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Abstract	  27	  

	  28	  

We report a significant poleward surge in thermospheric winds at subauroral and mid 29	  

latitudes following the 17-18 March 2015 great geomagnetic storm. This pre-midnight 30	  

surge is preceded by strong westward winds. These disturbances were observed over 31	  

three sites with geodetic latitudes 35-42oN in the American sector by Fabry-Perot 32	  

interferometers at 630-nm wavelength. Prior to the wind disturbances, subauroral 33	  

polarization streams (SAPS), were measured by the Millstone Hill incoherent scatter 34	  

radar between 20-02 UT. We identify the observed neutral wind variations as driven by 35	  

SAPS, through a scenario where strong ion flows cause a westward neutral wind, 36	  

subsequently establishing a poleward wind surge due to the poleward Coriolis force on 37	  

that westward wind. These regional disturbances appear to have prevented the well-38	  

known storm time equatorward wind surge from propagating into low latitudes, with the 39	  

consequence that the classic disturbance dynamo mechanism failed to occur.	  40	  

	   	  41	  
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	  42	  
	  43	  

1. Introduction 44	  

 45	  

An equatorward surge of thermospheric meridional neutral wind at mid-latitudes is a 46	  

common dynamic feature of Earth’s neutral atmosphere during geomagnetic storms. 47	  

Numerous studies have shown in detail how storm time momentum and energetic inputs 48	  

perturb the high-latitude ionosphere and thermosphere, with subsequent equatorward 49	  

propagation of disturbances [see reviews, Matuura, 1972; Prolss, 1995; Buonsanto, 1999; 50	  

Mendillo, 2006]. In particular, the storm time equatorward wind generated by impulsive 51	  

polar latitude heating processes can be very strong at night (1) when disturbance effects 52	  

add to the quiet time equatorward neutral circulation [Rishbeth, 1989], and (2) when 53	  

high-latitude convection is enhanced and expanded equatorward causing a significant 54	  

anti-sunward ion flow [e.g., Straus and Schulz, 1976]. Due to the Coriolis force, the 55	  

equatorward wind surge can subsequently drive a westward neutral wind disturbance as it 56	  

reaches mid- and low-latitudes. These wind disturbances are at the heart of the important 57	  

ionospheric dynamo effect [Blanc and Richmond, 1980; Fuller-Rowell et al., 2002] and 58	  

equatorward wind surges have been the subject of prior studies [e.g., Meriwether, 2008].  59	  

 60	  

However, equatorward wind surges do not necessarily occur during every storm. In fact, 61	  

the disturbance wind undergoes substantial variability with local time, season and solar 62	  

activity for a given location. Fejer et al. [2002] showed that at Millstone Hill (MH, 63	  

42.6oN, 71.5oW; geodetic), storm time winds sometimes turn poleward following a 64	  

midnight or post-midnight equatorward surge (in particular for solar minimum). The pre-65	  

midnight meridional wind disturbance, however, is generally weak and equatorward, 66	  

occasionally with a very small and brief poleward turning. The poleward wind surge can 67	  

be also seen as traveling atmosphere disturbances (TADs) from the opposite hemisphere 68	  

[e.g., Shiokawa et al., 2003]. 69	  

 70	  
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This paper reports a fundamentally different neutral wind scenario observed over three 71	  

sites at mid and subauroral latitudes during the 17-18 March 2015 great storm. During 72	  

this event, the pre-midnight meridional wind turns poleward and remains in this direction 73	  

for a few hours. Using a joint analysis of incoherent scatter radar (ISR) and Fabry-Perot 74	  

interferometer (FPI) observations along with first-principles model simulations, we show 75	  

in this paper that the anomalous poleward wind originated from the Subauroral 76	  

Polarization Stream (SAPS) [Foster and Vo, 2002], a characteristic storm time 77	  

magnetosphere-ionosphere coupling feature within a relatively narrow region of low 78	  

ionospheric conductivity between the auroral precipitation zone and the plasmasphere 79	  

boundary layer [Carpenter and Lemaire, 2004]. Strong SAPS flows overlap the 80	  

plasmasphere edge and provide a significant convective force moving plasma against 81	  

corotation from the dusk sector toward the noontime cusp in storm enhanced density 82	  

(SED) features [Foster, 1993; Kelly et al., 2004], also known as the dusk effect 83	  

[Mendillo, 2006]. Sunward ion flow in the late afternoon sector (with a poleward 84	  

component) also causes SED plasma to drift upwards at subauroral latitudes into regions 85	  

where recombination rates are significantly reduced, leading to high electron density 86	  

values [Heelis, 2008]. Strong plasma flow has reportedly produced enhanced neutral 87	  

westward winds [e.g., Wang H. et al., 2011] due to strong ion drag effects. TIEGCM 88	  

simulations [Wang W. et al., 2012] confirm expected ion drag effects in the 89	  

thermospheric temperature and zonal winds on a global scale.   90	  

 91	  

2. Observations and Analysis Procedure 92	  

 93	  

Following the arrival of a Coronal Mass Ejection (CME) and under the influence of high-94	  

speed solar wind streams, severe/great geomagnetic disturbances occurred for an 95	  

extended period starting on 17 March 2015 (Figures 1a-b). Interplanetary Magnetic Field 96	  

(IMF) northward component Bz hourly values in Geocentric Solar Magnetospheric 97	  

(GSM) coordinates fell to -14 nT between 05 - 08 UT, and then underwent a 12-hour 98	  

long sustained negative disturbance of ~ -17 nT between 12 - 24 UT on the 17th. During 99	  

this time, the hourly Dst index dropped to a minimum of -227 nT at 23 UT. The 3-hourly 100	  
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Kp value jumped to 5- with the initial Bz negative excursion, reaching between 8- and 7+ 101	  

during the large and long-lasting drop in Bz.   102	  

 103	  

These geospace disturbances caused a series of significant changes in earth’s ionosphere 104	  

and thermosphere. Figure 1(c) plots TEC disturbances, as derived from global GPS 105	  

ground receiver data by MIT Haystack Observatory MAPGPS software [Rideout and 106	  

Coster, 2006]. The TEC disturbances are defined here as the mean TEC value in each 3o 107	  

latitude bin over 30-50o N geodetic latitudes over the MH longitude (70-80o W) after 108	  

undisturbed background TEC has been subtracted using a monthly-average based 109	  

empirical model [Chen et al., 2014]. An initial positive disturbance of more than 50% is 110	  

seen poleward of MH following the first Bz equatorward turning. A narrow enhancement 111	  

zone at 18 UT is visible, and subsequent enhancements extended and expanded from MH 112	  

latitudes at 21 UT to lower latitudes at 23 UT. Subsequent sharp decreases of ~ 50% 113	  

expanded from 50o N at 20 UT to 37o N within 4 hours.  114	  

 115	  

This equatorward moving density reduction zone eventually remained at 38-42oN 116	  

between 24-05 UT. It is during these pre-midnight hours, and within the midlatitude 117	  

trough, that both SAPS and neutral wind disturbances were observed (Section 3). The 118	  

presence of a SAPS flow channel is further evidenced by MH ISR observations (Section 119	  

3). The ~50% TEC enhancement seen equatorward of the trough is a typical SED 120	  

characteristic, and is a result of plasmaspheric erosion associated with SAPS. Later 121	  

sections will present these radar observations and will discuss the connection between 122	  

SAPS and neutral wind disturbances.  123	  

 124	  

During this storm, an international observation campaign along the meridian circle of 125	  

60oW/120oE longitude was conducted. In particular, excellent ionospheric plasma 126	  

information from ISRs and neutral atmosphere information from FPIs is available in the 127	  

western hemisphere, along with other observational facilities supported by the Chinese 128	  

Meridian Project [Wang, 2010] and other institutions in the eastern hemisphere.  129	  

 130	  
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At mid-latitudes, the MH ISR operated in an experimental sequence using both zenith 131	  

and steerable antennas providing local, regional, and wide coverage. The wide coverage 132	  

is provided by low (6o) elevation radar scans from north to west of Millstone Hill while 133	  

regional coverage uses 45o elevation positions in north and west directions combined 134	  

with zenith observations.  Combining line-of-sight (LOS) ion velocities in these multiple 135	  

directions allows derivation of key components of F-region ion velocity perpendicular to 136	  

the magnetic field: VperE, eastward perpendicular to magnetic field B, and VperN, 137	  

poleward perpendicular to B. VperE is determined to the northwest of MH at ~(47oN, 138	  

89oW) from the west-looking data using azimuths in the (-100, -45) degree range. VperN 139	  

is determined for MH north at ~(53oN, 75oW) from low elevation north-looking data such 140	  

that LOS is nearly perpendicular to the magnetic field. These observations provide 141	  

evidence of SAPS.   142	  

 143	  

FPIs observing the thermospheric 630.0-nm emission arising from dissociative 144	  

recombination of O2
+ provide LOS measurements of neutral winds at typical emission 145	  

heights of ~250 km altitude. Data from three sites in North America were used in this 146	  

study.  At MH, the emission is detected from look directions in the north, east, south, 147	  

west (all with 45o elevation) and zenith. The other two FPI redline sites are from the 148	  

North American Thermosphere-Ionosphere Observing Network (NATION) [Makela et 149	  

al., 2014]: Urbana Atmospheric Observatory (UAO, 40.13oN, 88.20oW) and Pisgah 150	  

Astronomical Research Institute (PAR, 35.2oN, 82.85oW) [Makela et al., 2011]. They 151	  

have similar look angles to MH, with the addition of a pointing direction upward along B. 152	  

A typical observational cycle takes 12 min for NATION sites (15 min for MH), and data 153	  

are analyzed using the methodology described in Harding et al. [2014]. During the 17-18 154	  

March night, the skies over PAR became partly cloudy after 0630 UT on 18 March, and 155	  

the skies over UAO became partly cloudy after ~03 UT, but these facts do not 156	  

significantly affect results for the key period addressed by this work. Additionally, the 157	  

apparent vertical wind conditions described in Makela et al. [2014] did not seem to occur 158	  

during the observations reported here, making the small vertical wind assumption, 159	  

typically used when analyzing FPI observations, valid. To estimate the neutral wind 160	  
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vector based on LOS FPI observations, we follow a procedure where the vector velocity 161	  

is determined through a least-squared fit algorithm using the combined LOS data from all 162	  

directions within 36 min (45 min for MH), weighted by the LOS errors. Standard 163	  

deviations on the resulting vector neutral winds are also given.  164	  

 165	  

3. Superstorm Thermospheric and Ionospheric Response  166	  

 167	  

FPI observations during the evening of 17-18 March began just after the main phase of 168	  

the storm at the time of maximum ring current intensity / minimum Dst value, as Bz 169	  

started to return to positive values. At MH (Figure 2), a strong westward zonal wind of 170	  

300 m/s was already established, at a 350 m/s offset from its monthly mean in the 171	  

eastward direction. The strong westward wind then weakened after 02 UT, and stayed at 172	  

200 m/s for 2 hours.  During the next 3 hours, the westward zonal wind eventually 173	  

returned to its monthly mean and the disturbance vanished after local midnight. The 174	  

meridional wind component started slightly equatorward then subsequently became 175	  

significantly poleward, eventually reaching 100 m/s at 0230-0300 UT (~22 LT). The 176	  

poleward wind surge was significant between 2030 and 2230 LT, primarily before 177	  

midnight.  Following this period, the meridional wind returned to its monthly mean value 178	  

and remained in line with monthly averages without any further equatorward or poleward 179	  

surges.  180	  

 181	  

FPI observations at UAO at latitudes comparable to MH show very similar features. In 182	  

particular, a strong westward zonal wind lasting ~2 hours was followed by a 2-hour long 183	  

poleward meridional wind surge, reaching 100 m/s at 0230 UT. The PAR FPI station is 184	  

5o to the south of UAO and MH, and the poleward wind abatement, reaching 100 m/s at 185	  

0300 UT, is preceded by a strong westward enhancement for ~2 hours. The westward 186	  

wind enhancement is not as strong at PAR as at the other two higher latitude sites. 187	  

 188	  

Prior to the occurrence of these neutral wind disturbances, strong ionospheric 189	  

disturbances were observed such as the midlatitude trough, SEDs, and associated SAPS 190	  
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flows. Figure 3 shows VperE (perpendicular eastward, a) in the west and VperN 191	  

(perpendicular northward, b) in the north of MH on 17-18 March as well as later on 19 192	  

March, where observations for the latter half of the 18th and first half of the 19th can be 193	  

considered representative of normal ionospheric conditions due to relatively low 194	  

magnetic activity.  195	  

 196	  

The magnetically zonal ion drift, VperE, turned westward at 20 UT. In the next 5 hours, 197	  

this westward drift remained very strong at 500-750 m/s. We identified the high-speed 198	  

ion flow as SAPS since it is situated near the low density (midlatitude trough) region as 199	  

evidenced in TEC (Figure 1c) and also in the ISR measured electron content IEC (Figure 200	  

3d).  SAPS features are also associated with SED passage over MH, prior to the SAPS 201	  

local onset, as shown in the TEC plume equatorward of the trough (Figure 1c) and in the 202	  

IEC peak at 20UT (Figure 3c). Since the ion speed is faster than the speed of the neutrals, 203	  

SAPS will accordingly drive the neutrals in the same direction. MH and UAO zonal 204	  

winds in Figure 2 are shown in Figure 3(e) to highlight this neutral and ion velocity 205	  

connection. Even though the exact onset time of the westward neutral wind 206	  

enhancements are unknown due to lack of data prior to 00 UT, the enhancements 207	  

weakened around 02-03UT when the large westward ion drift disappeared. The largest 208	  

westward wind surge (~400 m/s) is at UAO where the TEC drop appears the most 209	  

significant, and therefore SAPS peak velocities are expected to be the strongest.  210	  

 211	  

The neutral wind disturbance, and in particular the poleward surge, can be seen in the 212	  

upward ion drift Vz at 250 km (Figure 3c). Between 01-05 UT on 18 March when 213	  

electric fields are quiet, Vz is more negative (downward) compared to the reference, 214	  

suggesting that the poleward wind surge makes a significant contribution. 215	  

  216	  

The radar data shows also a strong poleward ion drift VperN at ~55oN, in particular, 217	  

between 20-23 UT. Combining these northward and westward components, it is likely 218	  

that the sunward drift is a significant factor in producing the large observed SED plumes 219	  

in TEC and IEC data.  220	  
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 221	  

4. Simulation of Wind Effects 222	  

 223	  

4.1 March 17th Event Summary 224	  

The observations described in Section 3 are consistent with the following timeline of 225	  

ionosphere and thermosphere processes during the 17-18 March superstorm: (1) At ~21 226	  

UT on 17 March, SED plumes are present, observed as TEC and IEC enhancements, 227	  

along with onset of strong SAPS westward ion drift of >500 m/s peaking in the 228	  

midlatitude trough of the American sector; (2) Starting at about 22 UT, a strong westward 229	  

neutral wind appears (with greater amplitude in the trough region of ~40 - 42oN latitude 230	  

as compared to 35oN) and lasts for 4 hours until 02 UT on 18 March.  After 02 UT, the 231	  

zonal wind amplitude decreased dramatically (at higher latitudes) or gradually (at lower 232	  

latitudes); and (3) At 03 UT, a poleward wind surge of ~100 m/s occurs.  We posit that 233	  

the chain of events from (1) to (3) are a result of ion-neutral coupling and thermospheric 234	  

dynamical processes. In particular, the westward neutral wind characteristics described in 235	  

(2) are attributable to the well-known ion drag effect following the onset of SAPS 236	  

described in (1).  Our proposition is further indicated by the observation that westward 237	  

neutral wind anomalies disappeared when SAPS forcing disappeared, with the effects 238	  

strongest in the area of the deepest midlatitude trough. Subsequently, the poleward wind 239	  

surge described in (3) is produced following strong westward winds as described in (2) 240	  

because of the poleward Coriolis force arising from significant westward wind 241	  

amplitudes.   242	  

 243	  

4.2 Simulated F-region westward ion drift effects 244	  

To explore the validity of this scenario, an ion-neutral coupling simulation was conducted 245	  

with parameters characteristic of mid-latitudes near Millstone Hill.  This relatively simple 246	  

simulation was designed to study the basic proposed mechanism and its general features, 247	  

rather than reproducing all observational details.  The numerical experiment utilizes a 248	  

local ionosphere-thermosphere wind coupling model. The ionospheric model [Zhang and 249	  

Huang, 1995; Zhang et al., 2003] solves the equation of mass continuity for multiple ions 250	  
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and the equation of momentum for O+. Ionospheric temperatures are set to the empirical 251	  

ISR Ionospheric Model (ISRIM) for MH [Zhang et al., 2005; 2007b]. The non-252	  

disturbance electric field is specified by the local electric fields derived from the 253	  

statistical Millstone Hill – Sondrestrom convection model [Zhang et al., 2007a]. Neutral 254	  

densities and temperatures are specified by the NRL-MSIS model [Picone et al., 2002]. 255	  

The neutral wind calculation is based on solving the momentum equation for the neutral 256	  

gas where pressure gradients are derived from the NRL-MSIS model. A resolution of 2-257	  

min in time and 2-km in altitude is used. Other details of the simulation are described  258	  

 259	  

A baseline / reference run for medium solar activity levels at equinox, corresponding to 260	  

17 March 2015 conditions, was performed without imposing the observed westward ion 261	  

drift. A second run included a 500 m/s westward ion drift imposed during 18-21 LT (23-262	  

02 UT). This 500 m/s value represents a modest enhancement in zonal ion velocity 263	  

compared to the ISR measured SAPS speed on 17 March (cf. Section 3). The top panel of 264	  

Figure 4 plots the calculated model profiles of electron density and neutral winds at 1930 265	  

LT, 1.5 hours into the strong westward ion drift injection event. The middle panel shows 266	  

differential changes in calculated poleward and eastward winds relative to the reference 267	  

run.  The differential results clearly show a build-up of westward winds within one hour 268	  

following SAPS turn-on, saturating at 300 m/s at ~1930 LT. This ~200 m/s difference in 269	  

flow speeds between ions and neutrals created frictional heating leading to neutral 270	  

temperature increases (not shown). The poleward wind showed a different behavior, 271	  

gradually increasing in speed but at slower rates compared to westward wind increases.  272	  

In particular, northern wind differential values peaked at 130 m/s at ~2130 LT, with a 273	  

delay of ~2 hours following westward neutral flow saturation and ~3.5 hours following 274	  

SAPS initiation. These time constants are governed by background thermospheric density 275	  

and temperature, which undergo substantial storm time changes (and therefore the real 276	  

response times can be quite different from simulated results.) In the simulation, the 277	  

Coriolis force is the only mechanism that connects the zonal and meridional winds, so the 278	  

key finding is that poleward wind buildup is caused by Coriolis force effects in the north 279	  
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direction because of westward neutral motion, with the characteristic time delay in storm 280	  

time variations between the two components as another sign of Coriolis forcing. 281	  

  282	  

The third panel of Figure 4 plots ionospheric electron density differential response to 283	  

strong westward ion drift. The peak height, hmF2, dropped by ~55 km during the period 284	  

of significant poleward wind, and NmF2 dropped by ~80% after the westward ion drift 285	  

ceased. In this numerical experiment, the electron density reduction is achieved by the 286	  

induced poleward winds only, but an increase in the ion recombination rate caused by 287	  

frictional heating can further reduce the F-region electron density [Schunk et al., 1975].   288	  

 289	  

5. Discussion 290	  

 291	  

Reproducing all observational details with the numerical experiment in Section 4 is not 292	  

possible because of the simulation’s simplified treatment of ion and neutral temperatures 293	  

and neutral densities, which in reality are likely subject to large offsets from the empirical 294	  

model specifications used in this storm study. In particular, we have ignored the potential 295	  

presence of meridional pressure gradients to the north of MH, produced by the same 296	  

auroral heating processes that likely would generate an equatorward wind surge. The 297	  

simulated poleward surge produced by Coriolis force action is smooth and gradual in 298	  

time.  This is quite similar to FPI observations at the lower latitude site, PAR.  By 299	  

contrast, at the higher latitude of MH the observed poleward surge grows faster than in 300	  

the simulation. A more precise neutral response simulation would require a better 301	  

specification of storm time neutral density and temperature.  In general, more 302	  

sophisticated modeling is needed to put the regional observations into correct global 303	  

context and to better explain observational features.  However, the initial simplified 304	  

simulation presented here is sufficient to demonstrate that ion-neutral coupling and 305	  

Coriolis force effects are likely to play fundamental roles in observed wind dynamics. 306	  

 307	  

Coriolis force effects on westward neutral wind amplitude were noted in an earlier 308	  

numerical experiment by Forbes and Roble [1990]. Hagan and Sipler [1991] also report a 309	  
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similar set of observed ionospheric and thermospheric storm time effects with smaller 310	  

westward wind and minor meridional wind abatement during the 7-10 March 1989 storm 311	  

at MH. They pointed out that westward winds caused diminishment of equatorward wind 312	  

surges due to Coriolis forces. Hernandez et al. [1982] reported a converging wind system 313	  

measured by the FPI over Fritz Park (39.9°N, 105.5°W) during two major storms where 314	  

similar ion-neutral interaction was speculated for the south of the site. It appears that 315	  

large westward winds, the poleward turning of the wind, and low electron densities are all 316	  

potential consequences of ion-neutral coupling in some large storm events such as 317	  

presented here.  318	  

 319	  

During large geospace storm intervals, TADs are often observed, and in fact poleward 320	  

winds observed at lower mid-latitudes in Asia were explained as resulting from TAD 321	  

passage with a disturbance source region in the south [e.g., Shiokawa et al., 2003].  This 322	  

study, however, does not show obvious signs of propagating waves as in the TAD 323	  

scenario.  In particular, the poleward wind surge and westward wind enhancement appear 324	  

stronger at subauroral latitudes than at lower latitudes, counter to expectations of a TAD 325	  

mechanism to the south generating atmospheric waves.  TADs from sources to the north 326	  

would cause equatorward wind perturbations, not poleward as observed.  327	  

 328	  

6. Summary and conclusion 329	  

 330	  

Strong geospace disturbances during the 17-18 March 2015 superstorm produced intense 331	  

electric fields at subauroral and mid-latitudes. SED plumes shown in TEC and ISR 332	  

electron content enhancements over the northeast US are present prior to 21 UT before 333	  

passage of the midlatitude trough.  A strong westward ion drift, identified as SAPS, then 334	  

developed during 21-02 UT, as observed by the Millstone Hill ISR.  This drift, drove 335	  

neutral particles westward, causing a strong westward neutral wind (~300 m/s) observed 336	  

by multiple FPIs between 35-42oN latitudes in the American sector.  Later in the event, a 337	  

poleward neutral wind response occurred due to Coriolis force effects on the westward 338	  

neutral wind. The poleward wind, directly observed by the FPIs, eventually reached 100 339	  
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m/s amplitude in a few hours following the onset of SAPS. A simplified numerical model 340	  

with coupling of ionospheric density and thermospheric neutral winds is able to 341	  

demonstrate response characteristics of this mechanism that reasonably match general 342	  

observational features. We conclude that unusual neutral wind disturbances in both zonal 343	  

and meridional directions have their ultimate source in the SAPS electric field which 344	  

generates substantial ion flows and leads to strong ion-neutral interaction.  345	  

 346	  

We point out that the observed pre-midnight storm time surge in the poleward wind 347	  

implies a regional circulation background that may prevent propagation of the auroral 348	  

heating produced equatorward wind surge to lower latitudes, and would therefore prevent 349	  

development of the classic disturbance dynamo. If correct, this mechanism may 350	  

substantially influence the storm time low latitude and equatorial electrodynamic 351	  

response in some cases [Fejer and Scherliess, 1995; Maruyama et al., 2005; Lu et al., 352	  

2012]. Thus, further investigation is needed to characterize westward ion drifts at 353	  

subauroral latitudes, including SAPS, as a significant driving factor, and to understand 354	  

more fully how the SAPS driven neutral wind disturbances are affected by storm-time 355	  

ionosphere and thermosphere conditions. 356	  

 357	  
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	  530	  
	  531	  
Figure 1. Solar geophysical conditions during March 17-18, 2015: hourly IMF Bz (a), 3-hourly 532	  
Kp and hourly Dst (b), and GPS TEC disturbances (%) at mid- and subauroral latitudes (c). The 533	  
TEC is a 3o latitudinal bin average over Millstone Hill longitudes (70-80oW), with non-534	  
disturbance background subtracted using the monthly average based North America TEC model 535	  
[NATEC, Chen et al., 2015]. The dashed line is the approximate time of the poleward wind surge.	  536	  
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	  538	  
	  539	  
Figure 2. FPI redline neutral winds measured over Millstone Hill (top two panels, gray lines 540	  
being monthly average and corresponding standard deviation; red and blue curves are winds for 541	  
18 March); over UAO and PAR (bottom two panels).	   	  542	  
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	  543	  
Figure 3. Millstone Hill ISR measurements of plasma drifts VperE (perpendicular east, a) for 544	  
~(89oW,47oN), VperN (perpendicular north, b) for ~(75oW, 53oN), vertical upward ion drift Vz at 545	  
250 km above MH (c), and integrated ionospheric content IEC (up to 500 km, d). Eastward winds 546	  
from Figure 2 are also given in (d). The red curves in (a)-(d) are for 17-18 March, and the blue 547	  
ones in (a) - (c) show reference drift patterns from 18-19 March observations. The dashed blue 548	  
curve in (d) is a quiet-time reference IEC variation calculated using the ISR empirical ionospheric 549	  
model ISRIM [Zhang et al., 2007a]. The vertical dashed line indicates the approximate peak time 550	  
of poleward wind surge.	  551	  
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	  552	  
Figure 4. A numerical experiment demonstrates the mechanism of westward ion drift inducing 553	  

poleward neutral winds over Millstone Hill. A westward ion drift of 500 m/s is applied over 18-554	  
20 LT (23-01UT). Profiles on the top panels show results with (red) and without (blue dashed) 555	  
the strong westward ion drift at 1930 UT for electron density, poleward winds and eastward 556	  
winds. The middle panel shows corresponding changes in poleward and eastward winds due to 557	  
inclusion of the strong westward ion drift. The third panel plots simulated changes in the peak 558	  
electron density (blue) and the peak density height (red). The bottom shows the timing of the 559	  
injected 500 m/s westward ion drift.	  560	  


