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Abstract

The theory of Chester and Anand (2011) for fluid diffuison and large deformations of elastomeric gels is
implemented as a user-defined element (UEL) subroutine in the commercial finite element software package
ABAQUS. A specialized form of the constitutive equations and the governing partial differential equations
of the theory are summarized, and the numerical implementation is described in detail. To demonstrate
the robustness of the numerical implementation a few illustrative numerical simulation examples for axisym-
metric, plane strain, and three-dimensional geometries are shown. For educational purposes, and also to
facilitate the numerical implementation of other coupled multiphysics theories, the source code for the UEL
is provided as an online supplement to this paper.
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1 Introduction

An elastomeric gel is a polymer network swollen by a fluid. Gels can be designed to swell by several hundred
percent in volume, and the amount of swelling can be controlled by varying various stimuli — humidity,
temperature, and pH. Gels are ubiquitous — they are found in foods and medicines, and they find use in
several important and diverse applications including carriers for drug delivery (Peppas et al., 2006), actuators
and sensors in microfluidic devices (Beebe et al., 2000), tissue engineering matrices (Chan and Mooney, 2008),
as well as packers for sealing in oil wells (Kleverlaan et al., 2005; Bhavsar et al., 2008).

Modeling elastomeric gels is interesting and challenging — it involves concurrent deformation of the
polymer network and diffusion of the solvent through the network. An early, but limited, theory for swelling
of gels is due to Tanaka and co-workers (cf., e.g., Tanaka and Fillmore, 1979). In recent years there has been
a convergence towards a more complete coupled diffusion-deformation theory for describing the response
of gels — including swelling and drying, squeezing of fluid by applied mechanical deformation, and forced
permeation (cf., e.g., Doi, 2009). Within the limits of a nonlinear field theory in which the fluid-solid mixture
is treated as a single homogenized continuum body which allows for a mass flux of the fluid, essentially similar
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theories (for electrically-neutral gels) have been formulated by Hong et al. (2008), Duda et al. (2010), and
Chester and Anand (2010, 2011). References to the vast previous literature on gels may be found in these
publications.

The past few years have also seen several publications related to the numerical implementation of these
theories for solving coupled diffusion-deformation boundary value problems for gels. In their early work
Suo and co-workers (cf., e.g., Hong et al., 2009; Zhang et al., 2009; Marcombe et al., 2010; Liu et al., 2010)
using the UHYPER capabilities of the commerical finite element package ABAQUS/Standard implemented a
“chemical equilibrium” version their theory in which the chemical potential was presumed to be homogeneous
in the gel, and the transient diffusion and associated transient swelling kinetics were neglected. More recently,
Toh et al. (2013) have simulated the transient diffusion and swelling kinetics of polymeric gels by drawing
on an analogy between diffusion of solvent molecules and conduction of heat in solids, and using the built-in
thermo-mechanically coupled finite-elements and associated solution procedures in ABAQUS. While useful
for gels in which the diffusion equation has a form similar to that for heat transfer, this methodology is
not applicable to more general multi-physics problems. Lucantonio et al. (2013) — using the finite element
software package COMSOL/Multiphysics — have also recently performed simulations for transient swelling-
induced large deformations in polymeric gels.

In contrast to the work of Suo et al., Toh et al., and Lucantonio et al., Chester and Anand (2011) im-
plemented their own theory for elastomeric gels by writing two- and three-dimensional user-defined finite
element subroutines (UELs) and implemented them in ABAQUS. In their approach, a new finite element
is constructed whose degrees of freedom are taken to be the primal variables in the set of partial differen-
tial equations (pdes) of interest. This set of pdes need not resemble those for coupled thermo-mechanical
problems, and may be of any kind which are are amenable to finite-element solutions methods which employ
standard C0-continuous finite-element basis functions.

Because detailed numerical procedures and source codes are seldom published in scientific journal papers,
the numerical implementation of a new coupled theory using the finite element method is often a challenging
task — especially for beginners in a new research area. However there is a new emerging trend — in order to
more widely disseminate new computational methods and procedures — researchers are beginning to publish
papers which address the details of their computational implementations. For example, recently Giner et
al. (2009) published an ABAQUS implementation of the extended finite element method for linear elastic
fracture analysis as a UEL subroutine. Also Park and Paulino (2012) published an ABAQUS implementation
of a cohesive finite element as a UEL subroutine. In both cases, for educational purposes, the numerical
implementation is discussed in detail, and the source code for the UEL was provided.

In Chester and Anand (2011) we showed the results from several numerical simulations of our theory
which was implemented as a user-defined element (UEL) subroutine in ABAQUS. However, in that paper we
did not provide any details regarding our numerical implementation procedures and methods. Accordingly,
in the spirit of the recent papers by Giner et al. (2009) and Park and Paulino (2012), the main purpose
of this paper is to discuss the details of the numerical implementation of our coupled diffusion-deformation
theory for non-ionic gels, and also to make available the source code for the UEL in ABAQUS.

The paper is organized as follows. In Section 2 the constitutive equations and the governing partial
differential equations of the theory are summarized. In order to focus attention on the numerical imple-
mentation as opposed to the details of the specific constitutive functions, we use a simple specialized form
of our constitutive theory and restrict our discussion to isothermal conditions. In Section 3 we describe
the numerical solution procedure in substantial detail. Additional details regarding the user elements, and
verification of the basic element technology is provided in two Appendices.

• The associated online supplemental materials to this paper include a detailed tutorial on generating

an input file, and instructions on running ABAQUS with our UEL. The source code is also provided.

In Section 4, in order to demonstrate the robustness of the numerical implementation, we show the results
from illustrative example problems for axisymmetric, plane strain, and three-dimensional geometries. We
finish in Section 5 with some concluding remarks.
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2 Summary of the Chester and Anand theory for gels
sec:theory

In this section we briefly summarize the basic continuum mechanical theory for elastomeric gels under
isothermal conditions. Cf. Chester and Anand (2011) for complete details of the formulation of the theory.

2.1 Kinematics. Constitutive theory

Consider a fluid-free (dry) macroscopically homogeneous elastomeric body. We identify such a macroscopically-
homogeneous body B with the region of space it occupies in a fixed reference configuration, and denote by
X an arbitrary material point of B. A motion of B is then a smooth one-to-one mapping x = χ(X, t) with
deformation gradient, velocity, and velocity gradient given by1

F = ∇χ, v = χ̇, L = gradv = ḞF−1. (2.1) kin

The deformed body is denoted as B.
The theory is based upon a multiplicative decomposition

F = FeFs, with Fs = λs1, λs > 0, (2.2) kl

of the deformation gradient F into elastic and swelling parts Fe and Fs, respectively, with the swelling taken
to be isotropic, where λs is the swelling stretch. With Ω denoting the volume of a mole of fluid molecules,
we assume the swelling stretch is given by

λs = (1 + ΩcR)
1/3, (2.3)

where cR represents the fluid concentration measured in moles of fluid per unit reference volume of the dry
elastomer.

The constitutive equations of the theory are:

• Free energy: A simple form of the free energy function which accounts for the combined effects of
mixing, swelling, and elastic stretching is,

ψR = µ0cR +RϑcR

(

ln
( ΩcR
1 + ΩcR

)

+χ
( 1

1 + ΩcR

)
)

+ 1

2
G
(
3(λ̄2 − 1)− 2 lnJ

)
+ Js[ 1

2
K(ln Je)2]. (2.4) freen4

Here, µ0 is a reference chemical potential for the fluid, R the gas constant, ϑ is the constant temperature
under consideration, χ is a dimensionless measure of the “enthalpy” of mixing known as the Flory-
Huggins interaction parameter, G is the shear modulus of the network, K is a bulk modulus of the gel,
and

λ̄
def
=

√

1

3
trC =

√

1

3
(1 + ΩcR)

2/3 trCe, (2.5) effstretch

is an effective stretch.

• Constitutive equation for the Cauchy stress: Corresponding to the free energy (2.4), the Cauchy
stress T is given by

T = J−1

(

2Fe ∂ψR

∂Ce
Fe⊤

)

= J−1 [Gφ−2/3Be −G1] + Je−1[K(ln Je)1], (2.6) kirchhoff3b

where we have introduced the polymer volume fraction defined by

φ
def
=

1

1 + ΩcR
= (λs)−3. (2.7) eqn:phiDef

1Notation: We use standard notation of modern continuum mechanics (Gurtin et al., 2010). Specifically: ∇ and Div denote
the gradient and divergence with respect to the material point X in the reference configuration; grad and div denote these
operators with respect to the point x = χ(X, t) in the deformed body; a superposed dot denotes the material time-derivative.
Throughout, we write F

e−1 = (Fe)−1, Fe−⊤ = (Fe)−⊤, etc. We write trA, symA, skwA, A0, and sym0A respectively, for
the trace, symmetric, skew, deviatoric, and symmetric-deviatoric parts of a tensor A. Also, the inner product of tensors A and
B is denoted by A :B, and the magnitude of A by |A| =

√
A :A.notation
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Next, since
B(≡ FF⊤) = (λs)2Be = φ−2/3Be, (2.8) brel1

(2.6) reduces to
T = J−1 [G (B− 1)] + Je−1[K(ln Je)1]. (2.9) kirchhoff5

• Constitutive equation for the chemical potential: The chemical potential µ is given by

µ =
∂ψR

∂cR
− Ω

1

3
JetrT = µ0 +Rϑ

(

ln(1− φ) + φ+ χφ2
)

− ΩK(ln Je). (2.10) chempot1

• Constitutive equation for the fluid flux: We assume that the spatial fluid flux, j, depends linearly
on the spatial gradient of the chemical potential, gradµ, with the mobility tensor taken to be isotropic
so that

j = −m gradµ, (2.11) fick1

where m is a scalar mobility coefficient, which in general is an isotropic function of the stretch and the
fluid concentration.

Remark. In our previous papers (Chester and Anand, 2010, 2011; Chester, 2012) we had assumed a
constitutive equation for the fluid flux of the form

jR = −m∇µ,

where jR is a referential fluid flux and ∇µ is the referential gradient of the chemical potential. However,
others in the literature (c.f., e.g., Hong et al., 2008; Duda et al., 2010) have argued that (2.11) is the
more appropriate constitutive equation for the fluid flux for isotropic gels. We adopt (2.11) in this
paper.

2.2 Governing partial differential equations
pdes

The governing partial differential equations, when expressed in the deformed body, consist of

1. The local force balance for the macroscopic Cauchy stress,

divT+ b = 0, (2.12) macfb2

with b a non-inertial body force, and T given by (2.9).

2. The local balance for the fluid concentration,

ċR = −Jdiv j, (2.13) massbal2

which using (2.7) may be written in the form

φ̇

JΩφ2
− div j = 0, (2.14) massbal2a

in which the fluid flux j is given by (2.11), and the chemical potential µ is given by (2.10).

4



2.3 Boundary and initial conditions
bcs

We also need boundary and initial conditions to complete the theory. Let Su and St be complementary
subsurfaces of the boundary ∂B of the body B in the sense ∂B = Su ∪ St and Su ∩ St = ∅. Similarly let
Sµ and Sj be complementary subsurfaces of the boundary: ∂B = Sµ ∪ Sj and Sµ ∩ Sj = ∅. Then for a time
interval t ∈ [0, T ] we consider a pair of boundary conditions in which the displacement u is specified on Su

and the surface traction on St:
u = ŭ on Su × [0, T ],

Tn = t̆ on St × [0, T ];

}

(2.15) staticbc1

and a pair of boundary conditions in which the chemical potential is specified on Sµ and the fluid flux on Sj

µ = µ̆ on Sµ × [0, T ],

−j · n = j̆ on Sj × [0, T ];

}

(2.16) hcibvp21

with ŭ, t̆, µ̆, j̆, prescribed functions of x and t. The initial data is taken as

u(X, 0) = u0(X), and µ(X, 0) = µ0(X) in B. (2.17) hcibvp31

The coupled set of equations (2.12) and (2.14), together with (2.15), (2.16), and (2.17) yield an initial
boundary value problem for the dipslacement u(x, t) and the chemical potential µ(x, t).

In applications, for the case in which the environment consists of a pure and incompressible liquid, the
boundary condition on chemical potential µ̆ is given by

µ̆ = µ0 +Ωpa, (2.18) ebc1

where µ0 is a reference chemical potential for the liquid, Ω is the volume of a mole of liquid molecules, and
pa is the hydrostatic pressure of the liquid. Also, if a portion of the boundary is impermeable to the liquid,
then on that portion the prescribed normal flux j̆ vanishes.

3 Numerical solution procedure
sec:numericalProcedure

In the absence of body forces, the strong forms of the coupled partial differential equations of the theory are

Balance of momentum







divT = 0 in B,

u = ŭ on Su,

Tn = t̆ on St,

Balance of fluid concentration







φ̇

JΩφ2
− div j = 0 in B,

µ = µ̆ on Sµ,

−j · n = j̆ on Sj.







(3.1) pdessp

Then, with w1, w2 denoting two weighting (or test) fields which vanish on Su and Sµ, respectively, the
corresponding weak forms are:

∫

B

(

T :
∂w1

∂x

)

dv =

∫

St

(
w1 · t̆

)
da,

∫

B

(

w2

φ̇

JΩφ2

)

dv = −

∫

B

(
∂w2

∂x
· j

)

dv −

∫

Sj

(

w2j̆
)

da.







(3.2) weak1sp

The body is approximated using finite elements, B =
⋃
Be, and the trial solutions for the displacement,

and chemical potential are interpolated inside each element by

u =
∑

uANA,

µ =
∑

µANA,






(3.3) interpolation1
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with the index A = {1, 2, . . . ,M} denoting the nodes of the element, uA, and µA denoting nodal displace-
ments, and chemical potentials, and NA the shape functions. We employ a standard Galerkin approach, in
that the weighting fields are interpolated by the same shape functions, viz.

w1 =
∑

wA
1 N

A,

w2 =
∑

wA
2 N

A.






(3.4) interpolation2

Using (3.3) and (3.4) in (3.2) yields the following element-level system of equations:

∫

Be

(

T
∂NA

∂x

)

dv =

∫

Se

t

(
NAt̆

)
da,

∫

Be

(

NA φ̇

JΩφ2

)

dv = −

∫

Be

(
∂NA

∂x
· j

)

dv −

∫

Se

j

(

NAj̆
)

da .







(3.5) weak2sp

This system of coupled equations is solved using a Newton procedure by defining the following element-level
residuals for the displacement and chemical potential,

(Ru)
A = −

∫

Be

(

T
∂NA

∂x

)

dv +

∫

Se

t

(
NAt̆

)
da,

(Rµ)
A =

∫

Be

(

NA φ̇

JΩφ2

)

dv +

∫

Be

(
∂NA

∂x
· j

)

dv +

∫

Se

j

(

NAj̆
)

da,







(3.6) residualssp

which using index notation, and (2.11) for the fluid flux, may be written in the form

(Rui
)A = −

∫

Be

(

Tij
∂NA

∂xj

)

dv +

∫

Se

t

(
NAt̆i

)
da,

(Rµ)
A =

∫

Be

(

NA φ̇

JΩφ2

)

dv −

∫

Be

(

m
∂NA

∂xi

∂µ

∂xi

)

dv +

∫

Se

j

(

NAj̆
)

da.







(3.7) residualssp1

In addition to the residuals, the following tangents are also required for the iterative Newton solver:

(Kuu)
AB = −

∂(Ru)
A

∂uB
,

(Kuµ)
AB = −

∂(Ru)
A

∂µB
,

(Kµu)
AB = −

∂(Rµ)
A

∂uB
,

(Kµµ)
AB = −

∂(Rµ)
A

∂µB
.







(3.8) tangents

First, the tangent (3.8)1, in index notation, is given by

KAB
uiuk

=

∫

Be

∂NA

∂xj
(Aijkl)

∂NB

∂xl
dv −

∫

Se

t

NANB ∂t̆i
∂uk

da . (3.9) atang6

With TR = JTF−⊤ denoting the Piola stress, the spatial tangent modulus A is given by defined in terms of
the referential tangent modulus AR by

Aijkl
def
= J−1FjmFln(AR)imkn , (3.10) atang5a

where

AR =
∂TR

∂F
. (3.11) atang4a
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This standard result requires lengthy computations, which we give in an appendix (cf. Remark on page 13).
For the constitutive theory under consideration here, from the constitutive equation (2.9) for T we obtain
that

TR = G(F− F−⊤) +K(ln Je)F−⊤, (3.12) temp1

and hence

AR =
∂TR

∂F
= G

(

I−
∂F−⊤

∂F

)

+K

(

F−⊤ ⊗
∂ ln J

∂F
+ (ln Je)

∂F−⊤

∂F

)

, (3.13) temp2a

where in writing the last term in (3.13) we have used ln Je = ln(Jφ) = ln J + lnφ. Then using the identities

(I)ijkl = δikδjl,

(
∂F−⊤

∂F

)

ijkl

= −F−1

li F
−1

jk ,

(
∂ ln J

∂F

)

kl

= F−1

lk , (3.14) temp2b

the component form of the referential tangent modulus is

(AR)ijkl =

(
∂TR

∂F

)

ijkl

= G
(

δikδjl + F−1

li F
−1

jk

)

+K
(

F−1

ji F
−1

lk − (ln Je)F−1

li F
−1

jk

)

. (3.15) temp2

Consider next the tangent (3.8)4,

KAB
µµ = −

∫

Be

NA

JΩ

∂

∂µB

(

φ̇

φ2

)

dv +

∫

Be

∂

∂µB

(

m
∂NA

∂xi

∂µ

∂xi

)

dv −

∫

Se

j

∂

∂µB

(

NAj̆
)

da,

= −

∫

Be

NA

JΩ

(

−2
φ̇

φ3
∂φ

∂µB
+

1

φ2
∂φ̇

∂µB

)

dv +

∫

Be

(

m
∂NA

∂xi

∂NB

∂xi

)

dv

+

∫

Be

(
∂m

∂µB

∂NA

∂xi

∂µ

∂xi

)

dv −

∫

Se

j

(

NA ∂j̆

∂µB

)

da,

and hence

KAB
µµ =

∫

Be

NANB

JΩφ2

(

2
φ̇

φ

∂φ

∂µ
−
∂φ̇

∂µ

)

dv +

∫

Be

(

m
∂NA

∂xi

∂NB

∂xi

)

dv

+

∫

Be

(
∂m

∂µ
NB ∂N

A

∂xi

∂µ

∂xi

)

dv −

∫

Se

j

(

NANB ∂j̆

∂µ

)

da. (3.16) temp4

Similarly, the remaining two tangents in (3.8) are given by

KAB
uiµ =

∫

Be

∂NA

∂xj

(
∂Tij
∂φ

∂φ

∂µ

)

NBdv, (3.17) temp5

where
∂T

∂φ
=

K

Jφ
1,

and (Kµu)
AB is approximated by

KAB
µuk

= −

∫

Be

∂NA

∂xi

(

m
∂µ

∂xk
δil

)
∂NB

∂xl
dv . (3.18) temp6

In the solution procedure one needs to compute the polymer volume fraction, φ, at every increment in
order to evaluate the constitutive response functions and eventually the residuals (3.6). Using Je = Jφ we
may rewrite (2.10) in the following dimensionless form

µ0 − µ

Rϑ
+ ln(1− φ) + φ+ χφ2 −

ΩK

Rϑ
ln(Jφ)φ = 0, (3.19) fzero
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which serves as an implicit equation for φ. Thus given the pair (F, µ) at any instant of time, equation (3.19)
is solved for the corresponding value of φ. The term φ̇ is computed using the approximation,

φ̇ =
φn+1 − φn

∆t
. (3.20) eqn:phiDotFD

Also, terms such as ∂φ̇/∂µ appearing in the tangents (3.16) are computed numerically using a finite difference
scheme.

In (3.6), (3.9) and (3.16) the integrals are evaluated numerically using Gaussian-quadrature. Since this is
a standard method in the finite element literature, we do not present details here; the details may be found
in our source code and in the literature.

In its’ notation, ABAQUS/Standard (2013) requires certain matrices denoted as RHS and AMATRX to be
evaluated and/or updated by the user element subroutine UEL:

• The matrix RHS, as defined by the ABAQUS documentation, is “An array containing the contributions
of this element to the right-hand-side vectors of the overall system of equations.” Referring to (3.7),
RHS is the overall elemental residual which in matrix form is given by

R =
[
R1

u1
R1

u2
R1

µR
2
u1
R2

u2
R2

µ . . . R
M
u1
RM

u2
RM

µ

]⊤
, (3.21)

in two dimensions, and

R =
[
R1

u1
R1

u2
R1

u3
R1

µ R
2
u1
R2

u2
R2

u3
R2

µ . . . RM
u1
RM

u2
RM

u3
RM

µ

]⊤
, (3.22)

in three dimensions, with M the total number of nodes per element.

• The matrix AMATRX as defined by the ABAQUS documentation is “An array containing the contribution
of this element to the Jacobian (stiffness) or other matrix of the overall system of equations.” Referring
to (3.8) , AMATRX is the overall tangent which is given by

K =




















K11
u1u1

K11
u1u2

K11
u1µ K12

u1u1
K12

u1u2
K12

u1µ K1M
u1u1

K1M
u1u2

K1M
u1µ

K11
u2u1

K11
u2u2

K11
u2µ K12

u2u1
K12

u2u2
K12

u2µ K1M
u2u1

K1M
u2u2

K1M
u2µ

K11
µu1

K11
µu2

K11
µµ K12

µu1
K12

µu2
K12

µµ K1M
µu1

K1M
µu2

K1M
µµ

K21
u1u1

K21
u1u2

K21
u1µ K22

u1u1
K22

u1u2
K22

u1µ · · · K2M
u1u1

K2M
u1u2

K2M
u1µ

K21
u2u1

K21
u2u2

K21
u2µ K22

u2u1
K22

u2u2
K22

u2µ K2M
u2u1

K2M
u2u2

K2M
u2µ

K21
µu1

K21
µu2

K21
µµ K22

µu1
K22

µu2
K22

µµ K22
µu1

K2M
µu2

K2M
µµ

...
. . .

...
KM1

u1u1
KM1

u1u2
KM1

u1µ KM2
u1u1

KM2
u1u2

KM2
u1µ KMM

u1u1
KMM

u1u2
KMM

u1µ

KM1
u2u1

KM1
u2u2

KM1
u2µ KM2

u2u1
KM2

u2u2
KM2

u2µ · · · KMM
u2u1

KMM
u2u2

KMM
u2µ

KM1
µu1

KM1
µu2

KM1
µµ KM2

µu1
KM2

µu2
KM2

µµ KMM
µu1

KMM
µu2

KMM
µµ




















(3.23)

in two dimensions. For brevity we do not list the complete matrix in three dimensions.

In addition to the required RHS and AMATRX as described above, ABAQUS/Standard (2013) allows the
storage and updating state variables using SVARS, which as defined by the ABAQUS documentation is “An
array containing the values of the solution-dependent variables associated with this element.” Due to the
term φ̇ appearing in (3.7), and computed using (3.20), we are required to save φ at each integration point.
For that purpose we use the SVARS(Variables) array (where the length Variables is set in the input file)
to save φ in the form

SVARS = [φ1 φ2 φ3 . . . φQ] , (3.24)

where Q is the total number of integration points in the element.
We have also used the PNEWDT time-step control feature of ABAQUS. PNEWDT as defined by the ABAQUS/-

Standard (2013) documentation is “Ratio of suggested new time increment to the time increment currently
being used.” If PNEWDT is set less than 1.0, ABAQUS will abandon the current increment and start over with
a new time increment DTIME of DTIME×PNEWDT for the next time increment. If PNEWDT is set greater than
1.0, and the increment converges, ABAQUS may increase the next time increment DTIME by DTIME×PNEWDT.
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In this work we make extensive use of PNEWDT, it is used for both general time incrementation as well as con-
stitutive time incrementation. An example of constitutive time incrementation is limiting the local change in
the polymer volume fraction φ in a given time step. Also, if a displacement increment, or chemical potential
increment is too large PNEWDT is used to decrease the time increment. Further details may be found in the
source code.

We have implemented our theory in ABAQUS/Standard (2013) by writing a user element subroutine
(UEL) by writing three different elements:

(i) a 2D plane-strain 4-node linear isoparametric quadrilateral which we refer to as UPE4;

(ii) a 2D axisymmetric 4-node linear isoparametric quadrilateral which we refer to as UAX4; and

(iii) a 3D 8-node linear isoparametric brick which we refer to as U3D8.

Additional details regarding the user elements is provided in an Appendix, Section 6, and the basic element
technology is verified in another Appendix, Section 7.

• The associated online supplemental materials to this paper include a detailed tutorial on generating

an input file, and instructions on running ABAQUS with our UEL. The source code is also provided.

4 Example problems
sec:exampleProblems

To demonstrate the robustness of the developed user element subroutine (UEL), in this section we show a few
illustrative numerical simulation examples for plane strain, axisymmetric, and three-dimensional geometries.
Table 1 lists plausible representative values for the material properties of a polymeric gel at room temperature,
which we have used in our calculations.

Parameter Value

G 0.1MPa

K(= 100G) 10MPa

Ω 1.0×10−4m3/mol

χ 0.1

µ0 0.0 J/mol

D 5× 10−9m2/s

Table 1: Material parameters for a representative elastomeric gel at room temperature. table0

Specifically, the ground state shear modulus for the polymer, G, is chosen to have a value 0.1MPa, and the
bulk modulus K is taken to be two orders of magnitude larger. The volume of a solvent molecule is taken
as Ω = 1.0 × 10−4m3/mol, and the reference chemical potential of the fluid is taken as µ0 = 0.0 J/mol.
Additionally, we have chosen a value of χ = 0.1 for the Flory-Huggins interaction parameter — a value
which is favorable for a high degree of swelling.

Recall that the mobility m in (2.11) is an isotropic function of the stretch and the fluid content. We
assume here that the mobility at a given temperature ϑ is given by2

m =
Dc

Rϑ
, (4.1) app:m1

where D > 0, a constant, represents a diffusion coefficient, and c = cR/J is the fluid concentration measured
in moles of fluid per unit deformed volume. As a representative value in our numerical simulations we take
D = 5× 10−9m2/s.

2At present not much is known experimentally about the precise dependence of m on either the stretch or the fluid content,
we use this simple form to describe our numerical solution procedure.
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4.1 Free-swelling of an axisymmetric cylinder followed by simple compression

between rigid platens

We first consider free-swelling of a cylindrical sample of an initially dry gel, followed by simple compression
of the swollen gel between rigid platens.3 We simulate compression between rigid platens (as opposed to a
simple tension) in order illustrate the use of our UEL with the contact capabilities of ABAQUS.

The initially-dry cylindrical specimen is 5mm in diameter and 5mm tall. In our numerical simulation
we assume an axisymmetric initial cylindrical geometry shown in Fig. ??. Using symmetry, we model only
half of an axisymmetric slice and approximate it by using 175 UAX4 user-elements; the mesh is purposely
chosen to be unstructured. The compression platen (not shown) is modeled as a rigid surface. Finally, to
study frictional boundary effects between the swollen gel and the rigid surface we consider two cases: (i) the
interface between the gel and the platen is frictional with a Coulomb friction coefficient of µfric = 0.05, and
(ii) a frictionless case with µfric = 0.0.

The simulation is broken into two steps: in Step 1 the initially dry gel is allowed to freely swell to a near
equilibrium cylindrical shape, and in Step 2 the rigid platen is moved into the swollen gel to compress it.
The initial condition for the chemical potential of the dry polymer is taken to be

µ(X, t = 0) = µ0 = −14388.57 J/mole. (4.2) muzero

This initial condition is computed using eq. (2.10), with µ0 = 0.0 J/mole, φ = 0.999, ϑ = 298K, Je = 1.0,
and χ = 0.1.4 The boundary conditions are as follows:

• Step 1:

– For the mechanical boundary conditions we prescribe ur = 0 along AD, uz = 0 along AB, while
faces BC and CD are taken to be traction-free. In this step, the rigid surface is sufficiently removed
from the specimen and held fixed.

– For the chemical boundary conditions we prescribe zero flux along AD and AB due to symmetry,
while faces BC and CD are prescribed a time dependent chemical potential

µ̆(t) = µ0 + µ0 exp(−t/td),

where µ0 is the chemical potential of the surrounding solvent and td = 300 s, so that at times t≫ td
the prescribed chemical potential µ̆(t) approaches the value µ0 = 0.0J/mole of the surrounding
solvent.

– The total time allowed for this swelling step is 6 hours. At which point the swelling gel has come
into contact with the rigid platen.

• Step 2:

– For the mechanical boundary conditions, symmetry conditions ur = 0 along AD and uz = 0
along AB are maintained from the previous step, however now the rigid surface is prescribed
an additional downward displacement of 2.5mm over 300 s, and then held fixed in the displaced
position for another 6 hours.

– For the chemical boundary conditions we maintain the zero flux conditions along AD and AB,
however now we add a no flux boundary condition to face CD which is in contact with the rigid
surface. Face BC maintains the boundary condition µ̆ = µ0 with the solvent.

In Fig. ??,

• Figs. (a) and (b) show snapshots of the polymer volume fraction φ plotted on the deformed geometry
in the free-swelling step after 3 hours and 6 hours, respectively, of swelling.

• For the case with a Coulomb friction µfric = 0.05, Figs. (c) and (d) show snapshots of the polymer
volume fraction φ plotted on the deformed geometry after 220s and 6 hours, respectively, in the second
compression step.

3Cai et al. (2010) have recently performed such experiments on an alginate hydrogel.
4We have used φ(X, t = 0)=0.999 rather than 1.0 to eliminate numerical difficulties with the ln(1 − φ) term in (2.10).
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• For the frictionless case µfric = 0.0, Figs. (e) and (f) show snapshots of the polymer volume fraction φ
plotted on the deformed geometry after 220s and 6 hours, respectively, in the second compression step.

The redistribution of the fluid due to the compression is clearly observed in Fig. ?? — an indication of the
coupling between the deformation and diffusion. Also, in the frictional case in the long time limit Fig. ??
(d), the region of low φ (more swollen) near the edges of the gel is due to a region of tensile stress relative
to the surroundings — the “tensile” stress in this region develops due to the friction between the gel and
the platen. In contrast, in the frictionless case, Fig. ?? (f), the distribution of the polymer volume fraction
φ along the direction of compression is much more uniform — as expected.

The force-displacement and force-time curves during Step 2 are shown in Fig. ?? for the frictionless case.5

Since the underlying material model for the polymer is fully elastic, the apparent “stress relaxation” seen in
Fig. ??(b) is due entirely to the out-flux of fluid.

This first illustrative numerical example shows the use of our axisymmetric user-element undergoing large
deformations, transient fluid transport, and frictional contact with a rigid surface.

4.2 Constrained swelling of a bilayer in plane strain

This example problem is modeled after the recent experiments of Yoon et al. (2010) which are similar to the
experiments of Holmes and co-workers (Homles et al., 2011; Pandey and Holmes, 2013). In the experiments
of Yoon et al. (2010) a thin layer of a swellable gel is bonded to a non-swellable elastomer, the gel is allowed
to swell and this causes large bending of the bilayer.

The initial dry geometry is taken to be 100mm long and 5mm tall, with 2.5mm for the swellable gel and
2.5mm for the non-swellable elastomeric substrate. Due to the symmetry of the problem, we only model
one-half of the geometry in the simulation, Fig. ??; we assume that plane strain conditions prevail. The
swellable gel is approximated by 201 UPE4 plane strain user-elements, while the non-swellable elastomer is
approximated by 201 CPE4H 4-node plane strain hybrid elements (built-in ABAQUS elements). The non-
swellable elastomer is modeled as an incompressible Neo-Hookean material with a shear modulus of 50MPa.
The interface between the gel and non-swellable elastomer is taken to be perfectly bonded.

As in the previous example, the initial condition for the chemical potential of the dry swellable gel is
taken to be µ(X, t = 0) = µ0 = −14388.57 J/mol. Referring to Fig. ??, for the mechanical boundary
conditions we impose symmetry along the symmetry plane of the beam (face AD), and pin the node at point
A to avoid rigid body motion. The free end of the beam (face BC) is constrained to remain planar, and all
other faces are traction free. For the chemical boundary conditions we prescribe no flux along the plane of
symmetry AD. The top face of the beam CD is prescribed a uniform time dependent chemical potential of
µ̆(t) = µ0 + µ0 exp(−t/td), with td = 300 s.

Figs. ?? (a), (b), (c), and (d) show snapshots of the polymer volume fraction φ on the deformed beam
after 15 minutes, 30 minutes, 1 hour, and 6 hours, respectively.6

This numerical example shows the use of our plane strain user elements in conjunction with built-in
ABAQUS plane-strain elements.

4.3 Swelling induced three-dimensional buckling of constrained cylindrical tubes

This final example problem is modeled after the recent experiments conducted by Lee et al. (2012) on hydrogel
tubes. Their experiments consisted of cylidrical tubes of hydrogels which were mechanically constrained on
one end, while the other end was placed in contact with a fluid and allowed to swell and possibly buckle.
In their experiments Lee et al. (2012) varied the geometry of their tubes and found that varying the wall
thickness, radii, and heights of their tubes resulted in the formation of different “buckled” patterns to form
on the swollen ends of their hydrogel tubes.

Due to the nature of the experimentally-observed three-dimensional buckled patterns, we model the body
in three dimensions. Fig. ?? shows the basic geometry under consideration, a tube with outer diameter D0,
wall thickness t0, and height H0 in the initial dry configuration. We consider two initial geometries:

{D0, t0, H0} = {4.636, 0.206, 0.6}mm and {4.636, 0.309, 1.2}mm

5The corresponding curves for the frictional case are not much different.
6Note that since we model only half the geometry in the finite element simulation, the self contact shown in Fig. ??(d) is

modeled by the use of a rigid surface which is not shown in this figure.
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for our numerical simulations. These dimensions were chosen to provide two distinct swollen shapes similar
to those reported in the recent paper of Lee et al. (2012). Guided by the (approximate) symmetry observed
in their experiments, we model only 1/4 of the geometry. The initial meshes are shown in Fig. ??, they
consist of 2720, and 6840 U3D8 8-node brick elements with 4 and 6 elements through the thickness for the
“short” and “tall” geometries, respectively. In order to aid the initiation of buckling, all nodes on the front
face of the cylindrical body were given a small random geometric imperfection on the order 10−2mm times
a random number in the height dimension.

As in the previous examples, the initial condition for the chemical potential of the dry swellable gel
is taken to be µ(X, t = 0) = µ0 = −14388.57 J/mole. For the mechanical boundary conditions, referring
to Fig. ??, we assume that the back face is held fixed, all symmetry planes are prescribed appropriate
symmetry conditions, and the remaining faces are traction free. For the chemical boundary conditions, we
assume that only the front face is in contact with the fluid, and prescribe µ̆(t) = µ0 + µ0 exp(−t/td) with
td = 300 s while all other faces are flux free.

Fig. ?? shows contours of the polymer volume fraction on the deformation body after 215s, 250s, and
900s, for (a) the “short-thin” tube and (b) the “tall-thick” tube. These shapes resemble those observed
experimental by Lee et al. (2012), and we note that the initial geometry in Fig. ??(a) results in a ”buckled”
pattern, while the initial geometry in Fig. ??(b) results in an axisymetrically swollen tube.

These simulation results show that our three-dimensional user-element is able to capture the differing
deformed shapes in the two geometries.

5 Concluding remarks
sec:conclusion

The coupled theory of Chester and Anand (2011) for fluid permeation and large deformations of elastomeric
gels is implemented as a user-defined element (UEL) subroutine in ABAQUS/Standard (2013). The numer-
ical solution procedure employing a user element (UEL) in ABAQUS is discussed in significant detail, and
the online supplemental materials to this paper include a detailed tutorial on generating an input file,
and instructions on running ABAQUS with our UEL. The source code is also provided.

It is hoped that the details of the numerical implementation of the particular coupled diffusion-deformation
theory for gels provided here, will also facilitate the numerical implementation of other coupled multi-physics
theories within the ABAQUS framework via user elements.

Indeed, the finite element framework described here has already proven useful in the numerical implemen-
tation of a variety of other theories in ABAQUS: (a) gradient plasticity (Anand et al., 2012); (b) oxide growth
in thermal barrier coatings (Loeffel et al., 2013; Al-Athel et al., 2013); (c) dielectric elastomers (Henann et
al., 2013); (d) surface tension in soft materials (Henann and Bertoldi, 2013); and (e) hydrogen transport in
metals (Di Leo and Anand, 2013).
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6 Appendix: Isoparametric elements
appendix1

6.1 Basic element technology

Typically, in finite element formulations the volume (meaning non-surface) contribution to the displacement
residual (3.7)1 is evaluated in matrix form

Ru =

∫

Be

B⊤Tdv, (6.1) residualMatrixForm
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and often referred to as the internal force vector. Here we have used matrix notation, where Ru is the
element displacement residual vector, B the standard “B-matrix” (often referred to as the symmetric discrete
gradient matrix), and T the Cauchy “stress vector.” In the following sections specific forms for Ru, B , and
T are provided for plane strain, axisymmetric, and three dimensional elements. Further, the corresponding
displacement tangent (3.9) is often evaluated in the form

Kuu =

∫

Be

G⊤AG dv, (6.2) KuuMatrixForm

with G the non-symmetric discrete gradient matrix, and A the matrix form of the spatial tangent modulus
A. Details also to follow for the specific element types considered.

Remark. The lengthy, but standard, computation for the displacement residual (3.9) is presented here fortangentremark
completeness. Restating the displacement residual

RA
ui

= −

∫

Be

(
∂NA

∂xj
Tij

)

dv.

Now, using the identities dv = JdvR, the definition of the Kirchhoff stress τ = JT = TRF
⊤, together with

the identity F−⊤∇ϕ = gradϕ for a scalar field ϕ, we may recast the residual in the referential form

RA
ui

= −

∫

Be

∂NA

∂Xa
F−1
aj τijdvR. (6.3)

Now, using (3.8)1, and the identities

Fmn = δmn +
∑

uBm
∂NB

∂Xn
,

∂F−1
ji

∂Fkl
= −F−1

li F
−1

jk ,
∂NA

∂Xa
= Fja

∂NA

∂xa
, and

∂NB

∂Xn
= Fln

∂NB

∂xl
,

we have

KAB
uiuk

= −
∂RA

ui

∂uBk

=

∫

Be

∂NA

∂Xa

(

∂F−1
aj

∂Fmn
τij + F−1

aj

∂τij
∂Fmn

)

∂Fmn

∂uBk
dvR

=

∫

Be

∂NA

∂Xa

(

∂F−1
aj

∂Fmn
τij + F−1

aj

∂τij
∂Fmn

)

∂NB

∂Xn
δmkdvR

=

∫

Be

∂NA

∂Xa

(

−F−1

njF
−1

amτij + F−1
aj

∂τij
∂Fmn

)
∂NB

∂Xn
δmkdvR

=

∫

Be

∂NA

∂Xa

(

−F−1

ak F
−1
nj τij + F−1

aj

∂τij
∂Fkn

)
∂NB

∂Xn
dvR

=

∫

Be

∂NA

∂xj
Fja

(

−F−1

ak F
−1
nj τij + F−1

aj

∂τij
∂Fkn

)

Fln
∂NB

∂xl
dvR

=

∫

Be

∂NA

∂xj

(

−δjkτil + Fln
∂τij
∂Fkn

)
∂NB

∂xl
dvR

=

∫

Be

∂NA

∂xj

(

−J−1δjkτil + J−1Fln
∂τij
∂Fkn

)
∂NB

∂xl
dv (converting the integral back to the deformed body)

=

∫

Be

∂NA

∂xj

(

−J−1δjkτil + J−1FlnFjm
∂TR,im

∂Fkn
+ J−1FlnTR,imδjkδmn

)
∂NB

∂xl
dv

=

∫

Be

∂NA

∂xj

(

−J−1δjkτil + J−1FlnFjm
∂TR,im

∂Fkn
+ J−1δjkτil

)
∂NB

∂xl
dv

=

∫

Be

∂NA

∂xj

(

J−1FlnFjm
∂TR,im

∂Fkn

)
∂NB

∂xl
dv
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or with

Aijkl
def
= J−1FjmFln(AR)imkn, with AR

def
=

∂TR

∂F
(6.4) atang5aa

defining a spatial tangent modulus, we arrive at

KAB
uiuk

=

∫

Be

∂NA

∂xj
(Aijkl)

∂NB

∂xl
dv . (6.5) appentang

To accommodate both compressible and nearly incompressible material behavior and mitigate volumetric

locking behavior, we have implemented the so called F-bar method (de Souza Neto et al., 1996). This method
is based on replacing the deformation gradient suitably such that the incompressibility constraint is enforced
as an approximate average throughout the element, rather than point wise at each integration point. The
method is based on the distortional-volumetric split of the deformation gradient

F = FdisFvol , (6.6)

with
Fdis = J−1/3F, Fvol = J1/31 . (6.7)

To construct the modified deformation gradient at an integration point of interest, we first determine the
deformation gradient at the centroid of the element, denoted by Fc. Then the modified deformation gradient
is constructed as

F̄ =

(
detFc

detF

)1/3

F. (6.8) eqn:FbarDef

Now when computing the stresses at the integration points, the modified deformation gradient F̄ is
substituted in place of F. This has the effect that all the integration points in the element share the same
total volumetric deformation gradient in the element, specifically detFc. This formulation does not change
the integration point residual computation (6.1), simply that F̄ is used to compute the constitutive response,
rather than F. However, the tangent computation (6.2) must be modified to

Kuu =

∫

Be

G
⊤
AG dv

︸ ︷︷ ︸

standard terms

+

∫

Be

G
⊤
Q(G0 − G) dv

︸ ︷︷ ︸

additional terms

, (6.9) eqn:modTangent

with

Q =
1

3
A : (1⊗ 1)−

2

3
T⊗ 1 . (6.10)

We have developed a 4-node quadrilateral two-dimensional plane-strain element, a 4-node quadrilateral
axisymmetric element, and an 8-node brick three-dimensional element. The basic element technology of each
is overviewed in the following subsections.

6.2 2D elements

For the two-dimensional elements developed, the node ordering in the natural coordinates is shown in Fig. ??.
Referring to Fig. ??, the shape functions for the 4-node linear element with respect to the natural coordinates
are given by

N1 =
1

4
(1 − ξ)(1− η)

N2 =
1

4
(1 + ξ)(1− η)

N3 =
1

4
(1 + ξ)(1 + η)

N4 =
1

4
(1 − ξ)(1 + η).
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6.2.1 Plane-strain

For a plane-strain element we have the condition that F33 = 1, and F13 = F31 = F23 = F32 = 0. Also, the
B-matrix is given by

B =










∂N1

∂x1
0

∂N2

∂x1
0 · · ·

∂NM

∂x1
0

0
∂N1

∂x2
0

∂N2

∂x2
· · · 0

∂NM

∂x2
∂N1

∂x2

∂N1

∂x1

∂N2

∂x2

∂N2

∂x1
· · ·

∂NM

∂x2

∂NM

∂x1










(6.11) planeStrainBmat

where M is the total number of nodes in the element, and the stress vector T is given by

T = [T11 T22 T12]
⊤

. (6.12) planeStrainTvec

As mentioned before, to accommodate nearly incompressible material behavior where appropriate we use
the F-bar method of de Souza Neto et al. (1996). Specifically in plane-strain the method reduces to





F̄11 F̄12 0
F̄21 F̄22 0
0 0 1



 =

(
Fc,11Fc,22 − Fc,12Fc,21

F11F22 − F12F21

)1/2




F11 F12 0
F21 F22 0
0 0 1



 , (6.13)

with Fc,ij the deformation gradient at the centroid of the element. Correspondingly, in plane-strain, the
tangent modification (6.9) is now given by

Q =
1

2
A : (1⊗ 1)−

1

2
T⊗ 1 (6.14)

where

[A : (1⊗ 1)] =







A11 +A14 0 0 0 A11 +A14

A21 +A24 0 0 0 A21 +A24

A31 +A34 0 0 0 A31 +A34

A41 +A44 0 0 0 A41 +A44







(6.15)

with
Amn = Aijkl

denoting the matrix representation of A using the following transformation table

m/n
i/k

j/l
1 1 1
2 2 1
3 1 2
4 2 2

and with

[T⊗ 1] =







T11 0 0 0 T11
T21 0 0 0 T21
T12 0 0 0 T12
T22 0 0 0 T22







(6.16)

for the plane-strain formulation. Finally, the standard non-symmetric discrete gradient matrix in (6.9) is
given by

G =














∂N1

∂x1
0

∂N2

∂x1
0 · · ·

∂NM

∂x1
0

0
∂N1

∂x1
0

∂N2

∂x1
· · · 0

∂NM

∂x1
∂N1

∂x2
0

∂N2

∂x2
0 · · ·

∂NM

∂x2
0

0
∂N1

∂x2
0

∂N2

∂x2
· · · 0

∂NM

∂x2














in plane strain with M the total number of nodes.
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6.2.2 Axisymmetric

For an axisymmetric element we have the condition that F13 = F31 = F23 = F32 = 0, and F33 = R/R0.
Furthermore, the integration is now modified such that

∫

Be dxdy →
∫

Be 2πrdrdz. In the numerical imple-
mentation F33 is computed as R/R0, and numerically this is accomplished by

R =
∑

NAxA1 , (6.17)

R0 =
∑

NAXA
1 , (6.18)

where xA1 are the current 1-coordinates of the nodes, and XA
1 are the reference 1-coordinates of the nodes.

Note that this scheme automatically implies that our axisymmetric element formulation assumes the radial
direction is the 1-direction. Also, the B-matrix is given by

B =














∂N1

∂x1
0

∂N2

∂x1
0 · · ·

∂NM

∂x1
0

0
∂N1

∂x2
0

∂N2

∂x2
· · · 0

∂NM

∂x2
∂N1

∂x2

∂N1

∂x1

∂N2

∂x2

∂N2

∂x1
· · ·

∂NM

∂x2

∂NM

∂x1
N1

R
0

N2

R
0 · · ·

NM

R
0














(6.19) axisymmetricBmat

where M is the total number of nodes in the element, and the stress vector T is given by

T = [T11 T22 T12 T33]
⊤

. (6.20) axisymmetricTvec

As mentioned before, to accommodate nearly incompressible material behavior the F-bar method method
of de Souza Neto et al. (1996) is implemented, where the modified deformation gradient is given by (6.8),
viz.,

F̄ =

(
detFc

detF

)1/3

F , (6.21)

where both F33 and Fc33 are computed before applying the F-bar method. The tangents need to be corrected
according to (6.9) with

[A : (1⊗ 1)] =









A11 +A14 +A15 0 0 A11 +A14 + A15 A11 +A14 +A15

A21 +A24 +A25 0 0 A21 +A24 + A25 A21 +A24 +A25

A31 +A34 +A35 0 0 A31 +A34 + A35 A31 +A34 +A35

A41 +A44 +A45 0 0 A41 +A44 + A45 A41 +A44 +A45

A51 +A54 +A55 0 0 A51 +A54 + A55 A51 +A54 +A55









(6.22)

where
Amn = Aijkl

using the following transformation table

m/n
i/k

j/l
1 1 1
2 2 1
3 1 2
4 2 2
5 3 3

and with

[T⊗ 1] =









T11 0 0 T11 T11
T21 0 0 T21 T21
T12 0 0 T12 T12
T22 0 0 T22 T22
T33 0 0 T33 T33









(6.23)
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for the axisymmetric formulation. Finally, the standard non-symmetric discrete gradient matrix in (6.9) is
given by

G =


















∂N1

∂x1
0

∂N2

∂x1
0 · · ·

∂NM

∂x1
0

0
∂N1

∂x1
0

∂N2

∂x1
· · · 0

∂NM

∂x1
∂N1

∂x2
0

∂N2

∂x2
0 · · ·

∂NM

∂x2
0

0
∂N1

∂x2
0

∂N2

∂x2
· · · 0

∂NM

∂x2
N1

R
0

N2

R
0 · · ·

NM

R
0


















with M the total number of nodes.

6.3 Three dimensional element
sec:3DElements

For the three-dimensional 8-node linear brick element developed the node ordering in the natural coordinates
is shown in Fig. ??. Referring to Fig. ??, the shape functions for the 8-node linear brick element with
respect to the natural coordinates are given by

N1 =
1

8
(1− ξ)(1 − η)(1 − ζ), N2 =

1

8
(1 + ξ)(1 − η)(1− ζ),

N3 =
1

8
(1 + ξ)(1 + η)(1 − ζ), N4 =

1

8
(1− ξ)(1 + η)(1− ζ),

N5 =
1

8
(1− ξ)(1 − η)(1 + ζ), N6 =

1

8
(1 + ξ)(1 − η)(1 + ζ),

N7 =
1

8
(1 + ξ)(1 + η)(1 + ζ), N8 =

1

8
(1− ξ)(1 + η)(1 + ζ).

Here the B-matrix is given by

B =
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0 0

0
∂N1
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∂x2
0

0 0
∂N1

∂x3
0 0
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∂x3
∂N1

∂x2

∂N1
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0

∂N2
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∂N2
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∂x2
· · · 0

∂NM

∂x3

∂NM

∂x2
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∂N2

∂x3
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∂N2
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∂NM

∂x3
0

∂NM
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(6.24) 3dBmat

where M is the total number of nodes in the element, and the stress vector T is given by

T = [T11 T22 T33 T12 T23 T13]
⊤ . (6.25) 3dTvec

To accommodate nearly incompressible material behavior the F-bar method of de Souza Neto et al. (1996)
as described above is implemented through

F̄ =

(
detFc

detF

)1/3

F , (6.26)
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The tangents need to be corrected according to (6.9) with

[A : (1⊗ 1)] =
















A11 + A15 +A19 0 0 0 A11 +A15 +A19 0 0 0 A11 +A15 +A19

A21 + A25 +A29 0 0 0 A21 +A25 +A29 0 0 0 A21 +A25 +A29

A31 + A35 +A39 0 0 0 A31 +A35 +A39 0 0 0 A31 +A35 +A39

A41 + A45 +A49 0 0 0 A41 +A45 +A49 0 0 0 A41 +A45 +A49

A51 + A55 +A59 0 0 0 A51 +A55 +A59 0 0 0 A51 +A55 +A59

A61 + A65 +A69 0 0 0 A61 +A65 +A69 0 0 0 A61 +A65 +A69

A71 + A75 +A79 0 0 0 A71 +A75 +A79 0 0 0 A71 +A75 +A79

A81 + A85 +A89 0 0 0 A81 +A85 +A89 0 0 0 A81 +A85 +A89

A91 + A95 +A99 0 0 0 A91 +A95 +A99 0 0 0 A91 +A95 +A99

















(6.27)

where
Amn = Aijkl

using the following transformation table

m/n
i/k

j/l
1 1 1
2 2 1
3 3 1
4 1 2
5 2 2
6 3 2
7 1 3
8 2 3
9 3 3

and with

[T⊗ 1] =

















T11 0 0 0 T11 0 0 0 T11
T21 0 0 0 T21 0 0 0 T21
T31 0 0 0 T31 0 0 0 T31
T12 0 0 0 T12 0 0 0 T12
T22 0 0 0 T22 0 0 0 T22
T32 0 0 0 T32 0 0 0 T32
T13 0 0 0 T13 0 0 0 T13
T23 0 0 0 T23 0 0 0 T23
T33 0 0 0 T33 0 0 0 T33

















(6.28)

for the three-dimensional formulation. Finally, the standard non-symmetric discrete gradient matrix in (6.9)
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is given by

G =
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with M the total number of nodes.

7 Appendix: Verification of the basic element technology
appendix2

Since typical multi-physics problems are difficult to solve analytically, in this section we briefly compare a
few numerical solutions with those that we can compute either analytically or by using an accepted solution
method for a model system. Due to the complexity of the coupling, we consider it sufficient for this paper
to verify the pure deformation problem and the pure diffusion problem, separately.

7.1 The deformation only problem

In the absence of a fluid, the constitutive theory for a compressible neo-Hookean material gives the Cauchy
stress as

T = J−1 [G(B− 1) +K ln(J)1] .

To approximate a nearly incompressible neo-Hookean material we take K = 103G. We use this constitutive
equation to verify our UELs for the deformation only problem. For the corresponding analytical solutions
considered below, we assume complete incompressibility (J = 1) and in this case the corresponding Cauchy
stress for a neo-hookean material is given by

T = GB− P1,

with P a constitutively indeterminate pressure, which is introduced to satisfy the incompressibility constraint.
For simple compression in the e1-direction, the analytical solution for the stress-stretch behavior is given

by
T11 = G(λ2 − λ−1).

This analytical solution is compared against corresponding results computed by using a single U3D8 element,
and a single UAX4 element in Fig. ??(a), in which the solid line represents the analytical solution and the
symbols the numerically calculated results.

In plane strain compression in the e1-direction with no defoemation in the e3-direction, the analytical
solution for the stress-stretch behavior is given by

T11 = G(λ2 − λ−2).
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This analytical solution also compared in Fig. ??(a) against the corresponding result computed by using a
single UPE4 element; the dashed line represents the analytical solution, and the symbols the numerically
calculated result.

Next, we examine the response in simple shear. Fig. ??(b) compares the analytical results for the shear
stress and normal stress difference given by

T12 = Gγ and T11 − T33 = Gγ2,

where γ is the amount of shear, against the numerical results computed using a single U3D8 element. Again,
the solid and dashed lines represent the analytical solutions, and the symbols the numerically calculated
result.

The results shown in Fig. ?? verify our basic element technology when dealing with large mechanical
deformations in the absence of diffusion of the solvent.

7.2 The diffusion only problem

To verify the diffusion component of our finite elements, we use the classical analogy between the diffusion
of a chemical species in a body and the diffusion of heat in a body, and consider the energy balance in a
rigid heat conductors as our governing partial differential equation,

ϑ̇ = α div(grad ϑ),

where α is the thermal diffusivity of the material. We compare results form a UEL implementation for this
problem against the corresponding widely-accepted results obtained from the built-in thermo-mechanical
elements in ABAQUS/Standard (2013). We consider the initial geometry as shown in Fig. ??, with the
initial condition ϑ0 = 300K everywhere in the body. We take the thermal diffusivity α to be a constant
equal to 1×10−6m2/s.

In order to examine the UEL capabilities as thoroughly as possible, we consider the following two-step
simulation;

• In the first step, the body is deformed isothermally using displacement boundary conditions.

• In the second step, the displacement boundary conditions are held fixed, and then the thermal boundary
conditions are changed such that the transient heat equation discussed above is solved on the deformed
body.

Referring to Fig. ??, in the first isothermal deformation step, the nodes along face AD are fixed, while
nodes along face BC are prescribed a displacement to deform the body, while the temperature is still fixed
at 300K everywhere. In the second step, for the mechanical boundary conditions the nodes along faces AD
and BC are held fixed. For the thermal boundary conditions, nodes on face AD held fixed at 300K (the open
circles in Fig. ??) and nodes on face BC (the filled circles in Fig. ??) are ramped from 300K to 350K over
100 s. Further, we prescribe a flux of (i) -0.01W/m2 on the indicated portion of face AB; and (ii) 0.02W/m2

on the indicated portion of face CD. All thermal flux boundary conditions are applied instantaneously at
the start of the step.

The numerical simulation is performed using built-in ABAQUS elements, as well as our user elements for
both plane strain and axisymmetric geometries. Fig. ?? shows the nodal temperature field on the deformed
body after 500 s of simulation time with the outline of the initial body superimposed. Fig. ?? shows the
temperature of the mid-side node on faces AB and CD.

These results verify our basic element technology when dealing with a transient diffusion only problem for
plane strain and axisymmetric geometries. We have performed a similar analysis using our three dimensional
elements, however for brevity, the results are not presented here.
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