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Centrality selection has been observed to have a large effect on jet observables in pPb collisions at the 
Large Hadron Collider, stronger than that predicted by the nuclear modification of parton densities. We 
study to which extent simple considerations of energy–momentum conservation which link the hard 
process with the underlying event that provides the centrality estimator, affect jets observables in such 
collisions. We develop a simplistic approach that considers first the production of jets in a pp collision as 
described by PYTHIA. From each pp collision, the value of the energy of the parton from the proton 
participating in the hard scattering is extracted. Then, the underlying event is generated simulating 
a pPb collision through HIJING, but with the energy of the proton decreased according to the value 
extracted in the previous step, and both collisions are added. This model is able to capture the bulk of 
the centrality effect for central to semicentral collisions, for the two available sets of data: dijets from 
the CMS Collaboration and single jets from the ATLAS Collaboration. As expected, the model fails for 
peripheral collisions where very few nucleons from Pb participate.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In nuclear collisions, the classification of events according to 
some measurement of their activity – energy, multiplicity – in 
some region of phase space, generically called centrality selec-
tion, is extensively done. Such classification, if it turns out to be 
well defined, should allow the study of different observables for 
the same kind of events. For example, one could naively expect 
that the same energy density or temperature is achieved in high-
energy heavy-ion collisions of the same centrality, and one would 
study jet production, photon spectra, etc. for these events, allowing 
a characterisation of the strongly interacting matter produced in 
such collisions. Besides, it could provide a link, albeit in a model-
dependent way, to theoretically defined quantities as the impact 
parameter of the collision.

The key issue to be settled is whether a centrality class de-
fined by different centrality criteria for events with a given char-
acteristics e.g. containing jets with a given transverse energy or 
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quarkonium, corresponds to the same subset of events. Specifically: 
whether the centrality selection (and its link to some theoretical 
quantity as the impact parameter) depends (i) on the centrality 
criterium and (ii) on the characteristics under consideration i.e. 
whether there is a coupling between the characteristics of the 
events that we are considering e.g. the presence of jets, and the 
centrality criterium.

While in non-peripheral collisions between heavy ions, the 
classification of centrality classes appears to be quite robust, in 
proton-lead collisions at the Large Hadron Collider (LHC) the sit-
uation is more problematic.1 Specifically, for dijets [3] and single 
jets [4], the minimum bias results are well reproduced by stan-
dard pQCD with nuclear modification of parton densities, while the 
centrality-selected results show a strong dependence on centrality 
that cannot be accommodated by the existing ideas on the impact 
parameter dependence of nuclear parton densities [5–7]. There is 
an ongoing discussion on the definition of centrality in such asym-
metric systems [8,9].

1 The problem also exists in dAu collisions at the Relativistic Heavy Ion Collider 
(RHIC), see e.g. [1,2].
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The origin of the difference of the situation between heavy-
ion and proton-nucleus collisions may have different origins. For 
example, the larger fluctuations in the number of participating 
nucleus or the more stringent energy–momentum conservation 
demands, in the latter than in the former. Indeed, this prob-
lem can be traced back to our lack of understanding of the de-
tailed microscopic dynamics underlying soft particle production in 
hadronic and nuclear collisions, and its coupling to hard subpro-
cesses. Several works have recently appeared that deal with this 
point [10–13].

In this work we address the role of some kinematic constraints 
– those on the proton – that the demand of a hard subprocess 
imposes on the soft particle production that determines the cen-
trality criterium, using a simplistic framework. We focus on the 
CMS dijet [3] and ATLAS single [4], results in pPb collisions at 
5.02 TeV/nucleon. We find that even this simplistic implementation 
of kinematic constraints has a strong effect in the direction found 
in the experimental data, while it fails where the implementation 
is evidently deficient.

The manuscript is organised as follows: in Section 2, we de-
scribe the model that implements energy–momentum conserva-
tion constraints on the proton. Then, in Sections 3 and 4, we 
employ the model to analyse the extent to which CMS results 
on dijets and ATLAS results on single jets, respectively, can be 
understood as resulting from kinematic considerations. Finally, in 
Section 5 we present our conclusions.

2. Description of the model

The model that we employ uses PYTHIA [14] for the hard scat-
tering and HIJING [15,16] for the underlying event. We generate a 
sample of events (105 for dijets and 2 · 106 for single jet spectra), 
each one through the following procedure:

1. We generate a pp event in PYTHIA (for a proton beam of 
E p = 4 TeV and a Pb beam of EPb = 1.58 TeV/nucleon, 

√
sN N =

5.02 TeV) with the required characteristics: jets or dijets with 
the experimental kinematic cuts, and extract the momentum 
fraction xp of the hard parton from the proton participating in 
the 2 → 2 hard subprocess.

2. We generate a minimum bias pPb event in HIJING, for a pro-
ton beam of (1 − xP )E p and a Pb beam of EPb i.e. we re-
duce the proton energy for the underlying event, so 

√
sN N =

2
√

(1 − xp)E p EPb.
3. We shift both events (that are generated in their respec-

tive center of mass) to a common frame (the LHC laboratory 
frame).

4. The HIJING event, generated as minimum bias, is reweighted 
through its impact parameter to fulfil scaling in the number of 
collisions Ncoll expected for hard events.

5. The PYTHIA and HIJING events are superimposed, resulting in 
a full pPb event with the weight given in the previous step.

Note that the momentum fraction xPb of the parton from the Pb 
participating in the 2 → 2 hard subprocess is unchanged. This is 
clearly a deficiency of the model, which should be expected to fail 
for small Ncoll (when the number of participating nucleons from 
the Pb is small) and for large xPb (for the Pb-going side in pseudo-
rapidity).

Also note that in our simple model, energy–momentum con-
servation is imposed sequentially and not globally as it should be 
properly done. Besides, due to the intrinsic link of soft and hard 
physics in PYTHIA through colour strings between partons com-
ing from the hard sub-collision and those from either other hard 
sub-collisions or from the underlying event, there is no unique, 
Fig. 1. Average dijet pseudorapidity (ηdijet = (η1 + η2)/2) as a function of the to-
tal transverse energy deposition in the pseudorapidity range of 4 < |η| < 5 for 
PYTHIA+HIJING events matched according to xp value (black squares) overlaid with 
data measured by CMS [3] (red circles).

well-defined way for separating what should be subtracted from 
PYTHIA in order to avoid eventual double counting. The desir-
able thing would be the use of a model that correctly describes 
soft and hard observables simultaneously but, unfortunately, we 
are not aware of such an updated model. But we find it notice-
able that such a simple model as the one we propose, which 
can only be expected to capture the bulk features of some of the 
physics behind the experimentally observed phenomena, is actu-
ally able to reproduce the trend of the data. Actually one of the 
aims of the paper is to trigger efforts in the direction of elabo-
rating simulators that properly link soft and hard aspects of a pA 
collision.

3. CMS dijet results

In this section we analyse the dijet measurements by CMS [3]. 
We generate hard events in PYTHIA with jets reconstructed within 
|η| < 3 using the anti-kT sequential recombination algorithm [17,
18] with a distance parameter of 0.3, considering events required 
to have a dijet with a leading jet pT ,1 > 120 GeV/c, a sublead-
ing jet pT ,2 > 30 GeV/c, and an azimuthal distance �φ1,2 > 2π/3. 
Then, for the full PYTHIA+HIJING generated event, the transverse 
energy in the region 4 < |η| < 5 is rescaled, to match the one in 
CMS, by a factor to account for detector resolution effects that are 
not corrected by CMS. It is this energy that is then used to classify 
events in centrality.

In Fig. 1 we show the comparison of our results on the av-
erage dijet pseudorapidity (ηdijet = (η1 + η2)/2) as a function of 
the total transverse energy deposition in the pseudorapidity range 
of 4 < |η| < 5, compared with data measured by CMS [3]. The 
agreement is very good except for the lowest transverse energies, 
corresponding to peripheral collisions where the model is not ex-
pected to work as discussed in the previous section. In Fig. 2 we 
show the ratio of the dijet pseudorapidity distribution for events 
in a given centrality class over the minimum bias distribution, 
compared to the CMS data. Again, a good overall agreement is 
found.

CMS [3] also provided data on the average dijet pseudorapid-
ity for a fixed energy in the p-going-direction, E p

T for 4 < η < 5, 
as a function of the energy in the Pb-going-direction, EPb

T for 
−5 < η < −4. In Fig. 3 we show the comparison of the CMS 
data with our PYTHIA+HIJING results. Once more, the model cap-
tures the trend of data except for the lowest activity data where
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Fig. 2. Ratios of dijet pseudorapidity (ηdijet = (η1 +η2)/2) distributions with a selection on total forward energy deposition (E[4<|η|<5]
T ) to the dijet pseudorapidity distribution 

without any requirement on event activity are shown. The calculation in PYTHIA+HIJING is shown by black squares and CMS data points [3] are shown by red circles.

Fig. 3. (Left) CMS data [3], (Right) PYTHIA+HIJING with xp matching. Coloured markers show average dijet pseudorapidity (ηdijet = (η1 + η2)/2) as a function of transverse 
energy deposition in the Pb-going-direction, EPb

T , for bins of the transverse energy deposition in the p-going-direction, E p
T . The choice of pseudorapidity intervals for EPb

T

and E p
T are −5 < η < −4 and 4 < η < 5 respectively. The black line shows average dijet pseudorapidity as a function of EPb

T when the requirements on transverse energy in 
proton going direction are removed. (For interpretation of the colours in this figure, the reader is referred to the web version of this article.)
only one or two nucleons from the Pb nucleus contribute and 
the model – that corrects for energy only on the proton side 
– is clearly deficient due to the over simplicity treatment of 
the Pb.

4. ATLAS jet results

In this section we analyse the single-jet measurements by AT-
LAS [4]. We generate hard events in PYTHIA with jets recon-
structed using the anti-kT sequential recombination algorithm [17,
18] with a distance parameter of 0.4, in the region |ηjet −ηCM| < 3. 
The centrality criterium is, in this case, the total transverse energy 
in Pb-going-direction within the pseudorapidity range of −4.9 <
η < −3.2, thus less sensitive to energy constraints on the proton. 
Let us note that we use, for the different centrality classes, the 
number of collisions Ncoll provided by ATLAS and not the one ex-
tracted from HIJING.2

In Fig. 4 we show the results of the model for the nuclear mod-
ification factor RpPb of jets as a function of their transverse mo-
mentum, for different centrality classes, integrated over the whole 
pseudorapidity region |ηjet − ηCM| < 3. The effect of the centrality 
selection becomes evident.

In Figs. 5, 6 and 7 we show a comparison of the results of 
the model with ATLAS data [4] for the nuclear modification factor 
RpPb of jets as a function of their transverse momentum in dif-
ferent pseudorapidity bins, for central, semicentral and peripheral 
collisions respectively. A good agreement with data is found for 
central collisions that deteriorates with decreasing centrality, until 

2 They are (11.94,9.86,8.38,6.934,4.82,2.29) for HIJING and (14.57,12.07,10.37,8.94,
6.44,2.98) in the ATLAS paper [4], for the 0–10%, 10–20%, 20–30%, 30–40%, 40–60%
and 60–90% centrality classes respectively.
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Fig. 4. RpPb calculation in PYTHIA+HIJING with xp matching are shown for 0–10%, 10–20%, 20–30%, 30–40%, 40–60% and 60–90% centrality classes. The centrality classes are 
determined according to total transverse energy in Pb-going-direction within the pseudorapidity range of −4.9 < η < −3.2.

Fig. 5. RpPb calculation in PYTHIA+HIJING with xp matching (grey bands) and the measured values by ATLAS ([4], red circles) are shown for the 0–10% centrality class in bins 
of pseudorapidity in the center-of-mass frame. The centrality classes are determined according to total transverse energy in Pb-going-direction within the pseudorapidity 
range of −4.9 < η < −3.2.

Fig. 6. RpPb calculation in PYTHIA+HIJING with xp matching (grey bands) and the measured values by ATLAS ([4], blue circles) are shown for the 20–30% centrality class in 
bins of pseudorapidity in the center-of-mass frame. The centrality classes are determined according to total transverse energy in Pb-going-direction within the pseudorapidity 
range of −4.9 < η < −3.2.
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Fig. 7. RpPb calculation in PYTHIA+HIJING with xp matching (grey bands) and the measured values by ATLAS ([4], black circles) are shown for the 60–90% centrality class in 
bins of pseudorapidity in the center-of-mass frame. The centrality classes are determined according to total transverse energy in Pb-going-direction within the pseudorapidity 
range of −4.9 < η < −3.2.
the model fails for peripheral collisions as expected from previous 
discussions.

5. Conclusions

In this work, we have analysed the effect of centrality selec-
tion on events characterised by a hard observable, in pPb collisions 
at the LHC. We have focused on the influence of the interplay 
given by simple considerations of energy–momentum conserva-
tion, between the hard process that is the observable of inter-
est – jet production – and the underlying event that provides 
the centrality estimator. We have developed a simplistic model 
that considers first the production of jets in a pp collision as 
described by PYTHIA. From each pp collision, the value of the 
energy of the parton from the proton participating in the hard 
scattering is extracted. Then, the underlying event is generated 
simulating a pPb collision through HIJING, but with the energy 
of the proton decreased according to the value extracted in the 
previous step. The full event consists in the superposition of the 
hard and underlying ones. In this way the energy constraints on 
the proton are taken into account, while those on the Pb nucleus 
are not considered. The model is thus expected to fail for pe-
ripheral collisions where very few nucleons from Pb participate. 
Note that our model is not a dynamical one, see other explana-
tions in [10–13], our only aim being the study of how impor-
tant this kind of biases may become on existing experimental 
data.

We have considered two sets of data: dijets from CMS [3] and 
single jets from ATLAS [4] and find that the model is able to cap-
ture the bulk of the centrality effect for central to semicentral col-
lisions, while it fails – as it should – for peripheral collisions. We 
conclude that this simple bias due to energy–momentum conser-
vation must be considered before any extraction of other eventual 
centrality dependencies as those of nuclear parton densities.

The obvious extension of this work is to include the energy–
momentum constraints on the nucleus side, which we plan to 
address. In any case, we find that data as those discussed in this 
manuscript, offer most valuable information for the development 
of models for high-energy hadronic and nuclear collisions, as they 
link perturbative computable quantities as jets with those com-
ing from the underlying event that can only be addressed through 
modelling soft particle production.
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