1| & 0.3 correspond to the regions where the DM-nucleus

cross-section is either suppressed or enhanced with respect to the non-composite values. It

is also interesting to notice that, while the low mass region requires F . 1.2 TeV in order

to generate enough mass splitting, the high mass region requires F > mDM & 1.7 TeV.

Hence there are no values of F for which there are solutions in both the low mass and the

high mass regions. Furthermore, since the low mass region is already excluded by LUX,

the triplet case can only provide a DM candidate for F > 1.7 TeV.

3.3.3 Higher representations

Since the effective Lagrangian in eq. (3.24) is valid for any real DM representation, we

can readily extrapolate the general conclusions obtained for the triplet case to higher

dimensional representations. Since only odd representations contain a electrically neutral

component, the possible representations higher than the triplet are the quintuplet (n = 5),

the septuplet (n = 7) [63]. For any n-odd representation a mass splitting between the

neutral (DM) and charged components is always induced by the dimension-6 operators

proportional to λ4,5 in composite scenarios. We expect the allowed solutions in the low

mass region to be similar to the triplet case shown in figure 11. Consequently, in the

case of higher representations, most of the low mass region is expected to be excluded by

experimental constraints or theoretically disfavored.

For the high mass range, given the results obtained for the doublet and triplet DM, one

can expect that the threshold mass is the same in composite and non-composite scenarios.

In the latter case, one can check that the total effective annihilation cross-section in the

early universe has a given dependence in n [42, 63]. In the pure gauge limit it scales as

(n2 − 1)(n2 − 3)/n for a multiplet of dimension n so that for n = 5 (7) one would have

mmin
DM ' 4.3 (7.5) TeV. Again, one expect that Sommerfeld corrections will push these

thresholds to even higher masses, see [80] in the non-composite limit.

If we consider compositeness as a solution to the little hierarchy problem, we must

require F . 3 TeV in order to obtain a fine-tuning of the order of 1% or lower [39].

Therefore, since mDM < F , we see that the triplet is the highest DM representation allowed.

Although there is still a small range of low DM masses allowed for all representations

(50 GeV . mDM . 60 GeV), these solutions usually require extremely small values of λξh,

which are unlikely to be generated in realistic models, where one expects λξh ∼ O(0.01−1).

Consequently we conclude that Dark Matter representations higher than the triplet are

highly disfavored in composite DM models.

4 Conclusions

The nature of DM is one of the greatest conundrums of our time. In spite of the fact

that DM constitutes 85% of the total matter in the Universe, it continues to evade direct

experimental observation. A reason for that may be connected to the fact that DM may
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be not elementary. Having this in mind we investigate composite multiplets that can arise

in composite Higgs models and study the conditions under which they can be a suitable

DM candidate.

We considered a class of composite models where the only composite states present in

the low energy effective theory are the Higgs and the DM, the first being a bi-doublet and

the latter a multiplet of SO(4), both pNGBs of a spontaneous broken global symmetry of a

new unknown strongly coupled sector. We constructed and parametrized the most general

effective Lagrangian up to dimension-6 operators under these general assumptions. We

then checked if the different DM SO(4) multiplet candidates could account for all the DM

assuming that the freeze-out mechanism is driving the relic abundance. For different DM

representations under SU(2)L (or SO(4)) we derived the main DM observables (relic abun-

dance, spin-independent DM-nucleon scattering cross-section, annihilation cross-sections)

and imposed experimental constraints from direct and indirect detection experiments as

well as LHC constraints from invisible Higgs decays.

In the generic singlet DM scenario (arbitrary cosets), the DM-nucleon scattering cross-

section can be significantly suppressed and can evade all current experimental bounds for

mDM ∼> 100 GeV (except for a small discontinuity near the Higgs resonance), if F &
0.8 TeV. However, once a specific model is considered (with a given coset), it can be

severely constrained by the DM observables. As an example, we discussed the case G/H =

SO(6)/SO(5).

The composite doublet DM models differ from the singlet one due to tree level DM-

gauge boson couplings and co-annihilations between DM multiplet components. There are

two viable mass regions, one below the Higgs mass and one above ∼ 500 GeV. Most of the

points in the low mass region are either excluded by data or theoretically disfavored. For

mDM ∼> 500 GeV, the annihilation into gauge bosons get suppressed enough to account for

the DM relic abundance, just as in the IDM scenario. In the case G/H = SO(6)/SO(4) ×
SO(2) presented in section 3.2.3, the dimension-6 operators allow for solutions only if F >

2 TeV. The DM mass is then constrained to the range 600(550) GeV ∼< mDM ∼< 0.8(1.2) TeV

for F = 2.1(2.4) TeV.

The composite triplet DM scenario is also mostly excluded by data or theoretical

considerations in the low mass region, despite allowing for larger mass splittings between

neutral and charged components than in the non-composite scenarios. The large mass

region will only be partially tested by Xenon1T. We also mention that while in the non-

composite triplet scenario a non-observation of a signal in Xenon1T would provide an upper

bound on mDM, in the composite case this upper bound could be easily avoided. Finally,

we have also examined higher representations and concluded they are highly disfavored in

composite Higgs models if one requires small fine-tuning in the EW sector (or F < 3 TeV).

We have shown that DM in various representations in composite models can reproduce

the correct relic abundance and still be compatible with limits on the Higgs invisible width

and from the non-observation of DM in direct and indirect detection experiments. These

models will be further put to the test by future LHC, direct and indirect detection data,

either excluding them completely or revealing some exciting new physics.
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A Dimension six operators for composite DM

In order to compute the DM observables relevant for our results in section 3, it is essential

to identify the relevant operators induced by the new strong sector. In sections 3.1, 3.2

and 3.3 we presented the effective Lagrangians considered in our analyses. Here we will

derive them in detail and justify (when necessary) our choice of operators. First we consider

the SM dimension-6 operators. In addition to the ones listed in L6 (eq. (2.4)) there are

other SM dimension-6 operators that are in agreement with the assumptions discussed in

section 2 but were not considered in our analysis. Assuming minimally-coupled theories

and a specific basis, the following dimension-6 operators can be induced at tree-level by

integrating out heavy states with spin 6 1 [48–53]:

cHQ1 i

F 2

(
H†σj

←→
D µH

) (
Q̄Lσ

jγµQL
)
,
cHQ2 i

F 2

(
H†
←→
D µH

) (
Q̄LγµQL

)
, (A.1)

cHu i

F 2

(
H†
←→
D µH

)
(ūRγµuR) ,

cHd i

F 2

(
H†
←→
D µH

)(
d̄RγµdR

)
,
cHud i

F 2

(
Hc†←→D µH

)
(ūRγµdR)

(A.2)

aW ig

M2
ρ

(
H†σj

←→
D µH

)
DνW j

µν , (A.3)

a2W g
2

M2
ρ g

2
ρ

(DµWµν)j(DβW
βν)j ,

a2Bg
′2

M2
ρ g

2
ρ

(∂µBµν)(∂βB
βν),

a2Gg
2
s

M2
ρ g

2
ρ

(DµGµν)a(DβG
βν)a, (A.4)

where H†σi
←→
D µH ≡ H†σiDµH− (DµH)† σiH, Mρ ' gρF , and gρ is the typical coupling of

the Higgs doublet and SM fermions to the heavy resonances (gρ . 4π). The coefficients ai
and ci are O(1) numbers. The operators in (A.3), (A.4) have at least a suppression of 1/g2

ρ

compared with the operators in L6.14 Additionally, the operator proportional to aW (A.3)

14Note that the suppression of the operators in (A.3), (A.4) compared with L6 is larger as the theory is

close to the strong-coupling limit, i.e. when the typical coupling is gρ ∼ 4π.

– 31 –



J
H
E
P
0
6
(
2
0
1
5
)
1
5
4

contributes at tree-level to the S parameter, which is very constrained by the electroweak

precision data [40]. For these reasons, we do not consider these operators in our effective

Lagrangians. On the other hand, (A.1), (A.2) have the same suppression factor (1/F 2)

as the operators in L6 and should, in principle, be considered. However, these operators

modify the gauge couplings to fermions which are in great agreement with the SM [40]. We

can try to avoid this constraint by absorbing the universal part of the vertex corrections

to a redefinition of the electroweak gauge fields [82, 83]. This restores the gauge couplings

to their SM values, but it generates contributions to the electroweak precision parameters,

which also are severely constrained by the experimental data. Therefore, all the operators

in (A.1), (A.2) are extremely constrained and we disregard them. We also neglect the

4-fermion operators since they do not affect the DM observables discussed here. Finally,

operators that can only be generated at one-loop level, such as Q̄Lσ
jσµνψRH

cW j
µν , are

suppressed with respect to the operators in L6 and can also be neglected.

In the remaining sections we compute the ξ-dependent part of the effective DM La-

grangian (L(2)) for specific DM representations. In order to be consistent and also to reduce

the number of free parameters, we assume in the DM sector the same simplifications pre-

viously required in the Higgs sector, i.e.

• we neglect the suppressed operators;

• from the electroweak precision data [40] we know that the c’s in (A.1), (A.2) must

be very small (cHψ � 1). Here we assume that the analogous coefficients in the DM

sector are also suppressed.

A.1 Singlet DM

The case of singlet DM is trivial since ξ can only couple to operators which are singlet

under SU(2)L ×U(1)Y . The only operators (up to dimension 6) containing two DM fields

and the Higgs field contributing to the scalar potential are given by

ξ2 , ξ2|H|2 , ξ2|H|4. (A.5)

The dimension-6 derivative interactions, corresponding to the effective CCWZ, must pre-

serve the symmetry SO(4) ⊂ H, hence the only allowed operators are

ξ∂µξ∂
µ|H|2 , |H|2∂µξ∂µξ , ξ2 (DµH)†DµH . (A.6)

The last two operators can be eliminated after the following field redefinitions

H → H +
a

4F 2
ξ2H , ξ → ξ +

a′

F 2
|H|2ξ , (A.7)

then,

(DµH)†DµH +
1

2
∂µξ∂

µξ → (DµH)†DµH +
1

2
∂µξ∂

µξ +
a+ a′

2F 2
ξ∂µξ∂

µ|H|2

+
a

F 2
ξ2 (DµH)†DµH +

a′

F 2
|H|2∂µξ∂µξ +O

(
1

F 4

)
.
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From the above result we see that choosing the coefficients a and a′ properly, the opera-

tors |H|2∂µξ∂µξ and ξ2 (DµH)†DµH can always be eliminated. Therefore, we obtain the

following effective Lagrangian for the singlet DM field

L(2) =
1

2
∂µξ∂

µξ − 1

2
µ2
ξξ

2 − λ3

2

(
1 +

λ′3
F 2
|H|2

)
ξ2|H|2 +

ad1

F 2
∂µξ

2∂µ|H|2

− 1

2

d4

F 2
ξ2
(
ytQ̄LH

ctR + ybQ̄LHbR + h.c.
)
, (A.8)

where d4 is real as we assume a CP -even Higgs.

A.2 Doublet Dark Matter

The doublet DM, ξ ∼ (2, 2), is quite involved since in this case ξ has a non-zero hyper-

charge. However, the number of possible operators can be greatly simplified imposing

SO(4) invariance and using suitable field redefinitions. In order to simplify the notation,

we use the following SO(4) bi-doublets to construct the invariant operators

Φ ≡ (Hc, H) and Φξ = (ξc, ξ) . (A.9)

The above 2× 2 fields transform under SO(4) as

Φ→ LΦR† and Φξ → LΦξR
† , (A.10)

so Tr
[
Φ†Φ

]
is a SO(4) singlet.

For the scalar potential we can construct the following SU(2)L×U(1)Y invariant terms

involving 2 powers of ξ

dimension 2: Tr
[
Φ†ξΦξ

]
; (A.11)

dimension 4: Tr
[
Φ†Φ

]
Tr
[
Φ†ξΦξ

]
, Tr

[
Φ†Φξ

]2
,

Tr
[
Φ†Φξσ

3
]2

, Tr
[
Φ†Φξ

]
Tr
[
Φ†Φξσ

3
]

; (A.12)

dimension 6: Tr
[
Φ†Φ

]2
Tr
[
Φ†ξΦξ

]
, Tr

[
Φ†Φ

]
Tr
[
Φ†Φξ

]2
,

Tr
[
Φ†Φ

]
Tr
[
Φ†Φξσ

3
]2

, Tr
[
Φ†Φ

]
Tr
[
Φ†Φξ

]
Tr
[
Φ†Φξσ

3
]
. (A.13)

Notice that all the operators involving σ3 explicitly break SU(2)R. However, they are

allowed in the scalar potential since it is generated by the Yukawa and gauge couplings

between the SM and the strong sector, which violate the SO(4) symmetry. All the other

possible operators (including the triplet-triplet contractions) can be reduced to the ones

above. Writing the above operators in terms of ξ and H we obtain the following scalar

potential

V (H, ξ) = µ2
ξ |ξ|2 + λ3

(
1 +

λ′3
F 2
|H|2

)
|ξ|2|H|2 + λ4

(
1 +

λ′4
F 2
|H|2

)
|ξ†H|2

+
λ5

2

[(
1 +

λ′5
F 2
|H|2

)(
ξ†H

)2
+ h.c.

]
. (A.14)
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In the doublet case there are two dimension-6 Yukawa-type operators involving ξ, the

singlet-singlet and triplet-triplet operators

VYuk(Φ, ξ) =
d4

F 2
|ξ|2

(
ytQ̄LH

ctR + ybQ̄LHbR + h.c.
)

+
d6

F 2
ξ†~σξ

(
ytQ̄L~σH

ctR − ybQ̄L~σHbR + h.c.
)

+
d′6
F 2

(
ybξ

c†~σξQ̄L~σH
cbR + ytξ

†~σξcQ̄L~σHtR + h.c.
)
. (A.15)

In order to avoid too many irrelevant parameters in the potential we take d′6 = d6, which

we do not expect to affect any of our results.

Finally, the dimension-6 SO(4) invariant derivatives operators, corresponding to the

effective CCWZ Lagrangian, can be constructed from the operators listed in (A.11),

(A.12), (A.13)

Tr
[
Φ†Φ

]
Tr
[
DµΦ†ξD

µΦξ

]
, Tr

[
Φ†ξΦξ

]
Tr
[
DµΦ†DµΦ

]
, Tr

[
Φ†Φξ

]
Tr
[
DµΦ†DµΦξ

]
,

Tr
[
Φ†DµΦξ

]2
, Tr

[
Φ†ξDµΦ

]2
, Tr

[
Φ†DµΦξ

]
Tr
[
Φ†ξD

µΦ
]
, Tr

[
Φ†DµΦ

]
Tr
[
Φ†ξD

µΦξ

]
,

Tr
[
Φ†DµΦξΦ

†
ξD

µΦ
]
− Tr

[
Φ†DµΦΦ†ξD

µΦξ

]
. (A.16)

The first three operators can be rewritten in terms of the others if we consider suitable

field redefinitions

H → H + aTr
[
Φ†ξΦξ

]
H + bTr

[
Φ†ξΦ

]
ξ ,

ξ → ξ + a′Tr
[
Φ†Φ

]
ξ + bTr

[
Φ†Φξ

]
H , (A.17)

where a and a′ are chosen to cancel the first two operators and b is chosen to cancel the

third one. Furthermore, we notice that

Tr
[
Φ†DµΦξ

]2
− Tr

[
Φ†ξDµΦ

]2
= ∂µTr

[
Φ†Φξ

] (
Tr
[
Φ†DµΦξ

]
− Tr

[
Φ†ξDµΦ

])
. (A.18)

The above operator can also be eliminated through the field redefinition

H → H + cTr
[
Φ†ξΦ

]
ξ , ξ → ξ − cTr

[
Φ†Φξ

]
H , (A.19)

with the coefficient c suitably chosen. Therefore, after the above field transforma-

tions we obtain only 4 independent operators, resulting in the following effective CCWZ

Lagrangian15

L(2)
CCWZ = (Dµξ)

†Dµξ + (DµH)†DµH +
ad1

2F 2
Tr
[
Φ†DµΦ

]
Tr
[
Φ†ξD

µΦξ

]
+
ad2

F 2
Tr
[
Φ†DµΦξ

]
Tr
[
Φ†ξD

µΦ
]

+
ad3

F 2

(
Tr
[
Φ†DµΦξ

]
+ Tr

[
Φ†ξDµΦ

])2

+
ad4

F 2

(
Tr
[
Φ†DµΦξΦ

†
ξD

µΦ
]
− Tr

[
Φ†DµΦΦ†ξD

µΦξ

])
. (A.20)

15In (A.20) we have replaced the operator

Tr
[
Φ†DµΦξ

]2
+ Tr

[
Φ†ξDµΦ

]2
by

(
Tr
[
Φ†DµΦξ

]
+ Tr

[
Φ†ξDµΦ

])2
,

since they only differ by the operator proportional to ad2.
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Finally, rewriting the operators in terms of the H and ξ fields and combining (A.14),

(A.15) and (A.20), we obtain the effective Lagrangian for the doublet DM field

L(2) = (Dµξ)
†Dµξ − µ2

ξ |ξ|2 − λ3

(
1 +

λ′3
F 2
|H|2

)
|ξ|2|H|2 − λ4

(
1 +

λ′4
F 2
|H|2

)
|ξ†H|2

− λ5

2

(
1 +

λ′5
F 2
|H|2

)[(
ξ†H

)2
+ h.c.

]
+
ad1

2F 2
∂µ|H|2∂µ|ξ|2 (A.21)

+
ad2

F 2

(
H†Dµξ + h.c.

)(
ξ†DµH + h.c.

)
+
ad3

F 2

[
∂µ

(
ξ†H + h.c.

)]2

+
ad4

F 2

[
ξ†
←→
D µξH

†←→D µH + ξ†
←→
D µξ

CHC†←→D µH − ξ†~σ
←→
D µξH

†~σ
←→
D µH + h.c.

]
− d4

F 2
|ξ|2

(
ytQ̄LH

ctR + ybQ̄LHbR + h.c.
)

− d6

F 2

[
ξ†~σξ

(
ytQ̄L~σH

ctR−ybQ̄L~σHbR
)
+ybξ

c†~σξQ̄L~σH
cbR+ytξ

†~σξcQ̄L~σHtR+h.c.
]
,

where d4 and d6 are real as we assume that the Higgs doublet is CP -even. We have verified

that the imaginary parts of λ5 and λ′5 have almost no impact on the allowed parameter

space. Therefore, for simplicity, we take these complex parameters as real.

A.3 Real representations

Here we discuss the case where ξ is a real multiplet, which corresponds to the SO(4) rep-

resentations (n, 1). The possible operators involving a real ξ multiplet are greatly reduced

due to the identities

ξ†
←→
D µξ = (Dµξ)

† ~Γξ + h.c. = ξ†~Γξ = (Dµξ)
† ~ΓDµξ = 0 . (A.22)

Furthermore, since ξ is a singlet under SU(2)R, the SO(4) invariance implies that ξ can

only couple to SU(2)R singlets. The only possible operators contributing to the scalar

potential with two powers of ξ are

dimension 2: Tr
[
Φ†ξΦξ

]
; (A.23)

dimension 4: Tr
[
Φ†Φ

]
; Tr

[
Φ†ξΦξ

]
(A.24)

dimension 6: Tr
[
Φ†Φ

]2
Tr
[
Φ†ξΦξ

]
, Tr

[
Φ†σiΦσ3

]
Tr
[
Φ†σjΦσ3

]
ξ†
{

Γi,Γj
}
ξ ,

Tr
[
Φ†σiΦσ+

]
Tr
[
Φ†σjΦσ−

]
ξ†
{

Γi,Γj
}
ξ , (A.25)

where σ± = σ1 ± iσ2. The dimension-6 derivative operators invariant under SO(4), which

parametrize the effective CCWZ Lagrangian, are given by

Tr
[
Φ†Φ

]
(Dµξ)

†Dµξ , |ξ|2Tr
[
DµΦ†DµΦ

]
Tr
[
Φ†DµΦ

]
∂µ|ξ|2 and Tr

[
Φ†~σDµΦ

]
ξ†~Γξ. (A.26)

As before, the first two operators can be eliminated through the field rescalings:

H → H + a |ξ|2H and ξ → ξ + a′ |H|2ξ . (A.27)
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Therefore, writing the above operators in terms of the H and ξ fields we obtain

L(2) = (Dµξ)
†Dµξ − µ2

ξ |ξ|2 − λ3

(
1 +

λ′3
F 2
|H|2

)
|ξ|2|H|2

− λ4

F 2
ξ†
{

Γi,Γj
}
ξH†σiHH†σjH − λ5

F 2
ξ†
{

Γi,Γj
}
ξHc†σiHH†σjHc (A.28)

+
ad1

2F 2
∂µ|ξ|2∂µ|H|2 −

ad4

F 2
ξ†~Γ
←→
D µξH†~σ

←→
D µH

− d4

F 2
|ξ|2

(
ytQ̄LH

ctR + ybQ̄LHbR + h.c.
)
,

where once again we take d4 to be real as we assume a CP -even Higgs.
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