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Abstract

The purpose of this brief paper is to present a new derivation of Biot’s theory of linear poroelasticity
[1, 2, 3] in a modern thermodynamically-consistent fashion, and show that it may be deduced as a special
case of a more general theory of chemoelasticity.

1 Introduction

A theory for addressing coupled problems concerning fluid-saturated deformable porous solids with diffusive
fluid transport is of importance for a variety of engineering applications. The classical linear isotropic
poroelasticity theory which accounts for the influence of pore fluid diffusion on the quasi-static deformation
of porous media is due to Biot [1, 2, 3]. For a good recent review of the theory see Lehner [4]. Biot’s theory is
intended to represent the coupled deformation-diffusion response of a material which at a microscopic scale
consists of a porous solid skeleton and a freely moving fluid in a fully-connected pore space. Over the last
forty years the theory has been widely applied to geotechnical problems [5, 6, 7, 8, 9], and it has also been
applied to bone by many authors [10].

The purpose of this brief paper is to present a new derivation of the theory of linear poroelasticity in
a modern thermodynamically-consistent fashion,1 and show that it may be deduced as a special case of a
more general theory of linear chemoelasticity.2 Following Biot, the fluid-solid mixture is treated as a single
homogenized continuum body which allows for a mass flux of the fluid, and not as a multi-component mixture
as in the “theory of mixtures” [12, 13].

In formulating the theory we depart from the traditional formulations of poroelasticity which from the
outset are based on the concept of “pore-pressure.” It has long been recognized, going back to Gibbs [14]
— and substantially later also by Biot [15, 16] and Rudnicki [8] — that the appropriate concept to use is
that of a chemical potential, µ, of the fluid molecules, as is now common in other developments of coupled
deformation-diffusion problems in modern continuum mechanics [11, 17, 18, 19, 20, 21]. As we shall discuss
below, if the chemical potential µ is expressed in units of J/mol, and if the referential value of the molar

volume of the fluid, Ωf
R, is expressed in terms of m3/mol, then a quantity

p
def
=

µ

Ωf
R

which has units of N/m2,

may be identified as a “pore-pressure,” and used to recover a formulation which is identical in form to Biot’s
standard theory of linear poroelasticity.

1This statement is not intended to imply that the widely-used constitutive equations for linear poroelasticity are thermody-
namicaly inconsistent, but instead to reflect the fact that thermodynamics is seldom used consistently in their derivation.

2The linear chemoelasticity theory presented here is itself a specialization of the large deformation theory presented in Gurtin
et al. [11].
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In Sections 2 through 6 we derive and summarize our thermodynamically-consistent small deformation
theory of chemoelasticity. Regarding the constitutive equations, the free energy per unit reference volume,
ψ, will be taken to be a function of the small strain tensor ǫ, and a variable cR which denotes the total
number of moles of the fluid reckoned per unit volume of the reference body. Thermodynamic considerations
will yield the restrictions that the free energy determines the Cauchy stress σ, and the chemical potential,
µ, through the state relations,

σ =
∂ψ̂(ǫ, cR)

∂ǫ
, µ =

∂ψ̂R(ǫ, cR)

∂cR
. (1.1)

Further, with j denoting the fluid molar flux, the constitutive equation for j will be taken to follow a
generalized Fick’s law [22]

j = −M(ǫ, cR)∇µ, (1.2)

where M is a positive-semidefinite fluid mobility tensor.
In Section 7 we shall present a specialization of the general chemoelasticity theory given by (1.1) and

(1.2) for application to linear poroelastic materials. Instead of cR, the specialized constitutive equations will
employ a variable

ζ = Ωf
R
(cR − cR0),

which represents a dimensionless measure of the variation in the fluid content, where cR0 is the initial value
of cR. In this section we also give an extended discussion of the relation of the theory developed here to
Biot’s classical linear theory of isotropic poroelasticity.

We close this paper in Section 8 by summarizing the specialized constitutive theory, and stating the
complete coupled deformation-diffusion initial/boundary-value problem.

2 Kinematics and force and moment balances

We consider a deformable body occupying a (fixed) region B. The deformed body is denoted by B. We
restrict attention to isothermal situations and small deformations, and since time scales associated with
fluid diffusion are usually considerably longer than those associated with wave propagation, we neglect all

inertial effects.
We take as the starting point the kinematical assumptions of the linear theory of elasticity. As in the

theory of linear elasticity, x denotes a material point in B, ∇ and div denote the gradient and divergence
with respect to x. We use the following notation:

• u(x, t) displacement field of B;

• ∇u(x, t) displacement gradient in B;

• ǫ(x, t) = (1/2)
(
∇u(x, t) + (∇u(x, t))⊤

)
, strain in B;

• σ(x, t) stress;

• b(x, t) (non-intertial) body force field on B,

and recall the following standard relations for force and moment balances from the theory of linear elasticity,
which are also valid for the theory considered here,

divσ + b = 0, σ = σ
⊤. (2.1)
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3 Balance law for the diffusing fluid

Throughout, we denote by P an arbitrary part of the reference body B with n the outward unit normal on
∂P. Let

cR(x, t) (3.1)

denote the total number of moles of fluid per unit reference volume. Changes in cR in a part P are brought
about by diffusion across the boundary ∂P, which is characterized by a flux j(x, t), the number of moles of
diffusing fluid measured per unit area per unit time, so that

−

∫

∂P

j · n da

represents the number of moles of the diffusing fluid entering P across ∂P per unit time. The balance law
for the diffusing fluid therefore takes the form

˙∫

P

cR dv = −

∫

∂P

j · n da, (3.2)

for every part P. Bringing the time derivative in (3.2) inside the integral and using the divergence theorem
on the integral over ∂P, we find that ∫

P

(ċR + divj) dv = 0. (3.3)

Since P is arbitrary, this leads to the following local balance,

ċR = −divj. (3.4)

4 Free-energy imbalance

We develop the theory within a framework that accounts for the first two laws of thermodynamics. For
isothermal processes the first two laws collapse into a single dissipation inequality which asserts that temporal
changes in free energy of a part P be not greater than the power expended on P, plus the flux of energy
carried into P.

Thus, let ψ(x, t) denote the free energy density per unit reference volume. Then, neglecting inertial
effects, the free-energy imbalance under isothermal conditions requires that for each part P of B,

·
∫

P

ψ dv ≤

∫

∂P

σn · u̇ da +

∫

P

b · u̇ dv −

∫

∂P

µ j · nda, (4.1)

where the left hand side of (4.1) represents the rate of change of the free energy of the part P, and the right
hand side represents the the power expended on P by the surface tractions and body force, plus the flux of
energy carried into P by the flux j of diffusing fluid, where to characterize the energy carried into part P by
fluid transport, we have introduced a chemical potential field µ(x, t). It is a primitive quantity that enters
the theory through the manner in which it appears in the basic law expressing the balance of energy (cf.
Gurtin et al. [11]).

Bringing the time derivative in (4.1) inside the integral and using the divergence theorem on the integrals
over ∂P gives ∫

P

(

ψ̇ − σ : ǫ̇−
(
divσ + b

)
· u̇+ µ divj+ j · ∇µ

)

dv ≤ 0. (4.2)

Thus, (4.2), balance of forces (2.1)1, fluid balance (3.4), and the arbitrary nature of P, together yield the
following local form of the free-energy imbalance,

ψ̇ − σ : ǫ̇− µ ċR + j · ∇µ ≤ 0. (4.3)
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5 Constitutive equations

Guided by the free-energy imblance (4.3) we introduce the following constitutive response functions for the
free energy ψ, the stress σ, the chemical potential µ, and the fluid flux j, when the strain ǫ and the fluid
concentration cR are known:

ψ = ψ̂(ǫ, cR),

σ = σ̂(ǫ, cR),

µ = µ̂(ǫ, cR).







(5.1)

To these constitutive equations we append a simple Fick’s law [22] for the fluid flux,

j = −M∇µ, with M = M̂(ǫ, cR) (5.2)

the fluid mobility tensor.

5.1 Thermodynamic restrictions

The free energy imbalance (4.3) restricts the constitutive equations. By (5.1)1,

ψ̇ =
∂ψ̂(ǫ, cR)

∂ǫ
: ǫ̇+

∂ψ̂(ǫ, cR)

∂cR
ċR. (5.3)

Hence, the free-energy imbalance (4.3) is equivalent to the requirement that

[
∂ψ̂(ǫ, cR)

∂ǫ
− σ̂(ǫ, cR)

]

: ǫ̇+

[
∂ψ̂(ǫ, cR)

∂cR
− µ̂(ǫ, cR)

]

ċR

−∇µ · M̂(ǫ, cR)∇µ ≤ 0

(5.4)

for all strain, fluid concentration, and chemical potential fields. Given any point x0 in B and any time t0, it
is possible to find a strain and a fluid concentration field such that

ǫ, ǫ̇, cR, and ċR (5.5)

have arbitrarily prescribed values at (x0, t0). Granted this, the coefficients of ǫ̇ and ċR must vanish, for
otherwise these rates may be chosen to violate the inequality (5.4). We therefore have the thermodynamic
restrictions:

(i) The free energy determines the stress through the stress relation,

σ = σ̂(ǫ, cR) =
∂ψ̂(ǫ, cR)

∂ǫ
. (5.6)

(ii) The free energy determines the chemical potential through the chemical potential relation,

µ = µ̂(ǫ, cR) =
∂ψ̂(ǫ, cR)

∂cR
. (5.7)

(iii) The fluid flux satisfies the fluid-transport inequality,

∇µ · M̂(ǫ, cR)∇µ ≥ 0 for all (ǫ, cR,∇µ); (5.8)

thus the mobility tensor M is positive semi-definite.

Lallit Anand Paper No. JAM-15-1334 4



5.2 Consequences of the thermodynamic restrictions

By (5.3), (5.6), and (5.7), we have the Gibbs relation

ψ̇ = σ : ǫ̇+ µċR, (5.9)

while (5.6) and (5.7) yield the Maxwell relation

∂σ̂(ǫ, cR)

∂cR
=
∂µ̂(ǫ, cR)

∂ǫ
. (5.10)

Let ǫ(t) be a time-dependent strain tensor, let cR(t) be a time-dependent fluid concentration, and write

σ(t) = σ̂(ǫ(t), cR(t)).

The chain-rule then yields the relation,

σ̇ =
∂σ̂(ǫ, cR)

∂ǫ
ǫ̇+

∂σ̂(ǫ, cR)

∂cR
ċR,

which suggets the introduction of two constitutive moduli:

• The fourth-order elasticity tensor C(ǫ, cR) defined by

C(ǫ, cR) =
∂σ̂(ǫ, cR)

∂ǫ
=
∂2ψ̂(ǫ, cR)

∂ǫ2
(at fixed cR). (5.11)

The elasticity tensor C represents elastic moduli under conditions in which cR is held constant, that is
conditions under which the fluid is constrained from flowing in or out of the body during deformation.
In the poroelasticity literature conditions under which cR is constant are called undrained (cf. Rice and
Cleary [5]), and accordingly we call C the undrained elasticity tensor. In practice, undrained conditions
are approached for deformations which are rapid (though quasi-static) relative to the time-scale for
fluid diffusion.

• The second-order stress-chemistry tensor S(ǫ, cR) defined by

S(ǫ, cR) =
∂σ̂(ǫ, cR)

∂cR
=
∂2ψ̂(ǫ, cR)

∂ǫ∂cR
. (5.12)

For each (ǫ, cR), the elasticity tensor C(ǫ, cR) — a linear transformation that maps symmetric tensors to
symmetric tensors — has the minor symmetry properties

Cijkl = Cjikl = Cijlk , (5.13)

as well as the major symmetry property
Cijkl = Cklij . (5.14)

Further, since the stress σ is symmetric, we may conclude from (5.12) that the stress-chemistry modulus
S(ǫ, cR) is a symmetric tensor; this tensor measures the marginal change in stress due to a change in
concentration holding the strain fixed.

Proceeding as above, let

µ(t) = µ̂(ǫ(t), cR(t)).

Then, by the chain rule, (5.10) and (5.12),

µ̇ =
∂µ̂(ǫ, cR)

∂ǫ
: ǫ̇+

∂µ̂(ǫ, cR)

∂cR
ċR,

= S(ǫ, cR) : ǫ̇+
∂µ̂(ǫ, cR)

∂cR
ċR.

This suggests the introduction of
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• a scalar chemistry modulus Λ(ǫ, cR) defined by

Λ(ǫ, cR) =
∂µ̂(ǫ, cR)

∂cR
. (5.15)

Unless specified otherwise, we assume that the chemistry modulus is strictly positive for all (ǫ, cR),
3

Λ(ǫ, cR) > 0. (5.16)

5.3 Chemical potential as independent variable

For problems involving little or no fluid diffusion, the strain ǫ and the concentration cR are the natural
choice of independent constitutive variables. However, for processes that occur over long time scales so that
fluid diffusion is important, it is often preferable to replace constitutive dependence upon cR by constitutive
dependence upon the chemical potential µ.

Note from (5.15) and (5.16) that we have assumed that

∂µ̂(ǫ, cR)

∂cR
> 0. (5.17)

This allows us to conclude that, for each fixed ǫ, the relation

µ = µ̂(ǫ, cR) (5.18)

is smoothly invertible in cR, so that
cR = c̆R(ǫ, µ). (5.19)

Let
ω

def
= ψ − cRµ (5.20)

define a grand-canonical energy per unit reference volume [11]. Then,

ω = ω̆(ǫ, µ)

= ψ̂(ǫ, c̆R(ǫ, µ))− c̆R(ǫ, µ)µ, (5.21)

while (5.6) yields

σ = σ̂(ǫ, cR) (5.22)

= σ̆(ǫ, c̆R(ǫ, µ)). (5.23)

Thus, bearing in mind that a “breve” denotes a function of (ǫ, µ) while a “hat” denotes a function of (ǫ, cR),
we find, using (5.6) and (5.7), that

∂ω̆

∂ǫ
=
∂ψ̂

∂ǫ
+

(
∂ψ̂

∂cR
− µ

)

︸ ︷︷ ︸

=0

∂c̆R
∂ǫ

= σ̆,

and

∂ω̆

∂µ
=

(
∂ψ̂

∂cR
− µ

)

︸ ︷︷ ︸

=0

∂c̆R
∂µ

− c̆R = −c̆R.

3This assumption does not hold for phase-separating materials.
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The stress and the fluid concentration are therefore determined by the response function ω = ω̆(ǫ, µ) via the
relations

σ = σ̆(ǫ, µ) =
∂ω̆(ǫ, µ)

∂ǫ
,

cR = c̆R(ǫ, µ) = −
∂ω̆(ǫ, µ)

∂µ
.







(5.24)

An immediate consequence of (5.24) is the Gibbs relation

ω̇ = σ : ǫ̇− cRµ̇, (5.25)

and the Maxwell relation
∂σ̆(ǫ, µ)

∂µ
= −

∂c̆R(ǫ, µ)

∂ǫ
. (5.26)

The undrained elasticity and stress-chemistry tensors C(ǫ, cR) and S(ǫ, cR) have natural counterparts in
the theory with chemical potential as independent variable; they are the elasticity tensor

C
dr(ǫ, µ) =

∂σ̆(ǫ, µ)

∂ǫ
(at fixed µ), (5.27)

and the stress-chemical potential modulus

Sdr(ǫ, µ) =
∂σ̆(ǫ, µ)

∂µ
(at fixed ǫ). (5.28)

The elasticity tensor C
dr represents the elastic moduli under conditions in which the chemical potential is

held constant, and the fluid is not constrained from flowing in or out of the body during deformation. In the
poroelasticity literature such conditions are called drained (cf. Rice and Cleary [5]), and accordingly we call
C

dr the drained elasticity tensor. A “drained” response is attained for deformations that are slow relative to
the time scale of fluid diffusion.

By (5.24)1 and (5.27),

C
dr(ǫ, µ) =

∂2ω̆(ǫ, µ)

∂ǫ2
, (5.29)

while the Maxwell relation (5.26) implies that

Sdr(ǫ, µ) = −
∂c̆R(ǫ, µ)

∂ǫ
. (5.30)

We now determine relations between these various material functions. Toward this end, we note, by
(5.19), that we may relate the alternative descriptions of the stress in terms of (ǫ, cR) and (ǫ, µ) via

σ̆(ǫ, µ) = σ̂(ǫ, c̆R(ǫ, µ)).

Thus, by (5.28)

Sdr =
∂σ

∂µ

=
∂σ̂

∂cR

∂c̆R
∂µ

,

and, using (5.12) and (5.15), we conclude that the stress-chemical potential and stress-chemistry moduli are
related via

Sdr(ǫ, µ) =
1

Λ(ǫ, cR)
S(ǫ, cR), (5.31)

for cR = c̆R(ǫ, µ).
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The relation between the elasticity tensor C
dr at fixed chemical potential to the elasticity tensor C at

fixed concentration is based on computing the partial derivative

C
dr(ǫ, µ) =

∂σ̆(ǫ, µ)

∂ǫ

=
∂

∂ǫ

(

σ̂(ǫ, c̆R(ǫ, µ))

)

with respect to ǫ holding µ fixed. Suppressing arguments and using components, this derivative of σ̂(ǫ, c̆R(ǫ, µ))
is given by

∂(σ̂)ij
∂ǫkl

+
∂(σ̂)ij
∂cR

∂c̆R
∂ǫkl

.

Thus, since the term

∂(σ̂)ij
∂cR

∂c̆R
∂ǫkl

is the component form of
∂σ̂

∂cR
⊗
∂c̆R
∂ǫ

we find, with the aid of (5.11), (5.12), (5.30) and (5.31), that

C
dr(ǫ, µ) = C(ǫ, cR)−

1

Λ(ǫ, cR)
S(ǫ, cR)⊗ S(ǫ, cR), (5.32)

for cR = c̆R(ǫ, µ); equivalently, in components, suppressing arguments,

Cdr

ijkl = Cijkl −
1

Λ
SijSkl. (5.33)

The identity (5.32) has two important consequence. First, given symmetric tensors A and G

A : (S⊗ S)G = (A :S)(S :G) (5.34)

= G : (S⊗ S)A. (5.35)

Thus, since C is symmetric and since the fourth-order tensor S ⊗ S is symmetric, the tensor C
dr is also

symmetric. Further, by (5.32) and (5.34),

A :C(ǫ, cR)A−A :Cdr(ǫ, µ)A =
1

Λ
(A :S)2,

for any tensor A, and, since Λ is positive,

A :C(ǫ, cR)A > A :Cdr(ǫ, µ)A for all A 6= 0. (5.36)

Thus C is positive-definite whenever Cdr is positive definite. We assume henceforth that both C
dr and C are

positive definite.4

Remark. The elasticity tensors Cdr and C are directly analogous to the the elasticity tensor at fixed tem-
perature and the elasticity tensor at fixed entropy, respectively, in the theory of thermoelasticity (cf., e.g.,
Gurtin et al. [11]) — an analogy which is well-known in the poroelasticity literature (cf., e.g., Rice and
Cleary [5]; Lehner [4]).

4Positive-definiteness is a condition sufficient to ensure that these elasticity tensors are invertible.
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6 Linear chemoelasticity

Guided by the discussion in the previous section, we next consider a linear theory. With the strain-
displacement relation given by

ǫ =
1

2
(∇u+ (∇u)⊤), (6.1)

and using the strain ǫ and the concentration cR as the governing variables, we take the constitutive equations
in the linear theory to be given by

ψ = µ0 (cR − cR0) +
1

2
ǫ :Cǫ+ (cR − cR0)S : ǫ+

1

2
Λ(cR − cR0)

2,

σ = Cǫ+ S(cR − cR0),

µ = µ0 + S : ǫ+ Λ(cR − cR0),

j = −M∇µ,







(6.2)

where C, S, Λ, and M are, respectively, the undrained elasticity tensor, the stress-chemistry modulus, the
chemistry modulus, and the fluid mobility tensor at the reference concentration cR0. Also, µ0 is a reference
chemical potential, and the reference configuration is taken to be stress-free.

By (5.13), (5.14), and (5.36), the undrained elasticity tensor C is symmetric and positive-definite, and
by (5.16) Λ is positive. Finally, by (5.8), the mobility tensor M is positive-semidefinite; we strengthen this
by requiring that M be positive-definite:

a ·Ma > 0 for all vectors a 6= 0. (6.3)

The basic equations of the linear theory of chemoelasticity consist of the strain-displacement relation
(6.1), the constitutive equations (6.2), the local force balance

div[Cǫ+ S(cR − cR0)] + b = 0, (6.4)

and the local fluid balance
ċR = div(M∇µ). (6.5)

6.1 Isotropic linear chemoelasticity

If the body is isotropic, then C, S, and M have the specific forms

C = 2GIsym + λ1⊗ 1,

S = β1,

M = m1,







(6.6)

where Isym is the fourth order identity tensor which maps tensors to their symmetric counterparts, and
with G and λ elastic moduli, β the stress-chemistry modulus, and m the fluid mobility.5

Next, we determine the restrictions placed on the moduli G and λ by the requirement that the elasticity
tensor C be positive-definite. Choose an arbitrary symmetric tensor A and let A′ denote its deviatoric part:

A′ = A−
1

3
(trA)1.

Then trA′ = 0 and

|A|2 = (A′ +
1

3
(trA)1) : (A′ +

1

3
(trA)1)

= |A′|2 +
1

3
(trA)2.

5These results follow from standard representation theorems for isotropic functions.
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Thus, the positive-definiteness of C and (6.6)1 require that

0 < A :CA

= 2G|A|2 + λ(trA)2

= 2G|A′|2 +K(trA)2, (6.7)

with
K = λ+ 2

3
G. (6.8)

Choosing A = 1 (so that trA = 3 and A′ = 0) yields K > 0; choosing A = e ⊗ f + f ⊗ e with e and f

orthonormal (so that trA = 0 and |A′|2 = 2) yields G > 0. Thus, the elastic moduli G and λ satisfy

G > 0, λ+
2

3
G > 0. (6.9)

The scalars G and λ are generally referred to as Lamé moduli . In view of (6.8), the relation (6.6)1 may
alternatively be written in terms of the scalars G and K as

C = 2G(Isym −
1

3
1⊗ 1) +K1⊗ 1. (6.10)

Since C is the undrained elasticity tensor, G is the undrained shear modulus, while K is the undrained bulk

modulus.
Further, since, by (6.3), M is positive-definite, the fluid mobility m must be positive,

m > 0. (6.11)

By (6.2) and (6.6), the defining constitutive equations for an isotropic linear chemoelastic solid are

ψ = µ0 (cR − cR0) +G|ǫ|2 +
λ

2
(trǫ)2 + β(cR − cR0)(trǫ) +

1

2
Λ(cR − cR0)

2,

σ = 2Gǫ+ λ(trǫ)1+ β(cR − cR0)1,

µ = µ0 + β(trǫ) + Λ(cR − cR0),

j = −m∇µ.







(6.12)

Granted (6.9), the stress-strain relation (6.12)2 may be inverted to give

ǫ =
1

2G

(

σ −
λ

2G+ 3λ
(trσ)1

)

+ κ(cR − cR0)1, (6.13)

where

κ
def
= −

β

2G+ 3λ
(6.14)

is the coefficient of chemical expansion. Thus, using (6.8), the stress-chemistry modulus β is related to the
undrained bulk modulus K and the coefficient of chemical expansion κ by

β = −3Kκ. (6.15)

Recall from (5.32) that the drained elasticity tensor Cdr is related to the undrained elastic tensor C by

C
dr(ǫ, µ) = C(ǫ, cR)−

1

Λ(ǫ, cR)
S(ǫ, cR)⊗ S(ǫ, cR). (6.16)

Thus, using (6.7) and (6.15),

C
dr = 2G

(

Isym −
1

3
1⊗ 1

)

+Kdr1⊗ 1, (6.17)

where

Kdr = K −
β2

Λ
= K

(

1−
9Kκ2

Λ

)

. (6.18)
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• The undrained and drained shear moduli are therefore identical, while the drained bulk modulus Kdr is

related to the undrained bulk modulus K through (6.18).

Also, from (6.6)2 and (5.31),

Sdr =
β

Λ
1, (6.19)

so that

σ = C
dr
ǫ+ Sdr(µ− µ0),

= 2Gǫ+ λdr(trǫ)1+
β

Λ
(µ− µ0)1,

(6.20)

with

λdr
def
= Kdr −

2

3
G, (6.21)

a drained Laḿe modulus. Also, from (6.12)3

cR − cR0 = −
β

Λ
(trǫ) +

1

Λ
(µ− µ0). (6.22)

Thus the constitutive equations for isotropic linear chemoelasticity, with ǫ and µ as independent variables,
are given by

ω = −cR0(µ− µ0) +G|ǫ|2 +
λdr

2
(trǫ)2 +

β

Λ
(µ− µ0)trǫ−

1

2

1

Λ
(µ− µ0)

2,

σ = 2Gǫ+ λdr(trǫ)1+
β

Λ
(µ− µ0)1,

cR = cR0 −
β

Λ
(trǫ) +

1

Λ
(µ− µ0),

j = −m∇µ.







(6.23)

Next, when B is homogeneous and isotropic, then G, λdr, β, Λ, and m are constants. In this case, since

2divǫ = div(∇u+ (∇u)⊤) = ∆u+∇divu,

and

div[(trǫ)1] = div[(divu)1] = ∇divu,

the force balance (2.1) and (6.23)2 yield

G△u+ (λdr +G)∇divu+
β

Λ
∇µ+ b = 0. (6.24)

Further, the fluid balance (3.4) and (6.23)3 yield

1

Λ
µ̇ = m∆µ+

β

Λ
divu̇. (6.25)

Remark. The system of coupled partial differential equations (6.24) and (6.25) for isotropic linear chemoe-
lasticity are formally equivalent to those for the classical coupled theory of isotropic linear thermoelasticity

(cf., e.g., Gurtin et al. [11]). In that context, µ denotes the temperature, (1/Λ) > 0 is the heat capacity, and
m > 0 is the thermal conductivity. There, the term (β/Λ)∇µ arises from the thermal stress, and the term
(β/Λ) divu̇ corresponds to the internal heating due to the dilatation rate. In thermoelasticity, a simplifying
approximation which is often adopted to facilitate the solution of problems, is to neglect the coupling term
(β/Λ) divu̇ in the partial differential equation (6.25). Under this approximation, the resulting theory is
referred to as the weakly coupled theory of isotropic linear thermoelasticity.
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7 Isotropic linear poroelasticity

In this section we specialize the linear chemoelasticity theory discussed in the previous section to model
linear poroelastic materials. Thus, B now represents a deformable porous medium.

For a porous body a “material point” x ∈ B is an infinitesimal element of volume which is assumed to be
large enough to be representative of the material, but small enough so that the strains and stresses in this
infinitesimal volume are adequately approximated to be homogeneous.

We begin by introducing some definitions essential to the theory of linear poroelasticity:

• of porosity:

An infinitesimal volume element dvR of the reference porous body B, is mapped to a volume

dv = JdvR in B, (7.1)

where, as is standard, for small deformations

J
.
= 1 + trǫ. (7.2)

Let dvpore denote the volume of the connected pores in dv,6 and let

φ
def
=

dvpore

dv
in B (7.3)

denote the of porosity in the deformed body; note that φ ∈ [0, 1).

Using (7.1) we define a referential measure of the porosity by

φR

def
=
dvpore

dvR

≡ Jφ, (7.4)

and denote its initial value by
φR0 ≡ φ0. (7.5)

• Molar mass, mass density, molar volume of fluid:

We denote the molar mass of the fluid by Mf , its mass density by ρf , and its molar volume by
Ωf = Mf/ρf . Correspondingly, the constant referential molar volume Ωf

R is the molar mass Mf

divided by the constant referential mass density ρfR.

• Concentration of fluid:

In poroelasticity

– the fine-scale pore space of the material is typically assumed to be fully saturated with the fluid.

Under this assumption the amount of fluid in terms of number of moles of the fluid per unit volume of
the deformed body is

c =
φ

Ωf
mol/m3 in B. (7.6)

Then,

cR
def
= J c =

φR

Ωf
, in B, (7.7)

represents the number of moles of the fluid per unit reference volume. The initial value of cR is

cR0 =
φR0

Ωf
R

≡
φ0

Ωf
R

. (7.8)

6Not occluded pores.
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• Mass content of fluid:

The referential fluid mass content is defined by

mf
R

def
= Mf cR = ρfΩfcR = ρf φR. (7.9)

The initial value of mf
R is

mf
R0

def
= MfcR0 = ρf

R
Ωf

R
cR0 = ρf

R
φR0. (7.10)

• Variation of fluid content:

The dimensionless quantity

ζ
def
=

(

mf
R −mf

R0

ρfR

)

,

≡
Mf

ρfR
(cR − cR0),

≡ Ωf
R
(cR − cR0).

(7.11)

represents a normalized measure of the variation of the fluid mass content. Consistent with the termi-
nology in the poroelasticity literature, we call ζ the variation of fluid content.

The quantity ζ may alternatively be expressed as

ζ ≡

(

mf
R −mf

R0

ρfR

)

=

(
ρf

ρfR

)

φR − φR0. (7.12)

Hence, note that

– ζ accounts for a change in the of pores, as well as a change in the density of the fluid.

Remark. The quantity

Js def
= 1 + Ωf

R
(cR − cR0), (7.13)

represents a volumetric swelling-ratio due to the change in concentration of the fluid molecules in the
body. Note that in general J is different from Js due to additional mechanical deformation. Thus,

ζ
def
= Js − 1 = Ωf

R
(cR − cR0) (7.14)

also represents a measure of volumetric strain caused by the insertion of the fluid molecules in the
body.

7.1 Biot’s theory

In this section we show that Biot’s classical theory of linear isotropic poroelasticity [1, 2, 3], may be obtained
as a special case of the linear isotropic chemoelasticity theory detailed in the previous section. Thus, consider
a free energy function of the form,

ψ = µ0(cR − cR0) +G|ǫ′|2 +
1

2
K (trǫ)2 − αM (trǫ)ζ +

1

2
Mζ2. (7.15)

For the free energy (7.15), eqs. (5.6) and (5.7) give the stress and chemical potential as

σ = 2Gǫ+ (K − (2/3)G)(trǫ)1− αMζ 1,

µ = µ0 +Ωf
R
(−αM (trǫ) +Mζ ) .

}

(7.16)

Lallit Anand Paper No. JAM-15-1334 13



Comparing (7.15) and (7.16) to (6.12), the undrained elasticity tensor has the same form as discussed
previously in (6.10), while the stress-chemistry modulus β, and chemistry modulus Λ are given by

β = −αM Ωf
R

and Λ =M(Ωf
R
)2, (7.17)

respectively, where

• M is a Biot modulus, and

• α is a Biot coefficient.

As before, positive-definiteness of the elasticity tensor C requires that

G > 0 and K > 0, (7.18)

and positivity of the chemistry modulus Λ requires that

M > 0. (7.19)

Next, recalling (6.18), the drained bulk modulus is given by

Kdr def
= K − α2M, (7.20)

and positive-definiteness of Cdr requires that

Kdr > 0. (7.21)

Hence, using (ǫ, µ) as the independent variables, (6.23) and (7.17) give the constitutive equations for σ and
ζ as

σ = 2Gǫ+ (Kdr − (2/3)G)(trǫ)1− α

(
µ− µ0

Ωf
R

)

1,

ζ = α (trǫ) +
1

M

(
µ− µ0

Ωf
R

)

.







(7.22)

From (7.22)2,

α ≡
∂ζ

∂(trǫ)

∣
∣
∣
∣
µ≡constant

. (7.23)

Thus the Biot coefficient α determines the ratio of the change in the fluid content to the change in the
macroscopic volumetric strain when the chemical potential µ is held constant. If α = 0 then the fluid
content does not change due to a prescribed volumetric strain, while if α = 1 the variation in the fluid
content is equal the volumetric strain. We assume that (cf. eq. (A.16))

0 < α ≤ 1. (7.24)

Finally, let

p
def
=

µ

Ωf
R

(7.25)

define a pore-pressure. Then the constitutive equations (7.16) and (7.22) may be written as

σ = 2Gǫ+ (K − (2/3)G)(trǫ)1− αMζ 1,

p− p0 = −αM (trǫ) +Mζ ,

}

(7.26)

and
σ = 2Gǫ+ (Kdr − (2/3)G)(trǫ)1− α(p− p0)1,

ζ = α (trǫ) +
1

M
(p− p0).







(7.27)
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These constitutive equations are identical to the classical constutive equations of Biot’s linear theory of
isotropic poroelasticity.7

The stress-strain relation(7.27)1 may be equivalently written as

σeff = 2Gǫ+ (Kdr − (2/3)G)(trǫ)1, (7.28)

where
σeff

def
= σ + αp1, (7.29)

defines an effective stress. The Biot coefficient α is also known as the effective stress coefficient in the
literature. The concept of effective stress is due to Terzaghi [23], and is of great importance in poroelasticity.

7.1.1 Fluid flux

Recall from (6.12)4, that for isotropic linear materials the fluid flux is given by

j = −m∇µ with m > 0. (7.30)

Also, from (7.25) we have that µ = Ωf
R p, use of which in (7.30) gives the molar fluid flux as

j = −(mΩf
R
) grad p (mol/(m2s)). (7.31)

The volumetric fluid flux is given by

q
def
= Ωf

R
j (m3/(m2s)). (7.32)

Using (7.31) in (7.32), gives Darcy’s law [24],

q = −k grad p, (7.33)

where
k

def
= m(Ωf

R
)2 (7.34)

is the permeability of the porous solid. Because the permeability of the fluid through a porous solid depends
on the fluid viscosity and the geometry of the fluid pathways, in the poroelasticity literature k is often
expressed as8

k ≡
kda
ηf

, (7.36)

where

• ηf is the viscosity of the pore fluid (Pa-s), and

• kda is a permeability coefficient with dimensions of length squared. Values of kda are often given in
darcies (1 darcy =10−12 m2).

Hence, from (7.34) and (7.36) the relation between the mobility m and the quantities (kda, η
f ), which are

typically used in the poroelasticity literature, is

m =
1

(Ωf
R)2

(
kda
ηf

)

. (7.37)

7In an Appendix we discuss an alternative form of the constitutive equations (7.26) in terms of a change in the porosity φR,
rather than in terms of the variation of fluid content ζ.

8In the poroelasticity literature one also finds use of a quantity c called the hydraulic diffusivity. It is related to the
permeability k and the other material parameters of the theory by

c
def
=

k

α2

(K −Kdr)(Kdr + (4/3)G)

K + (4/3)G
. (7.35)
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8 Summary of the theory of linear isotropic poroelasticity

As derived here, the theory of isotropic linear poroelasticity relates the following basic fields:

u, displacement field,

ǫ = 1

2
(∇u− (∇u)⊤), strain,

σ, Cauchy stress,

cR referential fluid concentration;

cR0 initial value of cR;

Ωf
R referential molar volume of the fluid;

ζ = Ωf
R(cR − cR0) variation in fluid content;

µ chemical potential;

j fluid molar flux.

8.1 Constitutive equations

The set of constitutive equations are:

1. Equations for the stress and chemical potential:

σ = 2Gǫ+ (K − (2/3)G)(trǫ)1− αMζ 1,

µ = µ0 +Ωf
R
(−αM (trǫ) +Mζ ) .

}

(8.1)

2. Fluid flux:

The fluid molar flux is given by
j = −m gradµ. (8.2)

To complete the constitutive model for a particular material the material parameters that need to be specified
are

(
G,K, α,M,Ωf

R
,m
)
,

together with a reference value µ0 for the chemical potential. The Biot modulusM is related to the undrained
bulk modulus K, the drained bulk modulus Kdr, and the Biot coefficient α by

M =
K −Kdr

α2
. (8.3)

Also, the scalar mobility m is related to the the viscosity of the pore-fluid ηf and the permeability coefficient
kda by

m =
1

(Ωf
R)2

(
kda
ηf

)

. (8.4)

8.2 Governing partial differential equations. Boundary and initial conditions

The governing partial differential equations consist of:

1. The local force balance
divσ + b = 0, (8.5)

where the stress σ is given by (8.1)1, and b is the non-inertial body force.

2. The fluid balance equation is

ċR = −divj, (8.6)

with the fluid flux j given by (8.2), and the chemical potential µ by (8.1)2.
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With Su and St denoting complementary subsurfaces of the boundary ∂B of the deformed body B,
as boundary conditions we consider a pair of simple boundary conditions in which the displacement u is
specified on Su and the surface traction on St:

u = ŭ on Su × [0, T ],

σn = t̆ on St × [0, T ].

}

(8.7)

With Sµ and Sj another pair of complementary subsurfaces of the boundary ∂Bt, we also consider boundary
conditions in which the chemical potential is specified on Sµ and the spatial fluid flux on Sj

µ = µ̆ on Sµ × [0, T ],

j · n = j̆ on Sj × [0, T ].

}

(8.8)

The initial data is taken as
u(x, 0) = 0, and µ(x, 0) = µ0 in B. (8.9)

The coupled set of equations (8.5) and (8.6), together with (8.7), (8.8) and (8.9) yield an initial/boundary-
value problem for the displacement u(x, t) and the chemical potential µ(x, t).

Finally, the constitutive equations, governing partial differential equations, and the initial/boundary
conditions may of course be equivalently stated in terms of the pore-pressure p, simply by replacing µ by
µ/Ωf

R.

9 Concluding remark

We have presented a new derivation of Biot’s theory of linear poroelasticity, and shown that it may be deduced
as a special case of a more general theory of chemoelasticity. This correspondence between poroelasticity
and chemoelasticity should be useful in generalizing the linear theory of poroelasticity to the nonlinear finite
deformation regime — a regime in which the nonlinear theory of chemoelasticity [11] has already found
recent success in modeling the response of elastomeric gels [18, 19, 20, 21].
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A An alternative form of the constitutive equations (7.26) in terms

of the change in porosity. Estimates for the material parame-

ters α, K, and M

In this section we consider an alternative form of the constitutive equations in terms of the change in porosity.
We also discuss how, under certain circumstances, the material constants α, K, and M may be estimated
in terms of the bulk moduli of the fluid and solid constituents. Henceforth, for ease of notation, we write

p ≡ p− p0.

From (7.12)

ζ =

(
ρf

ρfR

)

φR − φR0,

= (φR − φR0) +

(

ρf − ρfR

ρfR

)

φR,

= (φR − φR0) +

(

ρf − ρfR

ρfR

)

(φR0 + (φR − φR0)).

(A.1)

A “linearized” version of (A.1), which only retains terms to first order in the changes (ρf−ρfR) and (φR−φR0)
gives

ζ = (φR − φR0) +

(

ρf − ρfR

ρfR

)

φR0. (A.2)

For small changes in fluid density we adopt a simple constitutive equation of the form

ρf − ρfR

ρfR
=

p

Kf
, (A.3)

with p the pore-pressure and Kf > 0 a bulk modulus for the fluid. Use of (A.3) in (A.2) gives

ζ = (φR − φR0) +
φR0

Kf
p. (A.4)

Substituting (A.4) in (7.27)2, viz.

ζ = α(trǫ) +
p

M
,

gives

(φR − φR0) = α(trǫ) +
p

Mb

, (A.5)
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where we have introduced another Biot modulus Mb defined as

1

Mb

def
=

1

M
−
φR0

Kf
. (A.6)

For later use, from (A.6) and (7.20), note that

1

Mb

def
=

α2

K −Kdr
−
φR0

Kf
. (A.7)

Thus using (A.5), the constitutive equations (7.27) may be rewritten as

σ
′ = 2Gǫ′,

1

3
trσ = Kdr(trǫ)− αp,

p = −αMb(trǫ) +Mb(φR − φR0).







(A.8)

A.1 Estimates for the material parameters α, K, and M

The discussion in this section is taken directly from Rice and Cleary [5] and Rice’s unpublished notes.9 There
is a simple but often applicable situation in which the constants α, K and M may be estimated in terms of
the bulk moduli of the fluid and solid constituents. Suppose that all the pore space is fluid infiltrated, and
all the solid phase consists of material elements which respond isotropically to pure pressure states, with the
same bulk modulus Ks. Suppose we simultaneously apply a pore-pressure

p = p† (A.9)

as well as a macroscopic stress amounting to

σ = −p†1

at each point in the solid phase, so that each point in the solid part of the porous material is subjected to
the same isotropic pressure.

−
1

3
trσ = p†. (A.10)

Because of the homogeneous state of pressure in the saturated porous material, the fluid phase could be
replaced by the solid phase without any modification of the stress state. The medium behaves exactly as it
was composed of single phase of bulk modulus Ks. This means that all linear dimensions of the material
— including those characterizing the void size — reduce by the fractional amount p†/3Ks, causing the
macroscopic volumetric strain

trǫ = −
p†

Ks
, (A.11)

and change in porosity
φR − φR0

φR0

= −
p†

Ks
, (A.12)

or

φR − φR0 = φR0

(

−
p†

Ks

)

. (A.13)

The stress-strain-pressure relation (A.8)2, viz.

1

3
trσ = Kdr(trǫ)− αp,

9Rice, J.R., 1998. Elasticity of fluid-inflitrated porous solids (poroelasticity); unpublished notes. Harvard University,
http://esag.harvard.edu/rice/e2-Poroelasticity.pdf.

Lallit Anand Paper No. JAM-15-1334 20



must be consistent with the special state just discussed, and by substituting (A.9), (A.10) and (A.11) in it
we obtain

−p† = Kdr

(
−p†

Ks

)

− αp†, (A.14)

which upon rearranging yields the following estimate for the Biot coefficient,

α = 1−
Kdr

Ks
. (A.15)

Since Kdr ≤ Ks, eq. (A.15) implies that
0 < α ≤ 1. (A.16)

The parameter α will be near its upper limit α = 1 for for very porous materials since for such materials
Kdr ≪ Ks.

Next, the constitutive equation (A.8)3, viz.

(φR − φR0) = α(trǫ) +
p

Mb

,

must also be consistent with the special state just discussed, and by substituting (A.9), (A.11), (A.12), and
(A.7) in it we obtain

φR0

(
−p†

Ks

)

= α

(
−p†

Ks

)

+

(
α2

K −Kdr
−
φR0

Kf

)

p†, (A.17)

from which we obtain the following estimate for the undrained bulk modulus,

K = Kdr +
α2KsKf

KsφR0 +Kf(α− φR0)
. (A.18)

This equation relates K to Kdr, the porosity φR0 and the bulk moduli of the solid and fluid phases, Ks and
Kf , respectively. As expected intuitively, when the fluid cannot flow out of the porous material, the porous
material is stiffer so that

K > Kdr.

Finally, from (A.18) we obtain the following estimate for M ,

1

M
=
φR0

Kf
+
α− φR0

Ks
. (A.19)
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