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SPECTRAL KILLERS AND POISSON BRACKET INVARIANTS

SOBHAN SEYFADDINI
(Communicated by Leonid Polterovich)

ABSTRACT. We find optimal upper bounds for spectral invariants of a Hamil-
tonian whose support is contained in a union of mutually disjoint displace-
able balls. This gives a partial answer to a question posed by Leonid Polterovich
in connection with his recent work on Poisson bracket invariants of coverings.

1. INTRODUCTION

The theory of spectral invariants associates to each Hamiltonian H , on a
closed and connected symplectic manifold (M ,ω), a collection of real numbers

{c(a, H) ∈R : a ∈QH∗(M)à {0}},

where QH∗(M) denotes the quantum homology of M . These numbers are re-
ferred to as the spectral invariants of H . They were introduced by Oh, Schwarz
and Viterbo [15, 13, 8]. Roughly speaking, c(a, H) is the action level at which
a ∈ QH∗(M)à {0} appears in the Floer homology of H . These invariants have
been studied extensively and have had many interesting applications in sym-
plectic geometry; see [2, 5, 8, 13].

In this article we will be only concerned with the spectral invariant associ-
ated to the neutral element [M ] ∈ QH∗(M). Hence, we will abbreviate c(H) :=
c([M ], H). The main objective of this paper is to find optimal upper bounds
for c(H) when the support of H is contained in a disjoint union U1 t·· ·tUN ,
where each Ui is a displaceable open ball. A priori, the expected upper bound,
given by the triangle inequality (see Proposition 12), for c(H) is

∑
c(Hi ), where

Hi := H |Ui . From the viewpoint of Morse-Floer theory for the action functional,
there exists little communication between Hamiltonians which are supported in
small and pairwise disjoint balls. This lack of Floer theoretic interaction among
the Hi ’s is manifested in Theorem 2, which provides the same upper bound for
c(H) as c(Hi ). Thus, the bound in Theorem 2 is roughly N times better than the
expected upper bound.

To prove Theorem 2, we introduce a new technique for bounding c(H) which
involves computing spectral invariants for a special class of functions. Because
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of a fascinating property of this class of functions, we refer to them as “spectral
killers.” See Theorem 7.

The motivation for searching for upper bounds as described above arises
from the recent work of Polterovich [12] on Poisson bracket invariants of cover-
ings. Indeed, as demonstrated in [12], such upper bounds lead to optimal lower
bounds for Poisson bracket invariants; see Theorem 9.

1.1. Upper bounds for spectral invariants and spectral killers. Recall that a
time dependent Hamiltonian H ∈C∞([0,1]×M) gives rise to a Hamiltonian flow
φt

H . The group of Hamiltonian diffeomorphisms H am(M) is the collection of
time-1 maps of such flows. The Hofer norm of ψ ∈ H am(M) is defined by the
expression ‖ψ‖Ho f er = inf{‖H‖(1,∞) :ψ=φ1

H }, where

‖H‖(1,∞) =
∫ 1

0

(
max

M
H(t , ·)−min

M
H(t , ·))d t .

A subset U ⊂ M is said to be displaceable if there exists a Hamiltonian diffeo-
morphism φ ∈ H am(M) such that φ(U )∩Ū =;, where Ū denotes the closure
of U . Define the displacement energy of U to be

E(U ) = inf{‖φ‖Hofer :φ(U )∩Ū =;}.

One version of the famous energy-capacity inequality (see [15, 14]) states that if
supp(H), the support of H , is displaceable, then

|c(H)|6 E(supp(H)).

Suppose that supp(H) ⊂U1 t·· ·tUk where the sets Ui are mutually disjoint
and each Ui is displaceable; note that supp(H) is not necessarily displaceable.
Using the triangle inequality 12 and the above energy-capacity inequality one
can easily show that |c(H)|6∑k

i=1 E(Ui ). Polterovich, through his work on Pois-
son bracket invariants [12], particularly in connection with Question 8, was lead
to ask:

QUESTION 1. Is it true that |c(H)|6max{E(Ui )}?

In this article, we address the above question on monotone manifolds: We
call (M ,ω) monotone if ∃λ 6= 0 such that ω|π2 =λc1|π2 , where c1 denotes the first
Chern class of M . Note that we allow the monotonicity constant λ to be nega-
tive. Monotone manifolds constitute a large and important class of symplectic
manifolds; examples include projective spaces.

Our main theorem gives an affirmative answer to Polterovich’s question under
certain “regularity” assumptions on the sets Ui . Below, we assume that (M ,ω)
is monotone with monotonicity constant λ.

THEOREM 2. Let U1, . . . ,Uk denote a collection of mutually disjoint open subsets
of M. Assume that each Ui is symplectomorphic to the Euclidean ball of radius
ri and that the Ui ’s are displaceable with displacement energy E(Ui ) < |λ|

2 . Then,
for any Hamiltonian H whose support is contained in U1 t·· ·tUk ,

06 c(H)6πr 2, where r = max{r1, . . . ,rk }.
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REMARK 3. It follows from Theorem 1.1 of [14] that the displacement energy of
a symplectic ball of radius r is at least as large as πr 2. Therefore, it follows that
|c(H)|6max{E(Ui )}.

REMARK 4. In order to show that the upper bound in the above theorem is opti-
mal, we will now briefly describe how one may construct H such that c(H) ≈πr 2.
Identify U1 with Br , the Euclidean ball of radius r . Take H to be a radial Hamil-
tonian supported in U1 which has no non-constant periodic orbits of period at
most 1. Proposition 4.1 of [14] implies that c(H) = max(H). (The conventions
in [14] are different than ours and hence one must adjust the statement in [14].)
Now, a simple exercise in calculus would yield that H can be picked such that
max(H) is arbitrarily close to (but always smaller than) πr 2.

REMARK 5. It is absolutely crucial to assume the Ui ’s are displaceable. Indeed,
any disc in S2 with area larger than half the total area supports Hamiltonians
with arbitrarily large spectral invariants.

REMARK 6. The sets Ui in Theorem 2 and Question 1 are non-overlapping and
symplectically small, in the sense that they are displaceable. As mentioned ear-
lier, this leads to a lack of Floer theoretic interaction among the Hamiltonians
Hi . Hence, it seems reasonable to conjecture that the following maximum for-
mula holds:

c(H) = max{c(Hi )}.

Of course, this would generalize Theorem 2 and would give an affirmative an-
swer to Question 1. Furthermore, Theorem 9 which is a corollary of Theorem 2
would follow as well.

Spectral Killers. To prove Theorem 2, we compute the spectral invariant of a
special class of functions; we have come to call these functions “spectral killers.”
Let U ⊂ M denote an open subset which is symplectomorphic to a ball. We
identify U with Br , the open Euclidean ball of radius r .

Pick ε ∈ (0, r
4 ). Define Kε : M →R such that:

1. supp(Kε) ⊂ {z : r −4ε6 |z|6 r −ε},
2. Kε is radial, i.e. Kε(z) = kε(|z|) is a function of |z|,
3. kε decreases linearly on [r −4ε,r −3ε],
4. Kε(z) =−πr 2 on {z : r −3ε6 |z|6 r −2ε},
5. kε increases linearly on [r −2ε,r −ε].

See Figure 1 for a graph of Kε. Observe that Kε approximates the indicator
function of the shell {z : r −3ε6 |z|6 r −2ε}. Our next result states that adding
Kε to a Hamiltonian H supported in U kills the spectral invariants of H ; hence
we call Kε a “spectral killer” for the domain U . (Recall that spectral invariants
are defined for continuous functions; see Section 2.)

In the following theorem, (M ,ω) is assumed to be monotone, with mono-
tonicity constant λ, and U , Kε are as described above.

THEOREM 7. Suppose that U is displaceable with displacement energy E (U ) < |λ|
2 .

Then, c(H +Kε) = 0 for any Hamiltonian H supported in Br−4ε.
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FIGURE 1. Graph of the spectral killer Kε

We will see in Section 3 that Theorem 2 follows, without much difficulty, from
the above theorem. The important role that spectral killers play in estimating
spectral invariants suggests that it would be worthwhile to construct spectral
killers for domains more general than symplectic balls.

1.2. Lower bounds for Poisson bracket invariants. A partition of unity on M is
a collection of non-negative smooth functions ~f = { f1, . . . , fL} such that

∑
fi = 1.

When M is symplectic, the space of smooth functions C∞(M) can be equipped
with the Poisson bracket {·, ·} : C∞(M)×C∞(M) →C∞(M) which in local Darboux
coordinates (xi , yi ) is given by the expression

{ f , g } =∑
i

∂ f

∂xi

∂g

∂yi
− ∂ f

∂yi

∂g

∂xi
.

Following [11], we define the magnitude of Poisson noncommutativity of ~f

νc (~f ) := max
xi ,yi∈[−1,1]

‖{
∑

xi fi ,
∑

yi fi }‖,

where ‖ ·‖ stands for the sup norm.
Let U = {U1, · · · ,UN } denote a finite open cover of M . The partition of unity

{ fi } is said to be subordinate to U if the support of each fi is contained in one
of the U j ’s. In [11], Polterovich defines pb(U ) the Poisson bracket invariant of
U by

pb(U ) = infνc (~f ),

where the infimum is taken over all partitions of unity subordinate to U . This
invariant provides an obstruction to existence of a Poisson commuting partition
of unity subordinate to U .

The main application of Theorem 2 is in providing lower bounds for the in-
variant pb. The search for lower bounds for certain invariants related to pb
was initiated in [4]. Lower bounds for pb and their connections to quantum
mechanics are studied extensively in [11, 12]. As demonstrated in [11, 12], on
certain quantizable symplectic manifolds, the quantity νc admits a quantum
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mechanical counter part κq . Lower bounds for pb(U ) provide lower bounds for
κq and the inherent noise of quantum registration procedures which arise.

If a cover U consists of non-displaceable sets, then pb(U ) could vanish; see
any of [4, 11, 12] for such examples. Suppose that U = {U1, · · · ,UN } consists
of displaceable open sets and let E(U ) = max{E(Ui )}. In [12], Question 8.1,
Polterovich asks:

QUESTION 8. Is it true that pb(U )> C
E(U ) , where the constant C depends only

on (M ,ω)?

This question remains open. In all currently known lower bounds, the con-
stant C depends on U . In [12], the above question is studied for covers which
satisfy certain regularity conditions. One of these assumptions is d-regularity:

A1: A covering U is said to be d-regular if the closure of every U j intersects
at most the closure of d other sets from the cover.

The following result is the main application of Theorem 2. The fact that a
result of this nature would follow from Theorem 2 was explained to us by Leonid
Polterovich.

THEOREM 9. Suppose that M is monotone with monotonicity constant λ, U is
d-regular, and each Ui is symplectomorphic to the Euclidean ball of radius ri . If
E(U ) < |λ|

2 , then

pb(U )> C (d)

πr 2 ,

where r = maxri and C (d) = 1
2d 2 .

In [12, Theorem 4.8], the estimate appearing in Theorem 9 is proven for more
general coverings but under the assumption that ω|π2(M) = 0; see Remark 11 for
a related discussion.

To handle more general symplectic manifolds, Polterovich introduces the
notion of p-regularity: For a subset Z ⊂ M define its star St (Z ) =∪Ui where the
union is taken over all Ui ’s such that Z̄ ∩Ūi 6= ;.

A2: A covering U is said to be p-regular if for every Ui there exists a Hamil-
tonian Fi supported in the p-times iterated star of Ui , St (· · · (St (Ui )) · · · )
such that φ1

Fi
(Ui )∩Ūi =;.

A covering is said to be (d , p)-regular if it is both d-regular and p-regular. It
is proven in [12] that if U is (d , p)-regular then

pb(U )> C (d , p)

E(U )
,

where C (d , p) depends only on d , p.
The significance of Theorem 9 is that it allows us to remove the p-regularity

condition on monotone manifolds, albeit for coverings which consist of sym-
plectic balls. Intuitively, we expect pb(U ) to be larger for more irregular covers
and so it is expected that both d-regularity and p-regularity can be removed.
Theorem 9 is a first step towards this goal.
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REMARK 10. It is not explicitly stated in [12] that C (d , p) = 1
2(d 2p+1)2 . However,

this can be extracted from Proposition 4.6, Theorem 4.8 and Corollary 5.3.

REMARK 11. A symplectic manifold (M ,ω) is said to be aspherical if ω|π2 = 0.
Stronger versions of Theorems 2, 7 & 9 hold on such manifolds. The assump-
tions in the statements of these theorems relating to the monotonicity constant
λ become unnecessary. Furthermore, the assumptions regarding the displace-
ability of U in Theorem 7 and Ui ’s in Theorems 2 and 9 can be entirely elimi-
nated. We will not prove any of the above statements in this article. Their proofs
are similar to, and in fact easier than, the proofs presented here.

With regards to coverings on aspherical manifolds, our techniques do not al-
low us to obtain results as general as Theorem 4.8(ii) and Proposition 5.4 of [12].

2. PRELIMINARIES ON SPECTRAL INVARIANTS

In this section, we recall the aspects of the theory of spectral invariants re-
quired to prove Theorems 2 and 7; for more details please see [6, 9]. Throughout
this section, we suppose that (M ,ω) is a closed, connected and monotone sym-
plectic manifold of dimension 2n.

The action functional and the spectrum. We denote by Ω0(M) the space of
contractible loops in M . Define Γ := π2(M)

ker(c1) = π2(M)
ker([ω]) ; this is the group of deck

transformations of the Novikov covering of Ω0(M), defined by

Ω̃0(M) = {[z,u] : z ∈Ω0(M),u : D2 → M ,u|∂D2 = z}

[z,u] = [z ′,u′] if z = z ′ and ū#u′ = 0 in Γ
,

where ū#u′ is the sphere obtained by gluing u, with its orientation reversed,
to u′ along their common boundary. The disc u in [z,u], is referred to as the
capping disc of the orbit z. Recall that the action functional AH : Ω̃0(M) → R,
associated to a Hamiltonian H , is defined by

AH ([z,u]) =
∫ 1

0
H(t , z(t ))d t −

∫
D2

u∗ω.

The set of critical points of AH , denoted by Crit(AH ), consists of equivalence
classes, [z,u] ∈ Ω̃0(M), such that z is a 1–periodic orbit of the Hamiltonian flow
φt

H .
It is well known that Crit(AH ) = {[z,u] : z is a 1-periodic orbit of φt

H } is the
set of critical points of AH . The action spectrum of H , denoted by Spec(H), is
the set of critical values of AH ; it has Lebesgue measure zero.

The Conley–Zehnder index. When H is non-degenerate, Crit(AH ) can be in-
dexed by the well known Conley–Zehnder index µCZ : Crit(AH ) → Z. Here, we
will recall some facts about µCZ without defining it.

Many conventions are used for normalizing µCZ. Our convention is as follows:
Suppose that g is a C 2–small Morse function. We normalize the Conley–Zehnder
index so that for every critical point p of g ,

µCZ([p,up ]) = iMorse(p)−n,
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where iMorse(p) is the Morse index of p and up is a trivial capping disc. For
every A ∈ Γ, the Conley–Zehnder index satisfies the following identity

µCZ([z,u#A]) =µCZ([z,u])−2c1(A).(1)

Spectral Invariants. Spectral invariants are defined for non-degenerate Hamil-
tonians via Hamiltonian Floer theory. The Floer homology HF∗(H) is filtered by
values of the action functional. One associates to a quantum homology class,
viewed as a Floer homology class via the PSS isomorphism ΦPSS : QH∗(M) →
HF∗−n(H) [10], the minimal action level at which it appears in HF∗(H). The spe-
cific spectral invariant used in this article is the one associated to [M ] ∈QH∗(M);
we will denote it by c(H) for H ∈C∞([0,1]×M).

Well-known estimates for actions of Floer trajectories imply that

|c(H)− c(G)|6
∫ 1

0
max
x∈M

|Ht −Gt |d t .

This inequality allows us to define c(H) for continuous Hamiltonians (such as
spectral killers Kε): we set c(H) = limc(Hi ) where Hi is a sequence of smooth
and non-degenerate Hamiltonians converging uniformly to H .

We will now list, without proof, those properties of c : C∞([0,1]× M) → R

which will be use later on; see [8, 9, 13, 14] for further details. Recall that the
composition of two Hamiltonian flows, φt

H◦φt
G , and the inverse of a flow, (φt

H )−1,
are Hamiltonian flows generated by H#G(t , x) = H(t , x)+G(t , (φt

H )−1(x)) and
H̄(t , x) =−H(t ,φt

H (x)), respectively.

PROPOSITION 12. Let (M ,ω) denote a monotone symplectic manifold of dimen-
sion 2n. The spectral invariant c : C∞([0,1]×M) →R has the following properties:

1. (Normalization) c(0) = 0.
2. (Monotonicity) If H 6G then c(H)6 c(G).
3. (Triangle Inequality) c(H#G)6 c(H)+ c(G).
4. (Continuity) |c(H)− c(G)|6 ‖H −G‖∞.
5. (Spectrality) c(H) ∈ Spec(H), i.e. there exists [z,u] ∈ Crit(AH ) such that

c(H) =AH ([z,u]). Moreover, if H is non-degenerate then µCZ([z,u]) = n.

3. PROOFS OF THEOREMS 2 AND 7

The main objective of this section is to prove Theorems 2 and 7. We will be
needing the following lemma.

LEMMA 13. Let U denote an open subset of (M ,ω). If there exists a constant E > 0
such that c(H)6 E for any Hamiltonian H whose support is contained in U , then
06 c(H) for any Hamiltonian supported in U .

Proof. Recall that the inverse flow (φt
H )−1 is generated by H̄(t , x) =−H(t ,φt

H (x)).
Since H̄#H = 0, using the triangle inequality we obtain −c(H̄) 6 c(H). The
Hamiltonian H̄ is supported in U and so c(H̄)6 E . Hence, it follows that

−E 6 c(H)6 E .(2)
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For a contradiction, suppose that c(H) < 0. By the triangle inequality,

c(H# · · ·#H)6m c(H),

where m denotes the total number of #′s. Taking m to be sufficiently large we
find a Hamiltonian supported in U with spectral invariant smaller than −E . But
this contradicts inequality 2.

Note that a displaceable set U ⊂ M would satisfy the conditions of the above
lemma. Next, we prove Theorem 2 assuming Theorem 7.

Proof of Theorem 2. Let Hi denote the restriction of H to Ui so that H =∑k
i=1 Hi .

Recall that by the Energy-Capacity inequality |c(Hi )|6 Ei , where Ei denotes the
displacement energy of Ui . Now the H ′

i s have disjoint supports and so Hi #H j =
Hi +H j . It follows from the triangle inequality 3 that c(H) 6∑

c(Hi ) 6∑
Ei . It

follows from Lemma 13 that 06 c(H).
It remains to show that c(H) 6 πr 2. By Theorem 7, we can pick spectral

killers Ki , supported in Ui , such that c(Hi +Ki ) = 0. Note that the Hamiltonians
{Hi ,K j } have mutually disjoint supports. Therefore, the # operation among
these Hamiltonians is just simple addition of functions. Hence,

(H1 +K1)# · · ·#(Hk +Kk ) =∑
Hi +Ki = H +∑

Ki .

Using the triangle inequality, we obtain that c(H +∑
Ki )6∑

c(Hi +Ki ) = 0. On
the other hand, the Hamiltonian H +∑

Ki is supported in U1 t·· ·tUk and we
have already shown that any such Hamiltonian has non-negative spectral invari-
ant. Therefore, c(H +∑

Ki ) = 0.
Now, by the continuity property of spectral invariants c(H)− c(H +∑

Ki ) 6
‖∑

Ki‖∞ and thus c(H) 6 ‖∑
Ki‖∞. Note that ‖∑

Ki‖∞ = πr 2 : This is because
‖Ki‖∞ =πr 2

i and the Ki ’s have disjoint supports. This completes our proof.

We finish this section with a proof of Theorem 7.

Proof of Theorem 7. Throughout this proof we identify U with Br , the symplec-
tic ball of radius r . Let m denote a positive number which is larger than the
maximum of H +Kε. Define F : M →R to be an autonomous Hamiltonian with
the following properties:

1. F |Br has the form F (z)= f
( |z|2

2

)
, where f : [0,∞) →R and f =0 on

[ (r−ε)2

2 ,∞)
.

Thus, F is radial and is supported in Br−ε.
2. f = m on

[
0, (r−4ε)2

2

)
. Thus, F = m on Br−4ε.

3. f decreases linearly on
[ (r−4ε)2

2 , (r−3ε)2

2

)
.

4. f =−πr 2 on
[ (r−3ε)2

2 , (r−2ε)2

2

)
. Thus, F (z) =−πr 2 on {z : r −3ε6 |z|6 r −2ε}.

5. f increases linearly on
[ (r−2ε)2

2 , (r−ε)2

2

)
.

The graph of F is depicted in Figure 2. To establish Theorem 7 it is sufficient
to prove that c(F ) = 0: Note that H +Kε6 F . Hence, c(H +Kε)6 0 by the mono-
tonicity property 12. On the other hand, the set U is displaceable and Lemma
13 implies that c(H +Kε)> 0.
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POISSON BRACKET INVARIANTS 9
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Figure 2. Graph of the function F.

The graph of F is depicted in Figure 2. To establish Theorem 7 it is sufficient
to prove that c(F ) = 0: Note that H + K✏ 6 F . Hence, c(H + K✏) 6 0 by the
Monotonicity property 12. On the other hand, the set U is displaceable and Lemma
13 implies that c(H + K✏) > 0.

The rest of this proof is dedicated to showing that c(F ) = 0. We will denote
the displacement energy of U by E. It follows from the Energy-Capacity inequality
appearing in Proposition 3.1 of [14] that |c(F )| 6 E. Combining this with Lemma
13 we obtain

(3) c(F ) 2 [0, E].

Furthermore, the Energy-Capacity inequality from Proposition 3.1 of [14] combined
with the argument in Remark 4, implies that ⇡r2 6 E, and hence we get

(4) ⇡r2 6 E <
|�|
2

.

Here is an overview of our strategy for computing c(F ): We will perturb F , in
several stages, to a smooth and non-degenerate Hamiltonian which we will continue
to denote by F . These perturbations will be performed in a fashion which ensures
that all the non-trivial 1-periodic orbits of F appear near |z| ⇡ r � 4✏, r � 3✏, r �
2✏, r � ✏. By Proposition 12, c(F ) will be attained by a capped 1-periodic orbit of

FIGURE 2. Graph of the function F

The rest of this proof is dedicated to showing that c(F ) = 0. We will denote
the displacement energy of U by E . It follows from the energy-capacity inequal-
ity appearing in Proposition 3.1 of [14] that |c(F )| 6 E . Combining this with
Lemma 13 we obtain

c(F ) ∈ [0,E ].(3)

Furthermore, the energy-capacity inequality from Proposition 3.1 of [14] com-
bined with the argument in Remark 4, implies that πr 2 6 E , and hence we get

πr 2 6 E < |λ|
2

.(4)

Here is an overview of our strategy for computing c(F ): We will perturb F ,
in several stages, to a smooth and non-degenerate Hamiltonian which we will
continue to denote by F . These perturbations will be performed in a fash-
ion which ensures that all the non-trivial 1-periodic orbits of F appear near
|z| ≈ r − 4ε, r − 3ε, r − 2ε, r − ε. By Proposition 12, c(F ) will be attained by a
capped 1-periodic orbit of F with CZ index n. We will show that the action of
any such capped 1-periodic orbit is either approximately zero or falls outside
of the half-open interval (0,E ]. Of course, in light of (3), this forces c(F ) to be
zero. The fact that F takes the value −πr 2 in the region {z : r −3ε6 |z|6 r −2ε}
is immensely important: Indeed, if the value of F in this region was larger than
−πr 2, then one would find a capped 1-periodic orbit near |z| ≈ r −3ε with CZ
index n and action inside the region (0,E ]. Furthermore, c(F ) would be attained
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by the action of this orbit, and so c(F ) would be larger than zero; see Remark 14
below.

We begin the proof by replacing f with a close by (in uniform norm) smooth
function, which we continue to denote by f : Note that the non-trivial 1-periodic

orbits of F appear at values of |z| such that f ′( |z|
2

2 ) = 2πl , where l denotes a non-
zero integer. We take a smoothing of f such that this occurs at |z| ≈ r −4ε, r −3ε,
r −2ε, r −ε. We leave it to the reader to verify that such smoothings do exist.

At this point the Hamiltonian F is smooth but degenerate. Its 1-periodic
orbits can be classified into seven sets: four sets of non-trivial 1-periodic orbits,
as described in the previous paragraph, and three sets of trivial 1-periodic orbits
corresponding to where the perturbed function is constant. These trivial 1-
periodic orbits appear inside the regions Br− 7ε

2
, {z : r − 7ε

2 < |z| < r − 3ε
2 }, and M à

Br− 3ε
2

. In what follows, we will perturb F to a non-degenerate Hamiltonian in

seven steps. At each step we analyze one of the above collections of 1-periodic
orbits. We first deal with the trivial 1-periodic orbits of F .

Step 1: 1-periodic orbits in Br−7ε/2. In this region F is constant and equal to

m. We make a C 2-small modification of f on [0, (r−4ε)2

2 ) such that f is left with
a unique critical point at zero and no other critical points in this interval; the
critical point at zero will be a maximum. After this modification, the (capped)
1-periodic orbits of F in this region will be non-degenerate and of the form
[0, A] where A ∈ π2(M). Of these, only [0,u0] has CZ-index n; here u0 denotes
the trivial capping disc. The action of this orbit is F (0) ≈ m. By taking m to be
sufficiently large, we see, using equation (3), that c(F ) is not attained here.

Step 2: 1-periodic orbits in {z : r − 7ε
2 < |z| < r − 3ε

2 }. In this region F is constant
and equal to −πr 2. After making a C 2-small autonomous perturbation, the
restriction of F to this region will have a finite number of non-degenerate critical
points. The corresponding capped 1-periodic orbits of F in this region will be
of the form [p, A], where p is a critical point of F and A ∈π2(M). The action of
[p, A] is approximately −πr 2 −ω(A) =−πr 2 −λc1(A). Inequality (4) implies that
the smallest non-negative number of this form is larger than E . Hence, we see,
using equation (3), that c(F ) can not be attained by any of these orbits.

Step 3: 1-periodic orbits in M àBr−3ε/2. In this region, F is constant and equal
to 0. After making a C 2-small autonomous perturbation, the restriction of F
to this region will have a finite number of non-degenerate critical points. The
corresponding capped 1-periodic orbits of F in this region will be of the form
[p, A], where p is a critical point of F and A ∈ π2(M). The action of [p, A] is
approximately −ω(A) =−λc1(A). Inequality (4) implies that the smallest positive
number of this form is larger than E . Hence, we see, using equation (3), that if
c(F ) is attained by one of these orbits, then c(F ) ≈ 0.

Next, we analyze the non-trivial 1-periodic orbits of F . As mentioned earlier,

these orbits appear at values of |z| such that f ′( |z|2
2

) = 2πl , where l denotes a
non-zero integer. Let z(t ) be one such orbit and denote by u a capping of z(t )

JOURNAL OF MODERN DYNAMICS VOLUME 9, 2015, 51–66



SPECTRAL KILLERS AND POISSON BRACKET INVARIANTS 61

which is contained entirely inside Br . A simple computation would reveal that
the action of this orbit is given by the expression:

AF ([z(t ),u]) = f
( |z|2

2

)
− f ′

( |z|2
2

) |z|2
2

.(5)

Consider a value of |z| where f ′( |z|2
2

)= 2πl . At such a value of |z| the periodic
orbits form a (2n − 1)-dimensional sphere; denote this sphere by Sl . We will
now describe our procedure for perturbing F to a non-degenerate Hamiltonian:
pick a Morse function h : Sl →R with exactly two critical points. Identify the set
Sl × (1−2ε,1+2ε) with a tubular neighborhood of Sl via the map (z, a) 7→ az,
and extend h to this neighborhood by setting h(z, a) = h(z)g (a) where g is any
function with compact support in (1− 2ε,1+ 2ε) and such that g |(1−ε,1+ε) = 1.
Consider the Hamiltonian F +δh, δ > 0. For sufficiently small values of δ, the
Hamiltonian F+δh will have exactly two 1-periodic orbits near Sl corresponding
to the two critical points of h. We repeat the described perturbation near each
sphere Sl . In the end, we obtain a non-degenerate Hamiltonian, which we
continue to denote by F , with two 1-periodic orbits near each value of |z| such

that f ′( |z|2
2

)= 2πl . Since these perturbations are C 2-small, we can approximate
the actions of these orbits using equation (5). For further details see [1, 7]. Here,
we are following, very closely, Section 3.3 of [7].

In [7], Oancea considers radial Hamiltonians of the form f
( |z|2

2

)
in R2n and

computes the Conley-Zehnder indices of the 1-periodic orbits which arise as a
result of the perturbation performed in the previous paragraph. Let z l

1(t ), z l
2(t )

denote the two 1-periodic orbits of F near Sl , corresponding respectively to
the minimum and maximum of h. Extracting the indices of these orbits from
Section 3.3 of [7] we obtain:

µC Z ([z l
1(t ),u]) =

{
−2ln −n if f ′′( |z|2

2

)> 0 near Sl

−2ln −n +1 if f ′′( |z|2
2

)< 0 near Sl ,
(6)

µC Z ([z l
2(t ),u]) =

{
−2ln +n −1 if f ′′( |z|2

2

)> 0 near Sl

−2ln +n if f ′′( |z|2
2

)< 0 near Sl .
(7)

In the above, u is the capping disc contained entirely in Br . Here, we will not
perform the lengthy calculations needed to obtain these formulas. Computing
indices for radial Hamiltonians is folklore knowledge; we refer the interested
reader to Section 3.3 of [7]. For comparing the above formulas with the formula
presented towards the end of Section 3.3 of [7], we ask the reader to keep the
following two points in mind:

• Oancea computes the negative of the Conley-Zehnder indices. Hence, our
formulas have the opposite sign.

• In [7] f is convex, i.e. f ′′ > 0. However, in our case f ′′ < 0 near |z| ≈
r − 4ε, r − ε and f ′′ > 0 near |z| ≈ r − 3ε, r − 2ε. To get the correct CZ
indices in the cases where f ′′ < 0 one must add 1 to the corresponding
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CZ indices from the cases where f ′′ > 0. We leave it to the reader to check
that this follows from the computations in [7].

The capped 1-periodic orbits of F are of the form [z l
i (t ),u#A], where z l

i (t )

are as described above, u is a capping for z l
i (t ) contained entirely in Br , and

A ∈ π2(M). Furthermore, recall that these orbits occur at |z| ≈ r − 4ε, r − 3ε,
r −2ε, r −ε. We will now analyze the actions and indices of these orbits.

Step 4: 1-periodic orbits near |z| ≈ r −4ε. Using equations (6), (7), and (1) we
get the following values for the CZ indices of such orbits (note that here f ′′ < 0):

µC Z ([z l
i (t ),u#A]) =

{ −2ln −n +1−2c1(A) i = 1
−2ln +n −2c1(A) i = 2.

Recall that c(F ) is attained by a 1-periodic orbit of index n. We see from the
above formula that the capped orbit [z l

i (t ),u#A] has index n only when i = 2
and c1(A) =−ln. Using equation (5), we see that the action of this orbit is:

AF ([z l
2(t ),u#A]) ≈ f

( (r −4ε)2

2

)
− f ′

( (r −4ε)2

2

) (r −4ε)2

2
−ω(A)

≈ m − lπ(r −4ε)2 −λc1(A)

= m − lπ(r −4ε)2 −λ(−ln)

= m + l (nλ−π(r −4ε)2).

By increasing m, we may assume that it is an integer multiple of (nλ−π(r −4ε)2).
Of course, this implies the actions of all such orbits are integer multiples of
(nλ−π(r −4ε)2). Inequality (4) implies that the smallest positive number of this
form (i.e. |nλ−π(r −4ε)2|) is larger than E . Hence, we see, using equation (3),
that if c(F ) is attained by one of these orbits, then c(F ) ≈ 0.

Step 5: 1-periodic orbits near |z| ≈ r −3ε. Using the same reasoning as in Step
4, we see that the CZ indices of these orbits are given by (note that here f ′′ > 0):

µC Z ([z l
i (t ),u#A]) =

{ −2ln −n −2c1(A) i = 1
−2ln +n −1−2c1(A) i = 2.

We see from the above formula that the capped orbit [z l
i (t ),u#A] has index n

only when i = 1 and c1(A) =−n(l +1); the action of this orbit is:

AF ([z l
1(t ),u#A]) ≈ f

( (r −3ε)2

2

)
− f ′

( (r −3ε)2

2

) (r −3ε)2

2
−ω(A)

≈−πr 2 − lπ(r −3ε)2 −λc1(A)

=−πr 2 − lπ(r −3ε)2 −λ(−n(l +1))

= (nλ−πr 2)+ l (nλ−π(r −3ε)2).

Now, near (r−3ε)2

2 , f is decreasing and hence f ′( (r−3ε)2

2

) = 2πl is negative.
Therefore, l is negative.

JOURNAL OF MODERN DYNAMICS VOLUME 9, 2015, 51–66



SPECTRAL KILLERS AND POISSON BRACKET INVARIANTS 63

First, suppose that l 6−2. In this case, one can check, using inequality (4),
that the above action value is negative if λ> 0, and it is larger than E if λ< 0. Of
course, equation (3) rules out such values for c(F ).

If l = −1, then the action value is π(r −3ε)2 −πr 2. This value is negative as
well and so c(F ) is not attained here either.

REMARK 14. It is precisely here, in the case l = −1 where we use the fact that
the spectral killer Kε, and the function F , take the value −πr 2 on {z : r −3ε6
|z|6 r −2ε}.

If we were to modify F such that it would take the value a in this region,
where −πr 2 < a 6 0, then the orbit considered above in the case l =−1 would
have action π(r −3ε)2 +a, which falls in the range (0,E), and hence it could be
the case that c(F ) is attained by this non-zero value.

Step 6: 1-periodic orbits near |z| ≈ r −2ε. Using the same reasoning as in the
previous step, we see that the CZ indices of these orbits are given by (note that
here f ′′ > 0):

µC Z ([z l
i (t ),u#A]) =

{ −2ln −n −2c1(A) i = 1
−2ln +n −1−2c1(A) i = 2.

We see from the above formula that the capped orbit [z l
i (t ),u#A] has index n

only when i = 1 and c1(A) =−n(l +1); the action of this orbit is:

AF ([z l
1(t ),u#A]) ≈ f

( (r −2ε)2

2

)
− f ′

( (r −2ε)2

2

) (r −2ε)2

2
−ω(A)

≈−πr 2 − lπ(r −2ε)2 −λc1(A)

=−πr 2 − lπ(r −2ε)2 −λ(−n(l +1))

= (nλ−πr 2)+ l (nλ−π(r −2ε)2).

Now, near (r−2ε)2

2 , f is increasing and hence f ′( (r−2ε)2

2

)= 2πl is positive. There-
fore, l is positive. One can check, using inequality (4), that the above action
value is negative if λ < 0, and it is larger than E if λ > 0. Hence, we see, using
equation (3), that c(F ) is not attained by any of these orbits.

Step 7: 1-periodic orbits near |z| ≈ r − ε. Using the same reasoning as in the
previous steps, we see that the CZ indices of these orbits are given by (note that
here f ′′ < 0):

µC Z ([z l
i (t ),u#A]) =

{ −2ln −n +1−2c1(A) i = 1
−2ln +n −2c1(A) i = 2.

We see from the above formula that the capped orbit [z l
i (t ),u#A] has index n

only when i = 2 and c1(A) =−ln; the action of this orbit is:
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AF ([z l
2(t ),u#A]) ≈ f

( (r −ε)2

2

)
− f ′

( (r −ε)2

2

) (r −ε)2

2
−ω(A)

≈ 0− lπ(r −ε)2 −λ(−l n)

= l (nλ−π(r −ε)2).

Now, near (r−ε)2

2 , f is increasing and hence f ′( (r−ε)2

2

)= 2πl is positive. There-
fore, l is positive. One can check, using inequality (4), that the above action
value is negative if λ < 0, and it is larger than E if λ > 0. Hence, we see, using
equation (3), that c(F ) is not attained by any of these orbits.

In summary, through steps 1-7, we have shown that the actions of 1-periodic
orbits of F with Conley-Zehnder index n are either approximately zero or fall
outside the interval (0,E ]. Hence, we conclude that c(F ) = 0.

4. PROOF OF THEOREM 9

As mentioned in the introduction, our main motivation for seeking results in
the spirit of Theorem 2 is the application of such results to the theory of Poisson
bracket invariants. In this section we will explain how Theorem 9 follows from
Theorem 2. This proof is not due to the author; it was explained to us by Leonid
Polterovich. This proof can also be extracted from Section 5 of his article [12].

A partial symplectic quasi-state. We begin by introducing the partial symplec-
tic quasi-state ζ : C∞(M) →R, defined as follows:

ζ(F ) = lim
k→∞

c(kF )

k
,

where c is the spectral invariant defined in Section 2. The functional ζ was
introduced by Entov and Polterovich in [3]. We will need the following two
properties of ζ:

1. (Monotonicity) If H 6G then ζ(H)6 ζ(G).
2. (Normalization) ζ(C ) =C , for any constant C ∈R.

The above two properties can be deduced from Proposition 12.

The Poisson bracket inequality. For F,G ∈C∞(M) define

Π(F,G) = |ζ(F +G)−ζ(F )−ζ(G)|
and

S(F,G) = sup
s>0

min{c(sF )+ c(−sF ),c(sG)+ c(−sG)}.

The Poisson bracket inequality states that

Π(F,G)6
√

2S(F,G)‖{F,G}‖∞ .

For a proof see Proposition 5.2 of [12]. A slightly different version of this inequal-
ity was introduced and proven in [4].
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Proof of Theorem 9. Because the covering U = {U1, · · · ,UN } is d-regular, it can
be partitioned into (at most) d +1 subsets, say W1, · · · ,Wd+1 ⊂U , such that each
collection W j consists of mutually disjoint sets. This is proven in Section 4.5 of
[12]; see Proposition 4.7.

For 16 j 6 d+1 let W j =∪Ui∈W j Ui . Consider a partition of unity ~f ={ f1, · · · , fL}
subordinate to U . For 16 j 6 d +1 let

F j =
∑

supp( fi )⊂W j

fi .

Write Gk = F1 + ·· · + Fk , for k = 1, . . . ,d + 1. Applying the Poisson bracket
inequality to Gk+1 and Gk we get:

|ζ(Gk+1)−ζ(Gk )−ζ(Fk+1)|6
√

2S(Gk ,Fk+1)‖{Gk ,Fk+1}‖.(8)

We now analyze and simplify the above inequality.
First, notice that

‖{Gk ,Fk+1}‖∞ 6 νc (~f ).(9)

Second, we claim that Theorem 2 implies that

S(Gk ,Fk+1)6πr 2.(10)

Indeed, it follows directly from Theorem 2 that c(sF j ) 6 πr 2 for all s > 0 and
16 j 6 d +1. On the other hand, −sF j 6 0 and so c(−sF j )6 0. Hence,

c(sF j )+ c(−sF j )6πr 2

for all s > 0 and 16 j 6 d +1.
Third, the fact that c(sF j )6πr 2 for all s > 0 and 16 j 6 d +1 implies that

ζ(Fk+1) = 0.(11)

Using equations (9), (10), and (11) we simplify inequality (8) and get

ζ(Gk+1)6 ζ(Gk )+
√

2πr 2νc (~f ).

Thus, 1 = ζ(Gd+1)6 d
√

2πr 2νc (~f ), and hence 1
2d 2πr 2 6 νc (~f ). This proves Theo-

rem 9.
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