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Hybrid inflation models are especially interesting as they lead to a spike in the density power spec-
trum on small scales, compared to the CMB, while also satisfying current bounds on tensor modes. 
Here we study hybrid inflation with N waterfall fields sharing a global SO(N ) symmetry. The inclusion 
of many waterfall fields has the obvious advantage of avoiding topologically stable defects for N > 3. 
We find that it also has another advantage: it is easier to engineer models that can simultaneously 
(i) be compatible with constraints on the primordial spectral index, which tends to otherwise disfavor 
hybrid models, and (ii) produce a spike on astrophysically large length scales. The latter may have sig-
nificant consequences, possibly seeding the formation of astrophysically large black holes. We calculate 
correlation functions of the time-delay, a measure of density perturbations, produced by the waterfall 
fields, as a convergent power series in both 1/N and the field’s correlation function �(x). We show 
that for large N , the two-point function is 〈δt(x) δt(0)〉 ∝ �2(|x|)/N and the three-point function is 
〈δt(x) δt(y) δt(0)〉 ∝ �(|x − y|)�(|x|)�(|y|)/N 2. In accordance with the central limit theorem, the density 
perturbations on the scale of the spike are Gaussian for large N and non-Gaussian for small N .

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Inflation, a phase of accelerated expansion in the very early 
universe thought to be driven by one or several scalar fields, is 
our paradigm of early universe cosmology [1–4]. It naturally ex-
plains the large scale homogeneity, isotropy, and flatness of the 
universe. Moreover, the basic predictions of even the simplest sin-
gle field slow roll models, giving approximate scale invariance and 
small non-Gaussianity in the ∼ 10−5 level departures from homo-
geneity and isotropy, are in excellent agreement with recent CMB 
data [5–7] and large scale structure.

While the basic paradigm of inflation is in excellent shape, 
no single model stands clearly preferred. Instead the literature 
abounds with various models motivated by different considera-
tions, such as string moduli, supergravity, branes, ghosts, Standard 
Model, etc. [8–19]. While the incoming data is at such an impres-
sive level that it can discriminate between various models and rule 
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out many, such as models that overpredict non-Gaussianity, it is 
not clear if the data will ever reveal one model alone. An important 
way to make progress is to disfavor models based on theoretical 
grounds (such as issues of unitarity violation, acausality, etc.) and 
to find a model that is able to account for phenomena in the uni-
verse lacking an alternate explanation. It is conceivable that some 
version of the so-called “hybrid inflation” model may account for 
astrophysical phenomena, for reasons we shall come to.

The hybrid inflation model, originally proposed by Linde [20], 
requires at least two fields. One of the fields is light and another 
of the fields is heavy (in Hubble units). The light field, called the 
“timer”, is at early times slowly rolling down a potential hill and 
generates the almost scale invariant spectrum of fluctuations ob-
served in the CMB and in large scale structure. The heavy field, 
called the “waterfall” field, has an effective mass that is time-
dependent and controlled by the value of the timer field. The 
waterfall field is originally trapped at a minimum of its potential, 
but as its effective mass-squared becomes negative, a tachyonic in-
stability follows, leading to the end of inflation; an illustration is 
given in Fig. 1. The name “hybrid inflation” comes from the fact 
that this model is a sort of hybrid between a chaotic inflation 
model and a symmetry breaking inflation model.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. An illustration of the evolution of the effective potential for the waterfall 
field φ as the timer field ψ evolves from “high” values at early times, to ψ = ψc , 
and finally to “low” values at late times. In the process, the effective mass-squared 
of φ evolves from positive, to zero, to negative (tachyonic).

As originally discussed in Refs. [21,22], one of the most fas-
cinating features of hybrid models is that the tachyonic behav-
ior of the waterfall field leads to a sharp “spike” in the density 
power spectrum. This could seed primordial black holes [23–28]. 
For generic parameters, the length scale associated with this spike 
is typically very small. However, if one could find a parameter 
regime where the waterfall phase were to be prolonged, lasting 
for many e-foldings, say Nw ∼ 30–40, then this would lead to a 
spike in the density perturbations on astrophysically large scales 
(but smaller than CMB scales). This may help to account for phe-
nomena such as supermassive black holes or dark matter, etc. Of 
course the details of all this requires a very careful examination 
of the spectrum of density perturbations, including observational 
constraints.

Ordinarily the spectrum of density perturbations in a given 
model of inflation is obtained by decomposing the inflaton field 
into a homogeneous part plus a small inhomogeneous perturba-
tion. However, for the waterfall fields of hybrid inflation, this ap-
proach fails since classically the waterfall field would stay forever 
at the top of a ridge in its potential. It is the quantum perturba-
tions themselves that lead to a non-trivial evolution of the wa-
terfall field, and therefore the quantum perturbations cannot be 
treated as small. Several approximations have been used to deal 
with this problem [21,22,29–40]. Here we follow the approach 
presented by one of us recently in Ref. [41], where a free field 
time-delay method was used, providing accurate numerical results.

In this paper, we generalize the method of Ref. [41] to a model 
with N waterfall fields sharing a global SO(N ) symmetry. A model 
of many fields may be natural in various microscopic constructions, 
such as grand unified models, string models, etc. But apart from 
generalizing Ref. [41] to N fields, we also go much further in our 
analysis: we derive explicit analytical results for several correlation 
functions of the so-called time-delay. We formulate a convergent 
series expansion in powers of 1/N and the field’s correlation func-
tion �(x). We find all terms in the series to obtain the two-point 
correlation function of the time-delay for any N . We also obtain 
the leading order behavior at large N for the three-point func-
tion time-delay, which provides a measure of non-Gaussianity. We 
find that the non-Gaussianity is appreciable for small N and sup-
pressed for large N .

We also analyze in detail constraints on hybrid inflation mod-
els. We comment on how multiple fields avoid topological defects, 
which is a serious problem for low N models. However, the most 
severe constraint on hybrid models comes from the requirement to 
obtain the observed spectral index ns . We show that at large N , 
it is easier to engineer models that can fit the observed ns , while 
also allowing for a prolonged waterfall phase. This means that 
large N models provide the most plausible way for the spike 
to appear on astrophysically large scales and be compatible with 
other constraints.

With regards to tensor modes, the confirmation of the recent 
detection and amplitude of primordial gravitational waves [42] de-
pends largely on understanding dust foregrounds [43]. The final 
answer to the existence of primordial tensor modes will have to 
be given by future experiments, since a recent joint analysis of cur-
rent data [44] does not provide a clear detection. So we will only 
briefly discuss possibilities of obtaining observable tensor modes 
from hybrid inflation in Section 5.

The organization of our paper is as follows: In Section 2 we 
present our hybrid inflation model and discuss our approxima-
tions. In Section 3 we present the time-delay formalism, adapting 
the method of Ref. [41] to N fields. In Section 4 we derive a se-
ries expansion for the two-point function, we derive the leading 
order behavior of the three-point function, and we derive results 
in k-space. In Section 5 we present constraints on hybrid models, 
emphasizing the role that N plays. In Section 6 we discuss and 
conclude. Finally, in the Appendices we present further analytical 
results.

2. N field model

The model consists of two types of fields: The timer field ψ that 
drives the first slow-roll inflation phase, and the waterfall field φ
that becomes tachyonic during the second phase causing inflation 
to end. In many hybrid models, φ is comprised of two components, 
a complex field, but here we allow for N real components φi . We 
assume the components share a global SO(N ) symmetry, and so it 
is convenient to organize them into a vector

�φ = {φ1, φ2, . . . , φN }. (1)

For the special case N = 2, this can be organized into a complex 
field by writing φcomplex = (φ1 + i φ2)/

√
2.

The dynamics is governed by the standard two derivative action 
for the scalar fields ψ , �φ minimally coupled to gravity as follows 
(signature +−−−)

S =
∫

d4x
√−g

[
1

16πG
R + 1

2
gμν∂μψ∂νψ

+ 1

2
gμν∂μ �φ · ∂ν �φ − V (ψ,φ)

]
. (2)

The potential V is given by a sum of terms: V 0 providing false 
vacuum energy, Vψ(ψ) governing the timer field, Vφ(φ) governing 
the waterfall field, and V int(ψ, φ) governing their mutual interac-
tion, i.e.,

V (ψ,φ) = V 0 + Vψ(ψ) + Vφ(φ) + V int(ψ,φ). (3)

During inflation we assume that the constant V 0 dominates all 
other terms.

The timer field potential Vψ and the waterfall field potential 
Vφ can in general be complicated. In general, they are allowed to 
be non-polynomial functions as part of some low energy effective 
field theory, possibly from supergravity or other microscopic the-
ories. For our purposes, it is enough to assume an extremum at 
ψ = φ = 0 and expand the potentials around this extremum as fol-
lows:
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Vψ(ψ) = 1

2
m2

ψψ2 + . . . (4)

Vφ(φ) = −1

2
m2

0
�φ · �φ + . . . (5)

The timer field is assumed to be light mψ < H and the waterfall 
field is assumed to be heavy m0 > H , where H is the Hubble pa-
rameter. In the original hybrid model, this quadratic term for Vψ

was assumed to be the entire potential. This model leads to a spec-
trum with a spectral index ns > 1 and is observationally ruled out. 
Instead we need higher order terms, indicated by the dots, to fix 
this problem. This also places constraints on the mass of the timer 
field mψ , which has important consequences. We discuss these is-
sues in detail in Section 5.

As indicated by the negative mass-squared, the waterfall field 
is tachyonic around φ = ψ = 0. This obviously cannot be the entire 
potential because then the potential would be unbounded from be-
low. Instead there must be higher order terms that stabilize the 
potential with a global minimum near V ≈ 0 (effectively setting 
the late-time cosmological constant).

The key to hybrid inflation is the interaction between the two 
fields. For simplicity, we assume a standard dimension 4 coupling 
of the form

V int(ψ,φ) = 1

2
g2ψ2 �φ · �φ. (6)

This term allows the waterfall field to be stabilized at φ = 0 at 
early times during slow-roll inflation when ψ is displaced away 
from zero, and then to become tachyonic once the timer field ap-
proaches the origin; this is illustrated in Fig. 1.

2.1. Approximations

We assume that the constant V 0 is dominant during inflation, 
leading to an approximate de Sitter phase with constant Hubble 
parameter H . By assuming a flat FRW background, the scale factor 
is approximated as

a = exp(Ht). (7)

At early times, ψ is displaced from its origin, so φ = 0. This 
means that we can approximate the ψ dynamics by ignoring the 
back reaction from φ. The fluctuations in ψ establish nearly scale 
invariant fluctuations on large scales, which we shall return to in 
Section 5. However, for the present purposes it is enough to treat 
ψ as a classical, homogeneous field ψ(t). We make the approxi-
mation that we can neglect the higher order terms in the potential 
Vψ in the transition era, leading to the equation of motion

ψ̈ + 3Hψ̇ + m2
ψψ = 0. (8)

Solving this equation for ψ(t), we insert this into the equation 
for φi . We allow spatial dependence in φi , and ignore, for sim-
plicity, the higher order terms in Vφ , leading to the equation of 
motion

φ̈i + 3Hφ̇i − e−2Ht∇2φi + m2
φ(t)φi = 0. (9)

Here we have identified an effective mass-squared for the waterfall 
field of

m2
φ(t) ≡ −m2

0

(
1 −

(
ψ(t)

ψc

)2
)

, (10)

where the dimension 4 coupling g has been traded for the param-
eter ψc as g2 = m2

0/ψ
2
c . The quantity ψc has the physical inter-

pretation as the “critical” value of ψ such that the effective mass 
of the waterfall field passes through zero. So at early times for 
ψ > ψc , then m2

φ > 0 and φi is trapped at φi = 0, while at late 
times for ψ < ψc , then m2

φ < 0 and φi is tachyonic and can grow 
in amplitude, depending on the mode of interest; Fig. 1 illustrates 
these features.

2.2. Mode functions

Since we ignore the back-reaction of φ onto ψ and since we 
treat ψ as homogeneous in the equation of motion for φ (eq. (9)), 
then by passing to k-space, all modes are decoupled. Each waterfall 
field φi can be quantized and expanded in modes in momentum 
space as follows

φi(�x, t) =
∫

d3k

(2π)3

[
ck,ie

ik·xuk(t) + c†
k,ie

−ik·xu∗
k (t)

]
, (11)

where c†
k (ck) are the creation (annihilation) operators, acting on 

the φi = 0 vacuum. By assuming an initial Bunch–Davies vacuum 
for each φi , the mode functions uk are the same for all com-
ponents due to the SO(N ) symmetry. To be precise, we assume 
that at asymptotically early times the mode functions are the or-
dinary Minkowski space mode functions, with the caveat that we 
need to insert factors of the scale factor a to convert from physical 
wavenumbers to comoving wavenumbers, i.e.,

uk(t) → e−i k t/a

a
√

2k
, at early times. (12)

At late times the mode functions behave very differently. Since the 
field becomes tachyonic, the mode functions grow exponentially 
at late times. The transition depends on the wavenumber of in-
terest. The full details of the mode functions were explained very 
carefully in Ref. [41], and the interested reader is directed to that 
paper for more information.

Since we are approximating φi as a free field here, its fluc-
tuations are entirely Gaussian and characterized entirely by its 
equal time two-point correlation function 〈φi(x) φ j(y)〉. Passing 
to k-space, and using statistical isotropy and homogeneity of the 
Bunch–Davies vacuum, the fluctuations are equally well character-
ized by the so-called power spectrum Pφ(k), defined through

〈φi(k1)φ j(k2)〉 = (2π)3δ(k1 + k2) δi j Pφ(k1). (13)

This means the power spectrum is

δi j Pφ(k) =
∫

d3x e−ik·x〈φi(x)φ j(0)〉. (14)

It is simple to show that the power spectrum is related to the 
mode functions by

Pφ(k) = |uk|2. (15)

In Fig. 2 we plot a rescaled version of Pφ , where we divide out 
by the root-mean-square (rms) of φ defined as φ2

rms = 〈φ2
i (0)〉. As 

will be mentioned in the next section and is extensively discussed 
in [41], the ratio

φ̃(t) = φ(t)

φrms(t)
(16)

is time-independent for late times, hence so is P ˜ (k).
φ
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Fig. 2. A plot of the (re-scaled) field’s power spectrum P φ̃ as a function of 
wavenumber k (in units of H) for different masses: blue is m0 = 2 and mψ = 1/2, 
red is m0 = 4 and mψ = 1/2, green is m0 = 2 and mψ = 1/4, orange is m0 = 4 and 
mψ = 1/4. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

3. The time-delay

We would now like to relate the fluctuations in the waterfall 
field φ to a fluctuation in a physical observable, namely the density 
perturbation. An important step in this direction is to compute the 
so-called “time-delay” δt(x); the time offset for the end of infla-
tion for different parts of the universe. This causes different regions 
of the universe to have inflated more than others, creating a dif-
ference in their densities (though we will not explicitly compute 
δρ/ρ here). This basic formalism was first introduced by Hawk-
ing [45] and by Guth and Pi [46], and has recently been reviewed 
in Ref. [47], where the transition from the time-delay formalism 
to the more frequently used curvature perturbation R is outlined. 
In the context of hybrid inflation, it was recently used by one of 
us in Ref. [41]. It provides an intuitive and straightforward way to 
calculate primordial perturbations and we now use this to study 
perturbations established by the N waterfall fields.

In its original formulation, the time-delay formalism starts by 
considering a classical homogeneous trajectory φ0 = φ0(t), and 
then considers a first order perturbation around this. At first or-
der, one is able to prove that the fluctuating inhomogeneous field 
φ(x, t) is related to the classical field φ0, up to an overall time off-
set δt(x),

φ(x, t) = φ0(t − δt(x)). (17)

In the present case of hybrid inflation, the waterfall field is 
initially trapped at φ = 0 and then once it becomes tachyonic, it 
eventually falls off the hill-top due to quantum fluctuations. This 
means that there is no classical trajectory about which to expand. 
Nevertheless, we will show that, to a good approximation, the field 
φ(x, t) is well described by an equation of the form (17), for a suit-
ably defined φ0. The key is that all modes of interest grow at the 
same rate at late times. Further information of the time evolution 
of the mode functions can be found in Ref. [41].

To show this, we need to compute the evolution of the field φ
according to eq. (9). This requires knowing mφ(t), which in turn 
requires knowing ψ(t). By solving eq. (8) for the timer field and 
dispensing with transient behavior, we have

ψ(t) = ψc exp (− p t) , (18)
where

p = H

⎛
⎝3

2
−

√
9

4
− m2

ψ

H2

⎞
⎠ (19)

(note p > 0). We have set the origin of time t = 0 to be when 
ψ = ψc and assume ψ > ψc at early times.

Substituting this solution into mφ(t), we can, in principle, solve 
eq. (9). In general, the solution is somewhat complicated with a 
non-trivial dependence on wavenumber. However, at late times the 
behavior simplifies. Our modes of interest are super-horizon at late 
times. For these modes, the gradient term is negligible and the 
equation of motion reduces to

φ̈i + 3Hφ̇i + m2
φ(t)φi = 0. (20)

So each mode evolves in the same way at late times. Treating 
mφ(t) as slowly varying (which is justified because the timer field 
mass mψ < H and so p is small), we can solve for φi at late times 
t in the adiabatic approximation. We obtain

φi(x, t) = φi(x, t0)exp

⎛
⎝ t∫

t0

dt′ λ(t′)

⎞
⎠ , (21)

where

λ(t) = H

⎛
⎝−3

2
+

√
9

4
+ m2

0

H2

(
1 − e−2 p t

)⎞⎠ . (22)

Here t0 is some reference time. For t > 0, we have λ(t) > 0, so the 
modes grow exponentially in time. Later in Section 5 we explain 
that in fact λ is roughly constant in the latter stage of the waterfall 
phase, i.e., the exp(−2 p t) piece becomes small.

We now discuss fluctuations in the time at which inflation 
ends. For convenience, we define the reference time t0 to be the 
time at which the rms value of the field reaches φend; the end of 
inflation

Nφ2
rms(t0) = φ2

end, (23)

where we have included a factor of N to account for all fields, 
allowing φrms to refer to fluctuations in a single component φi , i.e., 
φ2

rms = 〈φ2
i (0)〉. In terms of the power spectrum, it is

φ2
rms =

∫
d3k

(2π)3
Pφ(k). (24)

If we were to include arbitrarily high k, this would diverge 
quadratically, which is the usual Minkowski space divergence. 
However, our present analysis only applies to modes that are in 
the growing regime. For these modes, Pφ(k) falls off exponentially 
with k and there is no problem. So in this integral, we only include 
modes that are in the asymptotic regime, or, roughly speaking, only 
super-horizon modes.

Using eq. (21), we can express the field φi(x, t) at time t =
t0 + δt in terms of the field φi(x, t0) by

φi(x, t) = φi(x, t0)exp (λ(t0) δt) . (25)

If t is chosen to be the time tend(x) at which inflation ends at each 
point in space, then �φ · �φ(

x, tend(x)
) = φ2

end = Nφ2
rms(t0), and the 

above equation becomes

Nφ2
rms(t0) = �φ(x, t0)· �φ(x, t0)exp (2λ(t0) δt), (26)

which can be solved for the time-delay field δt(x) = tend(x) − t0 as
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Fig. 3. A plot of the field’s correlation � as a function of x (in units of H−1) for 
different masses: blue is m0 = 2 and mψ = 1/2, red is m0 = 4 and mψ = 1/2, green 
is m0 = 2 and mψ = 1/4, orange is m0 = 4 and mψ = 1/4. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)

δt(x) = −1

2λ(t0)
ln

( �φ(x, t0)· �φ(x, t0)

Nφ2
rms(t0)

)
. (27)

This finalizes the N component analysis of the time-delay, gener-
alizing the two component (complex) analysis of Ref. [41].

4. Correlation functions

We now derive expressions for the two-point and three-point 
correlation functions of the time-delay field. To do so, it is con-
venient to introduce a rescaled version of the correlation function 
�(x) defined through

〈φi(x)φ j(0)〉 = �(x)φ2
rmsδi j. (28)

By definition �(0) = 1, and as we vary x, � covers the interval 
�(x) ∈ (0, 1]. (Ref. [41] used a different convention where � covers 
the interval �(x) ∈ (0, 1/2].)

In Fig. 3, we show a plot of � at tend as a function of x, mea-
sured in Hubble lengths (H−1), for various combinations of masses.

4.1. Two-point function

We now express the time-delay correlation functions as a 
power series in � and 1/N . An alternative derivation of the power 
spectra of the time-delay field in terms of an integral, which is 
closer to the language of Ref. [41], can be found in Appendix C.

Using the above approximation for δt in eq. (27), the two-point 
correlation function for the time-delay is

(2λ)2〈δt(x)δt(0)〉 =
〈
ln

( �φx · �φx

Nφ2
rms

)
ln

( �φ0 · �φ0

Nφ2
rms

)〉
, (29)

where we have used the abbreviated notation �φx ≡ �φ(x). The two-
point function will include a constant (independent of x) for a 
non-zero 〈δt〉. This can be reabsorbed into a shift in t0, whose 
dependence we have suppressed here, and so we will ignore the 
constant in the following computation. This means that we will 
compute the connected part of the correlation functions.
We would like to form an expansion, but we do not have a clas-
sical trajectory about which to expand. Instead we use the follow-
ing idea: we recognize that �φ · �φ should be centralized around its 
mean value of Nφ2

rms , plus relatively small fluctuations at large N . 
This means that it is convenient to write

�φ · �φ
Nφ2

rms
= 1 +

( �φ · �φ
Nφ2

rms
− 1

)
(30)

and treat the term in parenthesis on the right as small, as it rep-
resents the fluctuations from the mean. This allows us to Taylor 
expand the logarithm in powers of

� ≡ �φ · �φ
Nφ2

rms
− 1, (31)

with 〈�〉 = 0. Now recall that the series expansion of the logarithm 
for small � is ln(1 +�) = � − �2

2 + �3

3 − . . . , allowing us to expand 
eq. (29) to any desired order in �.

The leading non-zero order is quadratic ∼ �2. It is

(2λ)2〈δt(x)δt(0)〉2 = 〈�(x)�(0)〉,
= 〈φi(x)φi(x)φ j(0)φ j(0)〉

(Nφ2
rms)

2
− 1, (32)

where we are implicitly summing over indices in the second line 
(for simplicity, we will place all component indices (i, j) down-
stairs). Using Wick’s theorem to perform the four-point contrac-
tion, we find the result

(2λ)2〈δt(x)δt(0)〉2 = 2�2(x)

N
, (33)

where x ≡ |x|. This provides the leading approximation for large N , 
or small �. This should be contrasted to the RSG approximation 
used in Refs. [21,22] and summarized in [41], in which the correla-
tion function is approximated as ∼ �, rather than ∼ �2, at leading 
order.

For brevity, we shall not go through the result at each higher 
order here, but we report on results at higher order in Appendix A. 
By summing those results to different orders, we find

(2λ)2〈δt(x)δt(0)〉 = 2�2

N
+ 2�4

N 2
− 4�4

N 3
+ 16�6

3N 3
+ 8�4

N 4

− 32�6

N 4
+ 24�8

N 4
+O

(
1

N 5

)
(34)

(where � = �(x) here). We find that various cancellations have 
occurred. For example, the −8�2/N 2 term that enters at cubic 
order (see Appendix A) has canceled.

Note that at a given order in 1/N there are various powers 
of �2. However, by collecting all terms at a given power in �2, we 
can identify a pattern in the value of its coefficients as functions 
of N . We find

(2λ)2〈δt(x)δt(0)〉
= 2�2(x)

N
+ 2�4(x)

N (N + 2)
+ 16�6(x)

3N (N + 2)(N + 4)

+ 24�8(x)

N (N + 2)(N + 4)(N + 6)
+ . . . (35)

We then identify the entire series as

(2λ)2〈δt(x)δt(0)〉 =
∞∑

Cn(N )�2n(x), (36)

n=1
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where the coefficients are

Cn(N ) = 1

n2

(N
2 − 1 + n

n

)−1

, (37)

with 
(a

b

)
the binomial coefficient. This series is convergent for any 

N and � ∈ (0, 1], and is one of our central results.
For the case of a single scalar or a doublet (complex field), the 

full series organizes itself into known functions. For N = 1 we find

(2λ)2〈δt(x)δt(0)〉 = 2�2(x) + 2�4(x)

3
+ 16�6(x)

45
+ . . .

= 2 (sin−1�(x))2. (38)

For N = 2 we find

(2λ)2〈δt(x)δt(0)〉 = �2(x) + �4(x)

22
+ �6(x)

32
+ . . .

= Li2(�
2(x)), (39)

where Lis(z) is the polylogarithm function. We also find that for 
any even value of N , the series is given by the polylogarithm func-
tion plus a polynomial in �; this is described in Appendix B.

Using the power series, we can easily obtain plots of the two-
point function for any N . For convenience, we plot the re-scaled 
quantity N (2λ)2〈δt(x)δt(0)〉 as a function of � in Fig. 4 (top) for 
different N . We see convergence of all curves as we increase N , 
which confirms that the leading behavior of the (un-scaled) two-
point function is ∼ 1/N . In Fig. 4 (bottom) we plot N 〈δt(x)δt(0)〉
as a function of x for different masses and two different N .

4.2. Three-point function

The three-point function is given by a simple modification of 
eq. (29), namely

−(2λ)3〈δt(x)δt(y)δt(0)〉

=
〈
ln

( �φx · �φx

Nφ2
rms

)
ln

( �φy · �φy

Nφ2
rms

)
ln

( �φ0 · �φ0

Nφ2
rms

)〉
. (40)

Here we will work only to leading non-zero order, which in this 
case is cubic. We expand the logarithms as before to obtain

−(2λ)3〈δt(x)δt(y)δt(0)〉3

= 〈�(x)�(y)�(0)〉,
= 〈φi(x)φi(x)φ j(y)φ j(y)φk(0)φk(0)〉

(Nφ2
rms)

3
+ 2

−
( 〈φi(x)φi(x)φ j(y)φ j(y)〉

(Nφ2
rms)

2
+ 2 perms

)
, (41)

where “perms” is short for permutations under interchanging x, 
y, 0. Using Wick’s theorem to perform the various contractions, 
we find the result

−(2λ)3〈δt(x)δt(y)δt(0)〉3 = 8�(|x − y|)�(x)�(y)

N 2
. (42)

We would now like to use the three-point function as a mea-
sure of non-Gaussianity. For a single random variable, a measure of 
non-Gaussianity is to compute a dimensionless ratio of the skew-
ness to the 3/2 power of the variance. For a field theory, we 
symmetrize over variables, and define the following measure of 
non-Gaussianity in position space

S ≡ 〈δt(x)δt(y)δt(0)〉√ . (43)
〈δt(x)δt(y)〉〈δt(x)δt(0)〉〈δt(y)δt(0)〉
Fig. 4. Top: a plot of the (re-scaled) two-point function of the time-delay 
N (2λ)2〈δt(x)δt(0)〉 as a function of � ∈ [0, 1] as we vary N : dot-dashed is N = 1, 
solid is N = 2, dotted is N = 6, and dashed is N → ∞. Bottom: a plot of the (re-
scaled) two-point function of the time-delay N 〈δt(x)δt(0)〉 as a function of x for 
different masses: blue is m0 = 2 and mψ = 1/2, red is m0 = 4 and mψ = 1/2, green 
is m0 = 2 and mψ = 1/4, orange is m0 = 4 and mψ = 1/4, with solid for N = 2
and dashed for N → ∞. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

(Recall that we are ignoring 〈δt〉, as it can be just re-absorbed 
into t0, so the three-point and two-point functions are the con-
nected pieces.) Computing this at the leading order approximation 
using eqs. (33), (42) (valid for large N , or small �), we find

S ≈ −
√

8

N
. (44)

Curiously, the dependence on x, y has dropped out at this order. 
We see that for small N there is significant non-Gaussianity, while 
for large N the theory becomes Gaussian, as expected from the 
central limit theorem.

4.3. Momentum space

Let us now present our results in k-space. We shall continue to 
analyze the results at high N , or small �, which allows us to just 
include the leading order results.
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Fig. 5. The dimensionless power spectrum NPδt (k) at large N as a function of k
(in units of H) for different choices of masses: blue is m0 = 2 and mψ = 1/2, red is 
m0 = 4 and mψ = 1/2, is m0 = 2 and mψ = 1/4, orange is m0 = 4 and mψ = 1/4. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

For the two-point function, we define the power spectrum 
through

〈δt(k1)δt(k2)〉 = (2π)3δ(k1 + k2)Pδt(k1). (45)

We use eq. (33) and Fourier transform to k-space using the con-
volution theorem. To do so it is convenient to introduce a dimen-
sionless field φ̃i ≡ φi/φrms and introduce the corresponding power 
spectrum P φ̃ (k) = Pφ(k)/φ2

rms = |uk|2/φ2
rms , which is the Fourier 

transform of �(x). We then find the result

Pδt(k) ≈ 1

2λ2N

∫
d3k′

(2π)3
P φ̄ (k′)P φ̄ (|k − k′|). (46)

A dimensionless measure of fluctuations is the following

Pδt(k) ≡ k3 H2 Pδt(k)

2π2
. (47)

The factor of k3/(2π2) is appropriate as this gives the variance per 
log interval: 〈(Hδt)2〉 = ∫

d ln k Pδt(k). By studying eq. (46), one can 
show Pδt ≈ const for small k and falls off for large k. This creates 
a spike in Pδt(k) at a finite k∗ and its amplitude is rather large. 
(This is to be contrasted with the usual fluctuations in de Sitter 
space, Pδt(k) ∝ 1/k3, making Pδt(k) approximately scale invariant.) 
We see that the amplitude of the spike scales as ∼ 1/N , and so it 
is reduced for large N . A plot of Pδt(k) is given in Fig. 5.

For the three-point function, we define the bispectrum through

〈δt(k1)δt(k2)δt(k3)〉 = (2π)3δ(k1 + k2 + k3)Bδt(k1,k2,k3)

(48)

where we have indicated that the bispectrum only depends on the 
magnitude of the 3 k-vectors, with the constraint that the vectors 
sum to zero. We use eq. (42) and Fourier transform to k-space, 
again using the convolution theorem. We find

Bδt(k1,k2,k3) ≈ − 1

3λ3N 2
×[∫

d3k
3

P φ̄ (k)P φ̄ (|k1 − k|)P φ̄ (|k2 + k|) + 2 perms

]
(49)
(2π)
Fig. 6. The dimensionless bispectrum 
√
N FNL as a function of k (in units of H) at 

large N for m0 = 4 and mψ = 1/2.

To measure non-Gaussianity in k-space, it is conventional to in-
troduce the dimensionless fNL parameter, defined as1

fNL(k1,k2,k3) ≡ Bδt(k1,k2,k3)

Pδt(k1)Pδt(k2) + 2 perms
. (50)

By substituting the above expressions for Pδt and Bδt , we see that 
fNL is independent of N at this leading order. However, this belies 
the true dependence of non-Gaussianity on the number of fields. 
This is because fNL is a quantity that can be large even if the non-
Gaussianity is relatively small (for example, on CMB scales, any 
fNL smaller than O(105) is a small level of non-Gaussianity). In-
stead a more appropriate measure of non-Gaussianity in k-space 
is to compute some ratio of the bispectrum to the 3/2 power of 
the power spectrum, analogous to the position space definition in 
eq. (43). For the simple equilateral case, k1 = k2 = k3, we define

FNL(k) ≡ k3/2 Bδt(k)

3
√

2π Pδt(k)3/2
, (51)

where we have inserted a factor of k3/2/(
√

2π) from measuring 
the fluctuations per log interval. Using eqs. (46), (49), we see that 
FNL ∝ 1/

√
N , as we found in position space. In Fig. 6, we plot this 

function. We note that although the non-Gaussianity can be large, 
the peak is on a length scale that is small compared to the CMB 
and so it evades recent bounds [6].

5. Constraints on hybrid models

Hybrid inflation models must satisfy several observational con-
straints. Here we discuss these constraints, including the role that 
N plays, and discuss the implications for the scale of the density 
spike.

5.1. Topological defects

The first constraint on hybrid models concerns the possible for-
mation of topological defects. Since the waterfall field starts at 
φ = 0 and then falls to some vacuum, it spontaneously breaks 

1 A factor of 6/5 is often included when studying the gauge invariant quantity ζ
that appears in cosmological perturbation theory, but it does not concern us here.
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a symmetry. For a single field N = 1, this breaks a Z2 symme-
try; see Fig. 1. For multiple fields N > 1, this breaks an SO(N )

symmetry. N = 1 leads to the formation of domain walls, which 
are clearly ruled out observationally, so these models are strongly 
disfavored; N = 2 leads to the formation of cosmic strings, which 
have not been observed and if they exist are constrained to be 
small in number. The subject of cosmic string production in hybrid 
inflation and their subsequent effects is discussed in [23]. For cur-
rent bounds on cosmological defects from the Planck collaboration 
the reader can refer to [48] and the references therein. Diluting 
cosmic strings to make them unobservable in our case would re-
quire a very large number of e-foldings of the waterfall phase to 
make compatible with observations, and seems unrealistic. Further 
increasing the number of waterfall fields, N = 3 leads to the for-
mation of monopoles, which are somewhat less constrained; N = 4
leads to the formation of textures, which are relatively harmless; 
N > 4 avoids topological defects altogether. So choosing several 
waterfall fields is preferred by current constraints on topological 
defects.

Even for N > 4, one might be concerned about constraints from 
the re-ordering of N − 1 Goldstone modes arising from the break-
ing of the SO(N ) global symmetry. However it is important to 
note that all global symmetries are only ever approximate. So it 
is expected that these modes are not strictly massless, but pick 
up a small mass at some order, as all Goldstones do. The only 
important point is that the mass of the Goldstones mG is small 
compared to the mass scales of the inflaton and the waterfall field. 
For example, if we have a scale of inflation with H ∼ 1012 GeV, 
then the inflaton and waterfall fields should have a mass not far 
from ∼ 1012 GeV also. We then only need the Goldstone masses 
to satisfy mG � 1012 GeV for our analysis to be true, and for the 
SO(N ) symmetry to be a good approximation for the purpose of 
the phase transition. At late times, these (approximate) Goldstones 
will appear heavy and relax to the bottom of their potential, and 
be harmless. So, with this in mind, a large VEV for the waterfall 
field is indeed observationally allowed, and large e-folds after the 
transition leading to large black holes is indeed allowed.

5.2. Inflationary perturbations

Inflation generates fluctuations on large scales which are being 
increasingly constrained by data. An important constraint on any 
inflation model is the bound on the tensor-to-scalar ratio r. CMB 
measurements from Planck place an upper bound on tensor modes 
of r < 0.11 (95% confidence) [6]. The amplitude of tensor modes is 
directly set by the energy density during inflation. Typical hybrid 
models are at relatively low energy scales, without the need for ex-
treme fine tuning, and so they immediately satisfy this bound. Re-
cent data by the BICEP2 experiment [42] claim a detection of grav-
itational waves with r ∼ 0.2 at a high confidence level. Going back 
to the simplest potential of hybrid inflation V (ψ) = V 0 + 1

2 m2
ψψ2

. .., 
we have so far considered the regime V 0 � 1

2 m2
ψψ2, which gen-

erates a very small amount of tensor modes. However one can 
operate in a regime with V 0 � 1

2 m2
ψψ2, where the tensor to scalar 

ratio can be pushed to be closer to O(0.1). Furthermore, new real-
izations of hybrid inflation [49,50] can generate appreciable tensor 
modes with appropriate parameter choices. Since subtracting the 
dust foreground has reduced the detected signal to an updated up-
per bound on the tensor modes [43,44], we will leave a complete 
discussion of producing the correct value of r in hybrid inflation 
models for future work.

Although the detection of tensor modes is not confirmed, scalar 
modes are pinned down with great accuracy. The tilt of the 
scalar mode spectrum is characterized by the primordial spectral 
index ns . WMAP [5] and Planck measurements [6] place the spec-
tral index near

ns,obs ≈ 0.96, (52)

giving a red spectrum. Here we examine the constraints imposed 
on hybrid models in order to obtain this value of ns .

The tilt on large scales is determined by the timer field ψ . For 
low scale models of inflation, such as hybrid inflation, the predic-
tion for the spectral index is

ns = 1 + 2η, (53)

where

η ≈ 1

8πG

V ′′
ψ

V 0
= V ′′

ψ

3 H2
. (54)

This is to be evaluated Ne e-foldings from the end of infla-
tion, where Ne = 50–60 in typical models. Combining the above 
equations, we need to satisfy V ′′

ψ ≈ −0.06 H2. If we take Vψ =
m2

ψψ2/2, then V ′′
ψ > 0, and ns > 1, which is ruled out. So we need 

higher order terms in the potential to cause it to become concave 
down at large values of ψ where η is evaluated, while leaving the 
quadratic approximation for Vψ valid at small ψ . For most rea-
sonable potential functions, such as potentials that flatten at large 
field values, we expect |V ′′

ψ | � m2
ψ . So this suggests a bound

m2
ψ � 0.06 H2, (55)

which can only be avoided by significant fine tuning of the poten-
tial. Hence although the timer field is assumed light (mψ < H), it 
cannot be extremely light.

As an example let us consider a potential that can be approxi-

mated by V (ψ) = 1
2 m2

ψψ2 − g2

4 ψ4. We are neglecting higher order 
terms needed to stabilize the potential. Let us take V ′′(ψCMB) =
m2

ψ − 3g2ψ2
CMB < 0, where φCMB is the field value at the point 

where the CMB fluctuations exit the horizon during inflation, in 
order to produce a red-tilted spectrum. This requirement leads 
to m2

ψ � 3g2ψ2
CMB which in turns implies V ′′(ψCMB) ∼ m2

ψ . Since 
fluctuations that are imprinted on the CMB must exit the hori-
zon sufficiently before the waterfall transition, in order for the 
CMB spectrum to keep its approximate scale-invariance, the quar-
tic term in the potential considered in this example will be sub-
dominant during the waterfall transition, since ψwaterfall < ψCMB. 
An example potential for the timer field is

Vψ(ψ) = F 2m2
ψ

2
ln(1 + ψ2/F 2). (56)

If one Taylor expands this, one finds the needed m2
ψψ2/2 quadratic 

piece, plus the higher order corrections that render the potential 
concave down, which is compatible with the observed red-tilted 
spectrum.

Since a detailed calculation of the primordial black hole produc-
tion for specific realizations of our model (along with connecting it 
to potential observables like supermassive black holes) is deferred 
for a future presentation, the corresponding choice of potential pa-
rameters will be done at that time as well.

5.3. Implications for scale of spike

The length scale associated with the spike in the spectrum is 
set by the Hubble length during inflation H−1, red-shifted by the 
number of e-foldings of the waterfall phase Nw . Since the Hubble 
scale during inflation is typically microscopic, we need the dura-
tion of the waterfall phase Nw to be significant (e.g., Nw ∼ 30–40) 
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to obtain a spike on astrophysically large scales. Here we examine 
if this is possible.

Since we have defined t = 0 to be when the transition occurs 
(ψ = ψc), then Nw = Ht with final value at t = tend . To determine 
the final value, we note that modes grow at the rate λ, derived ear-
lier in eq. (22). For mψ < H , we can approximate the parameter p
(eq. (19)) as p ≈ m2

ψ/3H . Using the above spectral index bound in 
eq. (55), we see that for significantly large Nw (e.g., Nw ∼ 30–40) 
the exponential factor

exp(−2 p t) ≈ exp

(
−2 m2

ψ Nw

3 H2

)
(57)

is somewhat small and we will ignore it here. In this regime, the 
dimensionless growth rate λ/H can be approximated as a constant

λ

H
≈ −3

2
+

√
9

4
+ m2

0

H2
. (58)

The typical starting value for φ is roughly of order H (de Sitter 
fluctuations) and the typical end value for φ is roughly of order 
MPl (Planck scale). For self consistency, φ must pass from its start-
ing value to its end value in Nw e-foldings with rate set by λ/H . 
This gives the approximate value for Nw as2

Nw ≈ H

λ
ln

(
MPl

H

)
. (59)

This has a clear consequence: If we choose m0 � H , as is done in 
some models of hybrid inflation, then H/λ � 1. So unless we push 
H to be many, many orders of magnitude smaller then MPl , then 
Nw will be rather small. This will lead to a spike in the spectrum 
on rather small scales and possibly ignorable to astrophysics.

Note that if we had ignored the spectral index bound that leads 
to eq. (55), then we could have taken mψ arbitrarily small, lead-
ing to an arbitrarily small p value. In this (unrealistic) limit, it is 
simple to show

λ

H
≈ 2 m2

ψ m2
0 Nw

9 H4
. (60)

So by taking mψ arbitrarily small, λ could be made small, and Nw
could easily be made large. However, the existence of the spectral 
index bound essentially forbids this, requiring us to go in a differ-
ent direction.

The only way to increase Nw and satisfy the spectral index 
bound on mψ is to take m0 somewhat close to H . This allows H/λ

to be appreciable from eq. (58). For instance, if we set m0 = 1.3 H , 
then H/λ ≈ 2. If we then take H just a few orders of magnitude 
below MPl , say H ∼ 10−6,7MPl , which is reasonable for inflation 
models, we can achieve a significant value for Nw . This will lead 
to a spike in the spectrum on astrophysically large scales, which 
is potentially quite interesting. It is possible that there will be dis-
tortions in the spectrum by taking m0 close to H , but we will not 
explore those details here. However, there is an important conse-
quence that we explore in the next subsection.

5.4. Eternal inflation

Since we are being pushed towards a somewhat low value 
of m0, near H , we need to check if the theory still makes sense. 
One potential problem is that the theory may enter a regime of 

2 A better approximation comes from tracking the full time dependence of λ and 
integrating the argument of the exponential exp(

∫ t dt′λ(t′)), but this approximation 
suffices for the present discussion.
eternal inflation. This could occur for the waterfall field at the hill-
top. This would wipe out information of the timer field, which 
established the approximately scale invariant spectrum on cosmo-
logical scales.

The boundary for eternal inflation is roughly when the den-
sity fluctuations are O(1), and this occurs when the fluctuations in 
the time delay are 〈(H δt)2〉 = O(1). To convert this into a lower 
bound on m0, let us imagine that m0 is even smaller than H . In 
this regime, the growth rate λ can be estimated using eq. (58) as 
λ ∼ m2

0/H2. Using eq. (33) this gives 〈(H δt)2〉 ∼ H4/(Nm4
0). This 

implies that eternal inflation occurs when the waterfall mass is be-
low a critical value mc

0, which is roughly

mc
0 ∼ H

N 1/4
. (61)

So when N ∼ 1 we cannot have m0 near H , because we then en-
ter eternal inflation. On the other hand, for large N we are allowed 
to have m0 near H and avoid this problem. This makes sense in-
tuitively, because for many fields it is statistically favorable for at 
least one of the fields to fall off the hill-top, causing inflation to 
end. Hence large N is more easily compatible with the above set 
of constraints than low N .

6. Discussion and conclusions

In this work we studied density perturbations in hybrid infla-
tion caused by N waterfall fields, which contains a spike in the 
spectrum. We derived expressions for correlation functions of the 
time-delay and constrained parameters with observations.

Density perturbations: We derived a convergent series expansion 
in powers of 1/N and �(x), the dimensionless correlation func-
tion for the field, for the two-point function of the time-delay for 
any N , and the leading order behavior of the three-point func-
tion of the time-delay for large N . These correlation functions are 
well approximated by the first term in the series for large N (even 
for N = 2 the leading term is moderately accurate to ∼ 30%, and 
much more accurate for higher N ). In this regime, the fluctuations 
are suppressed, with two-point and three-point functions given by

〈δt(x) δt(0)〉 ≈ �2(x)

2λ2N
,

〈δt(x) δt(y) δt(0)〉 ≈ −�(|x − y|)�(x)�(y)

λ3N 2
. (62)

Although this reduces the spike in the spectrum, for any moder-
ate value of N , such as N = 3, 4, 5, the amplitude of the spike is 
still quite large (orders of magnitude larger than the ∼ 10−5 level 
fluctuations on larger scales relevant to the CMB), and may have 
significant astrophysical consequences. Also, the relative size of the 
three-point function to the 3/2 power of the two-point function 
scales as ∼ 1/

√
N . In accordance with the central limit theorem, 

the fluctuations become more Gaussian at large N . This will make 
the analysis of the subsequent cosmological evolution more man-
ageable, as this provides a simple spectrum for initial conditions. 
We note that since we are considering small scales compared to 
the CMB, then this non-Gaussianity evades Planck bounds [6].

Constraints: We mentioned that hybrid models avoid topolog-
ical defects for large N , while tensor mode constraints can be 
satisfied in different models. A very serious constraint on hybrid 
models comes from the observed spectral index ns ≈ 0.96, which 
requires the potential to flatten at large field values. One conse-
quence of this is that the timer field mass mψ needs to be only 
a little smaller than the Hubble parameter during inflation H , or 
else the model is significantly fine tuned. For a large value of the 
waterfall field mass m0, this would imply a large growth rate of 
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fluctuations, a rapid termination of inflation, and in turn a den-
sity spike on very small scales. Otherwise, we need to make the 
waterfall field mass m0 somewhat close to H , but this faces prob-
lems with eternal inflation. However, by using a large number of 
waterfall fields N , it is safer to make the waterfall field mass m0
somewhat close to H . This reduces the growth rate of fluctuations, 
prolonging the waterfall phase for many e-foldings.

Thus large N presents a plausible setup to establish a spike 
in the density perturbations on astrophysically large length scales 
that is consistent with other constraints.

Outlook: It may be possible that these perturbations seed pri-
mordial black holes, which may be relevant to seeding supermas-
sive black holes, or an intriguing form of dark matter. Since black 
hole formation is exponentially sensitive on the inflationary power 
spectrum, an accurate calculation of fluctuations is important, but 
predicting astrophysical observables does not follow trivially. An 
investigation into these topics is underway. It would be impor-
tant to fully explore the eternal inflation bound and the effects 
on the spectrum for relatively light waterfall field masses. Finally, 
it would be of interest to try to embed these large N models into 
fundamental physics, such as string theory, and to explore reheat-
ing [51–54] and baryogenesis [55–61] in this framework.
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Appendix A. Series expansion to higher orders

Earlier we computed the two-point correlation function for the 
time-delay at quadratic order, and then stating the results at all 
orders. Here we mention the results order by order.

a. Cubic order

At cubic order ∼ �3 we find

(2λ)2〈δt(x)δt(0)〉3 = −8�2

N 2
(A.1)

b. Quartic order

At quartic order ∼ �4 we find

(2λ)2〈δt(x)δt(0)〉4 = 8�2 + 2�4

N 2
+ 40�2 + 4�4

N 3
(A.2)

c. Quintic order

At quintic order ∼ �5 we find

(2λ)2〈δt(x)δt(0)〉5 = −96�2 + 32�4

N 3

− 256�2 + 64�4

N 4
(A.3)
d. Sextic order

At sextic order ∼ �6 we find

(2λ)2〈δt(x)δτ (0)〉6 = 168�2 + 72�4 + 16�6

3N 3

+ 1056�2 + 464�4 + 32�6

N 4

+ 6144�2 + 2496�4 + 128�6

3N 5
(A.4)

e. Septic order

At septic order ∼ �7 we find

(2λ)2〈δt(x)δt(0)〉7 = −32(43�2 + 22�4 + 6�6)

N 4

+O
(

1

N 5

)
(A.5)

f. Octic order

At octic order ∼ �8 we find

(2λ)2〈δt(x)δt(0)〉8 = 8(72�2 + 39�4 + 16�6 + 3�8)

N 4

+O
(

1

N 5

)
(A.6)

Appendix B. Two-point function for even number of fields

When N is even the expression always involves the polylog 
function that we found for N = 2, plus corrections that depend 
on N . We find that the form of the answer is

(2λ)2〈δt(x)δt(0)〉 = Li2(�
2) + PN (�2)

�N−4

+ P̄N (�2) ln(1 − �2)

�N−2
, (B.1)

where

PN (�2) is a polynomial of degree (N − 4)/2, (B.2)

P̄N (�2) is a polynomial of degree (N − 2)/2. (B.3)

For N = 4, we find

P4(�
2) = −1, (B.4)

P̄4(�
2) = −1 + �2. (B.5)

For N = 6, we find

P6(�
2) = 1

2
− 7

4
�2, (B.6)

P̄6(�
2) = 1

2
− 2�2 + 3

2
�4. (B.7)

For N = 8, we find

P8(�
2) = −1

3
+ 4

3
�2 − 85

36
�4, (B.8)

P̄8(�
2) = −1

3
+ 3

2
�2 − 3�4 + 11

6
�6. (B.9)
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Appendix C. Alternative derivation of time-delay spectra

Here we write the two-point function as a multidimensional 
integral. It is convenient now to switch to a vector notation thus 
making the components of φ explicit.

φ̃(0, t) ≡ �φx ≡ (X1, X2, X3, . . . , XN ), (C.1)

φ̃(x, t) ≡ �φ0 ≡ (XN+1, XN+2, XN+3, . . . , X2N ), (C.2)

�X ≡ (X1, X2, X3, . . . , X2N ). (C.3)

The average value of a function F of a random variable �X with 
probability distribution function p(X) is given by

〈F [X]〉 =
∫

dXp(X)F [X]. (C.4)

Since we are using a free field approximation, �X follows a joint 
Gaussian distribution

p(X) = 1

(2π)N
√

det(�)
exp

(
−1

2
X T �−1 X

)
, (C.5)

where

�i j = 〈Xi X j〉 (C.6)

is the correlation matrix. The components of � can be easily cal-
culated using the commutation relations for the creation and anni-
hilation operators in φ(x, t), from Eq. (11). Due to the high degree 
of symmetry the matrix itself has a very simple structure:

�i j = 1

N
(δi, j + δi,( j±N )�). (C.7)

Finally, we can write the two-point function as:

(2λ)2〈δt(x)δt(0)〉
=

∫ N 2d �X
(2π)N (1 − �2)

N
2

log(| �φ0|2) log(| �φx|2) ×

exp{− N
2(1 − �2)

[| �φ0|2 + | �φx|2 − 2N� �φ0 · �φx]}. (C.8)

Then we can Taylor expand the integrand in powers of �. We 
see that all odd powers of � vanish, leaving only even powers 
in the expansion. Performing these integrals term by term in the 
Taylor expansion, leads to the results reported earlier in eqs. (35), 
(36), (37).
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