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Abstract
In mammalian auditory cortex, sound source position is represented by a population of

broadly tuned neurons whose firing is modulated by sounds located at all positions sur-

rounding the animal. Peaks of their tuning curves are concentrated at lateral position, while

their slopes are steepest at the interaural midline, allowing for the maximum localization ac-

curacy in that area. These experimental observations contradict initial assumptions that the

auditory space is represented as a topographic cortical map. It has been suggested that a

“panoramic” code has evolved to match specific demands of the sound localization task.

This work provides evidence suggesting that properties of spatial auditory neurons identi-

fied experimentally follow from a general design principle- learning a sparse, efficient repre-

sentation of natural stimuli. Natural binaural sounds were recorded and served as input to a

hierarchical sparse-coding model. In the first layer, left and right ear sounds were separately

encoded by a population of complex-valued basis functions which separated phase and

amplitude. Both parameters are known to carry information relevant for spatial hearing.

Monaural input converged in the second layer, which learned a joint representation of ampli-

tude and interaural phase difference. Spatial selectivity of each second-layer unit was mea-

sured by exposing the model to natural sound sources recorded at different positions.

Obtained tuning curves match well tuning characteristics of neurons in the mammalian audi-

tory cortex. This study connects neuronal coding of the auditory space with natural stimulus

statistics and generates new experimental predictions. Moreover, results presented here

suggest that cortical regions with seemingly different functions may implement the same

computational strategy-efficient coding.

Author Summary

Ability to localize the position of a sound source is vital to many organisms, since audition
provides information about areas which are not accessible visually. While its importance is
undisputed, its neuronal mechanisms are not well understood. It has been observed in
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experimental studies that despite the crucial role of sound localization, single neurons in
the auditory cortex of mammals carry very little information about the sound position.
The joint activity of multiple neurons is required to accurately localize sound, and it is an
open question how this computation is performed by auditory cortical circuits. In this
work I propose a statistical model of natural stereo sounds. The model is based on the the-
oretical concept of sparse, efficient coding which has provided candidate explanations of
how different sensory systems may work. When adapted to binaural sounds recorded in a
natural environment, the model reveals properties highly similar to those of neurons in
the mammalian auditory cortex, suggesting that mechanisms of neuronal auditory coding
can be understood in terms of general, theoretical principles.

Introduction
The precise role played by the auditory cortex in hearing remains unclear. Before reaching cor-
tical areas, raw sounds undergo numerous transformations in the brainstem and the thalamus.
This subcortical processing seems more substantial than in other senses and is a specific prop-
erty of the auditory system. What computations are performed by the cortex on the output
generated by lower auditory regions is a question far from being answered.

One of the issues in functional characterization of the auditory cortex is an apparent lack of
specificity. Spiking activity of cortical auditory neurons is modulated by sound features such as
pitch, timbre and spatial location [1, 2]. Responses invariant to any of those features seem rare.
This interdependence is especially puzzling in the context of extracting spatial information. A
number of studies attempted to identify “what” and “where” streams in the auditory system
(e.g. [3, 4]). Despite those efforts the existence of a sharp separation of spatial and identity in-
formation in the auditory cortex is still not definitely confirmed [5, 6].

Neurons reveal sensitivity to sound position in most parts of the mammalian auditory cor-
tex [7]. Their spatial tuning is quite broad— neural firing can be modulated by sounds located
anywhere on the azimuthal plane. While activity of single units does not carry information suf-
ficient to accurately localize sounds, larger numbers of neurons seem to form a population
code for sound location [8–11]. These observations strongly differ from assumptions made
early in the field that the auditory space is represented by a topographic cortical map, where
neighboring units would encode the presence of a sound source at proximal positions [12].

Results described above constitute a conceptual challenge for theoretical models of the audi-
tory cortex and understanding its role in spatial hearing in particular. Nevertheless, a number
of candidate roles for this region have been proposed. It has been suggested, for instance, that
the main function of the primary auditory cortex (A1) is to process sound features extracted by
subcortical structures [13] on multiple time scales. Another theory proposes that the auditory
cortex in the cat represents abstract entities (such as a bird song or wind) rather than low-level
spectrotemporal features of the stimulus [14]. It is also debated whether auditory cortical areas
bear similarities to visual areas, and if yes, what sort of understanding can be gained by com-
bining knowledge about those brain regions [15]. From a theoretical perspective one question
seems to be particularly important— is there any general principle behind the functioning of
auditory cortex, or does it carry out computations which are task- or modality-specific and
therefore not performed in other parts of the brain?

A particularly succesful theoretical framework attempting to explain general mechanisms
behind the functioning of the nervous system is provided by the Efficient Coding Hypothesis
[16, 17]. It proposes that sensory systems maximize the amount of transmitted stimulus
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information. Under the additional assumption that a typical stimulus activates only a small
fraction of a neuronal population, the hypothesis is known as sparse coding[18, 19]. Perhaps
the strongest prediction of the efficient coding hypothesis is that the neuronal activity at conse-
cutive stages of sensory processing should become less and less redundant, hence more inde-
pendent. This prediction has been experimentally tested in the auditory system of the cat.
Chechik and colleagues [20] recorded neuronal responses to natural sounds at three levels of
the auditory hierarchy— Inferior Colliculus (IC), Medial Genniculate Body (MGB) and A1.
They observed that spiking activity was progressively less redundant between single neurons,
as quantified using information theoretic measures. This result suggests that audition can be
understood using concepts provided by the efficient coding hypothesis.

In order to form an efficient stimulus representation, neuronal codes should reflect regulari-
ties present in the sensory environment [21]. This implies that by studying statistics of natural
input, one should be able to predict neuronal tuning properties. In audition, this idea has been
followed by a number of researchers. Starting at the lowest level of the auditory system, Lewicki
and Smith [22, 23] demonstrated that learning a sparse representation of natural sound chunks
reproduces shapes of cochlear filters of the cat. A recent extension of this work has suggested
that while the auditory nerve may be optimally encoding all sounds it encounters, neurons in
the cochlear nucleus may be tuned to efficiently represent particular sound classes [24]. Climb-
ing higher in the auditory hierarchy— Carlson et al [25] have reproduced shapes of spectro-
temporal receptive fields (STRFs) in the inferior colliculus by learning sparse codes of speech
sounds. The relationship between spectrotemporal tuning of cortical neurons and sparse repre-
sentation of speech spectrograms were explored by Klein, Koerding and Koenig [26, 27]. More
recently, some aspects of the topographic structure of the auditory cortex were shown to
emerge from statistics of speech sounds by Terashima and Okada [28]. Terashima and col-
leagues have also studied the connection between sparse codes of natural sound spectra and
harmonic relationships revealed by receptive fields of macaque A1 neurons [29]. Maximizing
coding efficiency by learning sparse codes has also lead to emergence of signal representations
useful in spatial hearing tasks. Asari et al [30] learned overcomplete dictionaries of monaural
spectrograms and demonstrated that this representation allows for the segregation of acousti-
cally overlapping and yet spatially separate sound sources (the “cocktail party problem”). A re-
cent study found that sparse coding of a spectrotemporal representation of binaural sound
extracts spatial features invariant to sound identity [31].

As discussed above, a growing body of evidence seems to point to efficient coding as a
computational process implemented by the auditory system. To date however, the connection
between natural stimulus statistics and auditory spatial receptive fields remains unexplained. It
is therefore unclear if spatial computations performed by the auditory cortex are unique to this
brain area or whether they can be also predicted in a principled way from a broader
theoretical perspective.

The present work attempts to connect spatial computations carried out by the auditory cor-
tex with statistics of the natural stimulus. Here, a hierarchical statistical model of stereo sounds
recorded in a real auditory environment is proposed. Based on principles of sparse coding the
model learns the spectrotemporal and interaural structure of the stimulus. In the next step, it is
demonstrated that when probed with spatially localized sounds, higher level units reveal spatial
tuning which strongly resembles spatial tuning of neurons in the mammalian auditory cortex.
Additionally, the learned code forms an interdependent representation of spatial information
and spectrotemporal quality of a sound. Activity of higher units is therefore modulated by
sound’s position and identity, as observed in the auditory system.

This study provides computational evidence that spatial tuning of auditory cortical neurons
may be a manifestation of an underlying general design principle— efficient coding. Present
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results suggest that the role of the auditory cortex is to reduce redundancy of the stimulus re-
presentation preprocessed by the brainstem. Representation obtained in this way may facilitate
tasks performed by higher brain areas, such as sound localization.

Results

Recorded sounds
Binaural sound used to train the model was recorded by a human subject walking freely in a
wooded area, in the presence of another speaker. The obtained recording included ambient
(wind, flowing stream) and transient environmental sounds (wood cracking, steps) as well as
human speech. The auditory scene changed over time due to the motion of the the recorder,
the speaker, and changes in the environment. It consisted of multiple sound sources emanating
from a diverse set of locations, creating together a complex, natural auditory environment.
Please refer to the Methods section for details of the recording.

Overview of the hierarchical model
The present study proposes a hierarchical statistical model of binaural sounds, which captures
binaural and spectrotemporal structure present in natural stimuli. The architecture of the
model is shown in Fig 1. It consists of the input layer and two hidden layers. The input to the
model was N sample-long epochs of binaural sound: from the left ear—xL and from the right
ear—xR. The role of the first layer was to extract and separate phase and amplitude information
from each ear by encoding them in an efficient manner. Monaural sounds were transformed

Fig 1. The graphical model representing variable dependencies. The lowest layer represents sound
epochs perceived by the left and the right ear xL and xR. They are decomposed by a sparse coding algorithm
into phase and amplitude vectors ϕL, ϕR and aL, aR. Phases are further substracted from each other in order to
obtain an IPD vector Δϕ. The second layer encodes jointly monaural amplitudes and IPDs. Auxiliary variables
(phase offset and the scaling factorw) are depicted in gray.

doi:10.1371/journal.pcbi.1004294.g001
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into phase (ϕL, ϕR) and amplitude (aL, aR) vectors. This layer can be thought of as a statistical
analogy to cochlear filtering. Phase vectors were further modified by computing interaural
phase differences (IPDs)— a major sound localization cue [32]. This tranformation may be
considered an attempt to mimic functioning of the medial superior olive (MSO)— the brain-
stem nucleus where phase differences are extracted [32].

The second layer of the model learned a joint sparse representation of monaural amplitudes
(aL, aR) and phase differences (Δϕ). Level (amplitude) and temporal (phase) information from
each ear was jointly encoded by a population ofM units. Each of the units was therefore cap-
turing higher-order spectrotemporal patterns of sound in each ear. Additionally, by combining
monaural information into single units higher level representation achieved spatial tuning not
present in the first layer. The second hidden layer can be interpreted as a model of auditory
neurons which receive converging monaural input and jointly operate on phase and amplitude
— two kinds of information known to be important for spatial hearing.

First layer: sparse, complex-valued sound representation
As demonstrated in previous work, filtering properties of the auditory nerve can be explained
by sparse coding models of natural sounds [22]. There, short epochs of natural sounds are
modelled as a linear combination of real-valued basis functions multiplied by sparse, indepen-
dent coefficients (i.e. having highly curtotic marginal distributions). Adapted to sets of natural
sound chunks, basis functions become localized in time and/or frequency matching properties
of cochlear filters.

While being capable of capturing interesting properties of the data, real valued representa-
tions are not well suited for modeling binaural sounds. This is because binaural hearing mecha-
nisms utilize interaural level and time differences (ILDs and ITDs respectively). In narrowband
channels, differences in time correspond to phase displacements known as interaural phase dif-
ferences (IPDs). Therefore a desired representation should both be adapted to the data (i.e.
non-redundant) and separate amplitude from phase (where phase is understood as a temporal
shift smaller than the oscillatory cycle of a particular frequency).

The present work addresses this twofold constraint with complex-valued sparse coding.
Each data vector x 2 R

N is represented in the following way:

xt ¼
XN
i¼1

Rfz�i Ai;tg þ Z ð1Þ

where zi 2 C are complex coefficients, � denotes a complex conjugation, Ai 2 C
T are complex

basis functions and η*N(0, σ) is additive gaussian noise. Complex coefficients in Euler’s

form become zi ¼ aie
j�i (where j ¼ ffiffiffiffiffiffiffi�1

p
) therefore Eq (1) can be rewritten to explicitely repre-

sent phase ϕ and amplitude a as separate variables:

xt ¼
XN
i¼1

aið cos�iA
R
i;t þ sin�iA

I
i;tÞ þ Z ð2Þ

Real and imaginary parts AR
i and AI

i of basis functions fAigNi¼1 span a subspace within
which the position of a data sample is determined by amplitude ai and phase ϕi. Depending on
number of basis functions N (each of them is formed by a pair of vectors), the representation
can be complete (N/2 = T) or overcomplete (N/2> T).
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In a probabilistic formulation, Eqs (1) and (2) can be understood as a likelihood model of
the data, given coefficients z and basis functions A:

pðxjz;AÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p
� �TYT

t¼1

e
�
ðxt � x̂ tÞ2

2s2 ð3Þ

where x̂ t ¼
PN

i¼1 Rfz�i Ai;tg is the reconstruction of the t−th dimension of the data vector x. A

prior over complex coefficients applied here assumes independence between subspaces and
promotes sparse solutions i.e. solutions with most amplitudes close to 0:

pðzÞ ¼ 1

Z

YN
i¼1

e�lSðaiÞ ð4Þ

where Z is a normalizing constant. Function S(ai) promotes sparsity by penalizing large ampli-
tude values. Here, a Cauchy prior on amplitudes is assumed i.e. SðaiÞ ¼ logð1þ a2i Þ. One
should note however that amplitudes are always non-negative and that in general the Cauchy
distribution is defined over the entire real domain. The model attempts to form a data repre-
sentation keeping complex amplitudes maximally independent across subspaces, while still al-
lowing dependence between coordinates zR; zI which determine position within each subspace.
Inference of coefficients z which represent data vector x in the basis A is performed by mini-
mizing the following energy function

E1ðz; x;AÞ /
1

2s2

XT
t¼1

ðx̂t � xtÞ2 þ l
XN
i¼1

SðaiÞ ð5Þ

which corresponds to the negative log-posterior p(zjx, A). This model was introduced in [33]
and used to learn motion and form invariances from short chunks of natural movies. Assuming
N = T/2 and σ = 0, it is equivalent to 2-dimensional Independent Subspace Analysis(ISA) [34].

When trained on natural image patches, real and imaginary parts of basis functions A form
pairs of Gabor-like filters, which have the same frequency, position, scale and orientation. The
only differing factor is phase—real and imaginary vectors are typically in a quadrature-phase
relationship (shifted by p

2
). By extension, one might expect that the same model trained on nat-

ural sounds should form a set of frequency localized phase-invariant subspaces, where imagi-
nary vector is equal to the real one shifted a quarter of a cycle in time. Somewhat surprisingly,
such representation does not emerge, and learned subspaces capture different aspects of the
data— bandwidth, frequency or time invariance [35, 36].

In order to learn a representation from the statistics of the data that preserves a desired
property such as phase invariance, one could select a parametric form of basis functions and
adapt the parameter set [37]. Such a parametric approach has the disadvantage that the as-
sumed family of solutions might not be flexible enough to efficiently span the data space. An-
other, more flexible alternative to learn a structured representation is to regularize basis
functions by imposing temporal-coherence promoting priors [36]. This, however, requires de-
termining the strength of regularizing priors.

To overcome these problems, a different approach was taken here. The first-layer represen-
tation was created in two steps. Firstly a real-valued sparse code was trained (see Methods).
Learned basis functions were well localized in time or frequency and tiled the time-frequency
plane in a uniform and non-overlapping manner (Fig 2B). They were taken as real vectors A<

of complex basis functions A. In the second step, imaginary parts were created by performing
the Hilbert transform of real vectors. The Hilbert transform of a time varying signal y(t) is

Learning Auditory Spatial Receptive Fields from Natural Stereo Sounds

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004294 May 21, 2015 6 / 31



defined as follows:

HðyðtÞÞ ¼ 1

p
p:v:

Z 1

�1

yðtÞ
t � t

dt ð6Þ

Where p.v. stands for Cauchy principal value. In such a way every real vector A<
i was paired

with its Hilbert transform AI
i ¼ HðA<

i Þ i.e. a vector which complex Fourier’s coefficients are all
shifted by p

4
in phase. The obtained dictionary is adapted to the stimulus ensemble, hence pro-

viding a non-redundant data representation, yet makes phase clearly interpretable as a
temporal displacement.

The model was trained using T = 128 sample-long chunks of sound sampled at 8 kHz,
which corresponds to 16 ms duration. The complete representation of 128 real basis functions
was trained, and each of them was paired with its Hilbert transform, resulting in the total num-
ber of 256 basis vectors. Selected basis functions are displayed in Fig 2A. Real vectors are plot-
ted in black together with associated imaginary ones plotted in gray. Panel B of the same figure
displays isoprobability contours of Wigner-Ville distributions associated with the 256 basis
functions. This form of representation localizes each temporal feature on a time-frequency
plane [38] (one should note that real and imaginary vectors within each pair are represented by
the same contour on that plot). A clear separation into two classes is visible. Low frequency
basis functions (below 1 kHz) are non-localized in time (spanning the entire 16 ms interval),
while in higher frequency regions their temporal precision increases. An interesting bandwidth
reversal is visible around 3 kHz, where temporal accuracy is traded for frequency precision. In-
terestingly, the sharp separation into frequency and time localized basis functions, which
emerged in this study was not clearly visible in other studies which performed sparse coding of
sound [22, 38]. Time-frequency properties observed here reflect the statistical structure of the

Fig 2. First layer basis. A) Representative real (black) and imaginary (gray) vectors. B) Isoprobability contours of Wigner-Ville distributions associated with
each real vector. Time—frequency plane is tiled uniformly with a weak overlap. Gray-filled oval corresponds to the framed basis function on panel A.

doi:10.1371/journal.pcbi.1004294.g002
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recorded auditory scene, which mostly consisted of non-harmonic environmental sounds
sparsely interspersed with human speech.

Fig 3 depicts a typical distribution of binaural phase. Phases of the same basis function in
each ear reveal dependence in their difference. This means that joint probability of monaural
phases depends solely on the IPD:

pð�i;L; �i;RÞ / pðD�iÞ ð7Þ

where Δϕi = ϕi, L−ϕi, R is the IPD. This property is a straightforward consequence of physics of
sound— sounds arrive to each ear with a varying delay giving rise to positive and negative
phase shifts. From a statistical point of view this means that monaural phases become condi-
tionally independent given their difference and a phase offset ϕi, O:

�i;L ? �i;RjD�i; �i;O ð8Þ

Fig 3. Joint distribution of monaural phases. The distribution was estimated by independently encoding
left and right ear sounds from an ensemble of binaural sound epochs and creating a histogram of phase
values associated with the basis function depicted at the bottom of the figure. Visible ridge-like pattern implies
that monaural phases reveal a dependence in their difference.

doi:10.1371/journal.pcbi.1004294.g003
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The phase offset ϕi, O is the absolute phase value— indicating the time from the beginning
of the oscillatory cycle. It can be therefore said that:

�i;L ¼ �i;O þ
D�i

2
ð9Þ

�i;R ¼ �i;O �
D�i

2
ð10Þ

This particular statistical property allows us to understand IPDs not as an ad-hoc computed
feature but as an inherent property of the probability distribution underlying the data. It is re-
flected in the structure of the graphical model (see Fig 1). Since the phase offset ϕi, O does not
carry spatial information for the purposes of current study it is treated as an auxiliary variable
and therefore marked in gray.

Second layer: joint representation of monaural amplitudes and interaural
phase differences
In an approach to model the cochlear coding of sound, monaural sound epochs xL and xR were
encoded independently using the same dictionary of complex basis functions A described in
the previous section. Signal from both ears converged in the second hidden layer, which role
was to form a joint, higher-order representation of the entire stimulus processed by the
auditory system.

The celebrated Duplex Theory of spatial hearing specifies two kinds of cues used to solve
the sound-localization task: interaural level and time (or phase) differences [39]. While IPDs
are supposed to be mostly used in localizing low-frequency sounds, ILDs are a cue, which (at
least in the laboratory conditions) can be used to identify the position of high frequency
sources. Phase and level cues are known to be computed in lateral and medial superior olive
(LSO and MSO respectively)— separated anatomical regions in the brainstem [32]. However,
an assumption made here was that neurons in the auditory cortex receive converging input
from subcortical structures. This would enable them to form their spatial sensitivity using both
fine structure phase and amplitude information. One can take also the inverse perspective: a
single object (a “cause”) in the environment generates level and phase cues at the same time. Its
identification therefore has to rely on observing dependencies between those features of
the stimulus.

The second layer formed a joint representation of monaural amplitudes and interaural
phase differences. However, not all IPDs were modelled in that stage. Humans stop utilizing
fine structure IPDs in higher frequency regimes (roughly above 1.3 kHz), since this cue be-
comes ambiguous [32]. Aditionally, cues above around 700 Hz become ambiguous (a single
cue value does not correspond to a unique source position). For those reasons, and in order to
reduce the number of data dimensions, 20 out of 128 IPD values were selected. The selection
criteria were the following: (i) an associated basis function should have the peak of the Fourier
spectrum below 0.75 kHz (which provided the upper frequency bound), and (ii) it should have
at least one full cycle (which provided the lower bound). All basis functions fulfilling these cri-
teria were non-localized in time (they spanned entire 16 ms interval). As a result, the second
layer of the model was jointly encoding T = 128 log-amplitude values from each ear and P = 20
phase differences.

Monaural log-amplitude vectors aL, aR 2 R
T were concatenated into a single vector a 2

R
2×T, and encoded using a dictionary of amplitude basis functions B. Representation of IPDs

(Δϕ) was formed using a separate feature dictionary ξ. Both— phase and amplitude basis
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functions (B and ξ), were coupled by associated sparse coefficients s. The overall generative
model of phases and amplitudes was defined in the following way:

an ¼
XM
i¼1

siBi;n þ Z ð11Þ

D�n ¼ jwj
XM
i¼1

sixi;n þ � ð12Þ

The amplitude noise was assumed to be gaussian (η*N(0, σ2)) with σ2 variance. Since phase
is a circular variable its noise ε was modelled by the von Mises distribution with concentration
parameter κ.

The second layer was encoding two different physical quantities— phases, which are circu-
lar values, and log-amplitudes, which are real numbers. The goal was to form a joint represen-
tation of both parameters and learn their dependencies from the data. A simple, linear sparse
coding model could be in principle used to achieve this task. However, if a single set of sparse
coefficients si was used to model both quantities, scaling problems could arise, namely a coeffi-
cient value which explains well the amplitude vector may be too large or too small to explain
the concomittant IPD vector. For this reason an additional phase multiplier w was introduced.
It enters Eq 11 as a scaling factor, which gives the model additional flexibility required to learn
joint probability distribution of amplitudes and IPDs. Fig 1 depicts it in gray as an auxiliary
variable. In this way, amplitude values and phase differences were modelled by variables shar-
ing a common, sparse support (coefficients s), with a sufficient flexibility.

Pairs of basis functions Bi, ξi represent binaural spectrotemporal stimulus and IPD patterns
respectively, while sparse coefficients s signal their joint presence in the encoded sound epoch.
An i−th second-layer unit was activated (si 6¼ 0) whenever a pattern of IPDs represented by the
basis function ξi or a pattern of amplitudes represented by Bi was present in its receptive field.
The activity was maximized, when both features were present at the same time. For this reason,
when seeking analogies between the higher-level representation and auditory neurons, coeffi-
cients s can be interpreted as neuronal activity (e.g. firing rate) and basis function pairs Bi, ξi as
receptive fields (i.e. stimulus preferred by a neuron).

The likelihood of amplitudes and phase differences defined by the second layer was given
by:

pða;D�js;w;B; xÞ ¼ 1

s2

ffiffiffiffiffiffi
2p

p
" #2TY2T

n¼1

e
�
ðan � ânÞ2

2s2
2

1

2pI0ðkÞ
� �PYP

m¼1

ekcos ðD�m�bD�mÞ ð13Þ

where ân ¼
PM

i¼1 siBi;n, cD�m ¼j w jPM
i¼1 sixi;m are amplitude and phase reconstructions repsec-

tively and I0 is the modified Bessel function of order 0. The joint distribution of coefficients s
was assumed to be equal to the product of marginals:

pðsÞ ¼ 1

Z

YM
i¼1

e�l2SðsiÞ ð14Þ

where λ2 is a sparsity controlling parameter. A Cauchy distribution was assumed as a prior
over marginal coefficients (i.e. SðsiÞ ¼ logð1þ s2i Þ). To prevent degenerate solutions, where
sparse coefficients s are very small and the scaling coefficient w grows undbounded, a prior p
(w) constraining it from above and from below was placed. A generalized Gaussian distribution
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of the following form was used:

pðwÞ ¼ b

2aG
1

b

� � e
� jw� mj

a

� �b

ð15Þ

Γ denotes tha gamma function, α, β and μ denote the scale, shape and location parameters re-
spectively. When the shape parameter β is set to a large value (here β = 8), the distribution ap-
proximates a uniform distribution. Varying the scale parameter α changes the upper and the
lower limit of the interval.

Taken together the negative log-posterior over the second layer coefficients was defined by
the energy function:

E2ðs;w;B; xÞ /
1

s2
2

X2�T

n¼1

ðan � ânÞ2 þ k
XP
m¼1

cos ðD�m � cD�mÞ þ l2

XM
i¼1

SðsiÞ þ lw
jw� mj

a

� �b

ð16Þ

the λw coefficient was introduced to control the strength of the prior on the scaling coefficient
w. Similarly as in the first model layer, learning of basis functions and inference of coefficients
was performed using gradient descent (see Methods). The total numberM of basis function
pairs was set to 256.

Properties of the second layer representation
The second layer learned cooccuring phase and amplitude patterns forming a sparse, combina-
torial code of the first layer output. Fig 4 displays 10 representative examples of basis function
pairs ξi and Bi, which encoded amplitudes and IPDs respectively.

Each amplitude basis function consisted of two monaural parts corresponding to the left
and right ear. First-layer, temporal features were visualized using contours of Wigner-Ville dis-
tribution and colored according to the relative weight. Entries of IPD basis functions were val-
ues (marked by gray bars) modelling interaural phase disparities in each of selected 20
frequency channels.

The subset of 9 basis functions depicted in subpanels B-J of Fig 4 constitutes a good repre-
sentation of the entire dictionary. Their vertical ordering corresponds to spectrotemporal prop-
erties of Bi basis functions. Amplitude features displayed in the first row (B, E, H) reveal
pronounced spectral modulation, while the last row (D, G, J) are features which are strongly
temporaly modulated. Columns are ordered according to the ear each basis function pair pre-
fered. Left column (B, C, D) are left-sided basis functions. Higher amplitude values are visible
in the left ear parts (although differences are rather subtle), while associated IPD features are
all negative. IPDs smaller than 0 imply that the encoded waveform was delayed in the right ear,
hence the sound source was closer to the left ear. The last column (H, I, J) depicts more right-
sided basis functions. Features displayed in the middle column (E, F, G) weight binaural ampli-
tudes equally, however entries of associated phase vectors are either mostly negative or
mostly positive.

As Fig 4 shows, higher level representation learned spectrotemporal properties of the audi-
tory scene, reflected in shapes of amplitude basis functions Bi. Binaural relations were captured
by relative weighting of amplitudes in both ears and the shape of the IPD basis function.

To get a more detailed understanding of the spectrotemporal features captured by the repre-
sentation, analysis of modulation spectra was performed. A modulation spectrum is a 2D Fou-
rier transform of the spectrotemporal representation of a signal. It is known that modulation
spectra of natural sounds posess specific structure [40]. Here, modulation spectrum was
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computed separately for monaural parts of amplitude basis functions Bi (see Methods). In the
next step a center of mass of each of the modulation spectra was computed. Centers of mass
are represented by single points in Fig 5A.

A clear tradeoff between spectral and temporal modulation was visible. Basis functions
which were strongly temporally modulated revealed simultaneously weak spectral modulation
(and vice versa). It is evident as a “triangular” shape of the point distribution in Fig 5A. This
seems to be a robust property of natural sounds [40] and was shown to be captured by sparse
coding models [25–27, 41, 42]. Interestingly, spectro-temporal receptive fields of auditory neu-
rons share this property [43, 44]. Auditory neurons which reveal sensitivity to spectrotemporal
sound patterns seem to prefer sounds which are either modulated in time or in frequency, but
not both. When compared with modulation spectra of natural sound this form of tuning may
be understood as an adaptation to the environmental stimulus statistics.

Average temporal modulation in the left ear is plotted against the right ear in panel B. As
visible— the amplitude modulation of basis functions B varied between 0 and 40 Hz, and a
general linear trend was present. A linear regression model was fitted to these data (the fit is de-
picted in Fig 5 as a black dashed line). The fit has revealed a relatively strong linear relationship
between the temporal variation of monaural parts (with Pearson’s correlation ρ = 0.70).

Spectral amplitude modulation revealed a weaker interaural correlation (ρ = 0.36). This is
visible in Fig 5C—points representing amplitude basis functions are scattered stronger than in
panel B of the same figure. This property can be explained by head filtering characteristics. Act-
ing as a low-pass filter, the head attenuates higher frequencies. For this reason, fine spectral in-
formation above 1.5 kHz was typically more pronounced in a single ear, affecting the strength
of spectral modulation. This may be considered as an example of how stimulus statistics are de-
termined not only by the environmental properties, but also by the anatomy of an organism.

Fig 4. Higher-order basis functions. A) Explanation of the visualization of second layer basis functions. Top two panels depict the binaural amplitude basis
function Bi. Spectrotemporal information in each ear is represented using isoprobability contours of Wigner-Ville distributions of first-layer basis functions
(see Fig 2). Colors correspond to the log-amplitude weight. The bottom panel represents the IPD basis function ξi. Each gray bar represents one of 20
selected low-layer basis functions. Here almost all values are positive (the bars point upwards), which corresponds to the right-ear precedence. B)-J) Basis
functions ordered vertically by spectral modulation and horizontally by the dominating side.

doi:10.1371/journal.pcbi.1004294.g004
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The majority of basis functions revealed spectral modulation smaller than 0.4 cycle per octave,
and only a single one exceeded this value.

In the following analysis step, the goal was to analyze similarity in the monaural spectrotem-
poral patterns encoded by each second-layer unit. To this end binaural similarity index (BSI)
of each amplitude basis function [43] was computed. The BSI is a correlation coefficient be-
tween the left and the right parts of a binaural, spectrotemporal feature. If the BSI was close to
0, the corresponding unit was representing different spectrotemporal patterns in each ear,
while values close to 1 implied high similarity. BSIs are plotted in Fig 6A.

Clearly, an overwhelming majority of basis functions revealed high interaural similarity
(BSI> 0.8, see the histogram at the inset). BSI of only one basis function was slightly below 0.
If information encoded by amplitude basis functions in each ear was independent, the BSI dis-
tribution should peak at 0. This observation suggests that most of the second-layer units cap-
tured the same “cause” underlying the stimulus i.e. a binaurally redundant spectrotemporal
pattern. While the BSI index measures similarity of encoded monaural sound features, it is not
informative about the side-preference of each unit. To asess whether amplitude basis functions
were biased more towards the left or towards the right ear, another statistic— a binaural ampli-
tude dominance (BAD) was computed. The amplitude dominance was defined in the following
way:

BADðBiÞ ¼ log
k exp ðBi;LÞ k
k exp ðBi;RÞ k

 !
ð17Þ

where Bi, L = Bi, (1, . . ., T), Bi, R = Bi, (T+1, . . .,2×T) are left and right ear parts of an amplitude basis
function Bi. Each of them was pointwise exponentiated to map the entries from real log-ampli-
tude values to the positive amplitude domain. The BAD index value larger than 0 means that
the left-ear amplitude vector had a larger norm (i.e., it dominated the input to the particular
unit). Balanced units had a BAD value close to 0 while right-ear dominance was indicated by

Fig 5. Spectrotemporal properties of the representation. A) Centers of mass of monaural modulation spectra. B) Centers of mass of temporal modulation
in monaural parts of Bi basis functions plotted C) Centers of mass of spectral modulation in monaural parts of Bi basis functions plotted. Letters correspond to
panels in Fig 4. Black dashed lines depict linear regression fits. Parameters of each fit are written in figure insets.

doi:10.1371/journal.pcbi.1004294.g005
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negative values. Two histograms of dominance scores are displayed in panel B of Fig 6. The
black one is an empirical distribution of BAD values of amplitude basis functions associated
with IPD features of a negative average value (left-side preferring). The gray one corresponds
to amplitude features matched with right-side biased phase basis functions. Both distributions
are roughly symmetric with their modes located quite close to 0. Such bimodal distribution of
the amplitude dominance score implies that amplitude basis functions could be divided into
two opposite populations— each preferring input from a different ear. Moreover, amplitude
and phase information modelled by basis functions Bi and ξi was dependent— amplitude fea-
tures dominated by information from one ear were associated with IPD features biased towards
the same ear.

While amplitude representation encoded the quality of the sound together with binaural dif-
ferences, the IPD dictionary was representing solely spatial aspects of the stimulus i.e. the tem-
poral difference between the ears. In almost entire feature population, single entries of each of
the phase difference basis functions ξi all had the same sign. Negative phase differences corre-
sponded to the left-side bias (it meant that the soundwave arrived first to the left-ear generating
a smaller phase value) and positive to the right-side one. These two properties allowed us to
asess the spatial preference of IPD basis functions simply by computing the average of their en-
tries. The histogram of averages of vectors ξi (normalized to have the maximal absolute value
of 1) is depicted in Fig 6C. A clear bimodality is visible in the distribution. The positive peak
corresponds to right-sided basis functions and the negative one to the left-sided subpopulation.
Almost no balanced features (close to 0) were present in the dictionary. This dichotomy is visi-
ble also in Fig 4—binaurally balanced amplitude basis functions (middle column) were associ-
ated with phase vectors biased towards either side. This result may be related to a previous
study, which showed that a representation of natural IPD distribution designed to maximize
stimulus discriminability (Fisher information) also has a form of two distinct channels [45],
where each of the channels preferred IPDs of an opposite sign.

Fig 6. Binaural properties of the representation. A) Binaural Similarity Index of amplitude basis functions Bi. The BSI is a correlation coefficient between
left and right ear subvectors. The inset depicte the BSI histogram. B) Distribution of binaural amplitude dominance. Values above 0 imply domination of the
left, and below 0 of the right ear. Histograms of BAD values of amplitude basis functions associated with negative IPD basis functions are colored gray and
those associated with positive ξi values are colored black. C) Distribution of averages of normalized ξi basis functions.

doi:10.1371/journal.pcbi.1004294.g006
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Spatial tuning of second layer units
The second layer of the model learned a distributed representation of sound features accesible
to neurons in the auditory cortex. Assuming that the cortical auditory code indeed develops
driven by principles of efficiency and sparsity, one can interpret second layer basis functions as
neuronal receptive fields and sparse coefficients s as a measure of neuronal activity (e.g. firing
rates). The model can be then probed using spatial auditory stimuli. If it indeed provides an ap-
proximation to real neuronal computations, its responses should be comparable with spatial
tuning properties of the auditory cortex.

In order to verify whether this was true, a test recording was performed. As a test sound the
hiss of two pieces of paper rubbed against each other was used. It was a broadband signal, remi-
niscent of white noise used in physiological experiments, yet posessing natural structure. Re-
cording was performed in an anechoic chamber, where a person walked around the recording
subject while rubbing two pieces of paper (see Methods for a detailed description). The record-
ing was divided into 18 windows, each corresponding to a 20 degree part of a full circle. The
number of windows was selected to match experimental parameters in [8, 10]. From each win-
dow 3000 epochs were drawn and each of them was encoded using the model. Computing his-
tograms of coefficients s at each angular position θ, provided an estimate of conditional
distributions p(sijθ). Panel A in Fig 7 displays a conditional histogram of coefficient s corre-
sponding to the basis function pair depicted in Fig 4A.

Distributions of sparse coefficients revealed a strong dependence in the position of the
sound source. As visible in the figure, the conditional mean of the distribution p(sijθ) traced by
the red line varied in a pronounced way across all positions. By analogy to averaged firing rates
of neurons, average unit responses at each position were further studied to understand the spa-
tial sensitivity of basis functions. Mean vectors μi, θ were constructed for each second-layer unit
by taking its average response at the sound source position θ. Each mean vector was shifted
and scaled such that its minimum value was equal to 0 and the maximum to 1. Such transfor-
mation was analogical to physiological studies [8] and allowed for comparison with experime-
tally measured spatial tuning curves of auditory neurons, and for this reason scaled vectors μi
will be referred to as model tuning curves in the remainder of the paper. In order to identify
spatial tuning preferences, the population of model tuning curves was grouped into two clus-
ters using the k-means algorithm. Obtained clusters consisted of 118 and 138 similar vectors.
Tuning curves belonging to both clusters and revealing a strong correlation (jρj> 0.75) with
sound position are plotted in Fig 7C as gray lines. Cluster centroids (averages of all tuning
curves belonging to a cluster) are plotted in black. Second layer units were tuned broadly—
most of them were modulated by sound located at all positions surrounding the subject’s head.
A clear spatial preference is visible—members of cluster 1 were most highly activated (on aver-
age) by sounds localized close to the left ear (θ� −90°), while cluster 2 consisted of units tuned
to the right ear (θ� 90°). Very similar tuning properties of auditory neurons were identified in
the cat’s auditory cortex [8]. Data from this study is plotted for comparison in the subfigure B
of Fig 7. Neuronal recordings were performed in the right hemisphere and two panels depict
two subpopulations of neurons. The larger contra- and the smaller ipsi-lateral one. It is impor-
tant to note, that the notion of ipsi, and contra laterality is not meaningful in the proposed
model, therefore one should compare shapes of model and experimental tuning curves, not the
numerosity of units in each population or cluster.

Two major features of cortical auditory neurons responsive to sound position were observed
experimentally: (i) tuning curve peaks were localized mostly at extremely lateral positions (op-
posite to each ear) and (ii) slopes of tuning curves were steepest close to the auditory midline.
Both properties are visible in model tuning curves in Fig 7. However, in order to perform a
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more direct comparison between the model and experimental data, analysis analogous to the
one described in [8] was performed. First, tuning curve centroids were computed. A centroid
was defined as an average position, where the unit activation was equal to 0.75 or larger (see
Methods). In the following step, the position of maximal slope towards midline was identified
for each unit. This meant that for units tuned to the left hemifield (cluster 1) the position of the
minimal slope value was taken, while the position of the maximal one was taken for units
tuned to the right hemifield (cluster 2). In this way, the position of maximal sensitivity to
changes in sound location was identified. Distributions of model centroids and maximal slope
positions are depicted in Fig 8B. Centroids were distributed close to lateral positions, opposite
in each cluster (−90° cluster 1, +90° cluster 2). Distribution peaks were located at positions
close to each ear. No uniform tiling of the space by centroid values was present. At the same
time, maximal slope values were tightly packed around the midline—peaks of their distribu-
tions were located precisely at, or very close to 0 degrees. This means that while the maximal
response was on average triggered by lateral stimuli, the largest changes were triggered by
sounds located close to the midline. Both properties were in good agreement with the experi-
mental data reported in [8]. Fig 8A depicts in three panels centroid and slopes distributions
measured in three different regions of cat’s auditory cortex—Primary Auditory Field (A1), Pos-
terior Auditory Field (PAF) and Dorsal Zone (DZ). A close resemblance between the model
and physiological data was visible.

Fig 7. Spatial tuning curves of second-layer units. A) Conditional distribution of the coefficient si corresponding to basis functions Bi, ξi depicted in Fig 4A.
The red line depicts the average value conditioned in sound position. B) Experimentally measured spatial tuning curves measured in the A1 area of the cat.
The left panel depicts contra- and the right panel ipsi- laterally tuned units. Figure modified from [8] C) All position-modulated tuning curves belonging to each
of the two clusters. Thin gray lines are single tuning curves, while thick black lines depict cluster averages.

doi:10.1371/journal.pcbi.1004294.g007
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It has been argued that while single neurons in the auditory cortex provide coarse spatial in-
formation, their populations form a distributed code for sound localization [8, 9, 9, 10]. Here, a
decoding analysis was performed to verify whether similar statement can be made about the
proposed model.

A gaussian mixture model (GMM) was utilized as a decoder. The GMMmodelled the mar-
ginal distribution of sparse coefficients as a linear combination of 18 gaussian components,
each corresponding to a particular position of a sound source (i.e. the θ value). In the first part
of the decoding analysis, single coefficients were used to identify the sound position. The
GMMwas fitted using the training dataset consisting of coefficient values si and associated po-

sition labels θ. In the testing stage, position estimates ŷ were estimated (decoded) using unla-
beled coefficients from the test dataset (see Methods section for a detailed description of the
decoding procedure). For each of the coefficients, a confusion matrix was computed. A confu-

sion matrix is a two-dimensional histogram of θ and ŷ and can be understood as an estimate of
the joint probability distribution of these two variables. Using a confusion matrix, an estimate

of mutual information (i.e., the number of bits shared between the position estimate ŷ and its
actual value θ) was obtained. Fig 9A depicts histograms of information carried by each coeffi-
cient si about the sound source position, estimated as described above. A general observation is
that single coefficients carried very little information about the sound location. The histogram
peaks at a value close to 0.1 bits. Only few units coded approximately 1 bit of positional infor-
mation. Even 1 bit, however, suffices merely to identify a hemifield, not to mention the precise
sound position. As can be predicted from the broad shapes of the tuning curves, single second-
layer units carried little spatial information. A similar result was obtained for neurons in differ-
ent areas of the cats auditory cortex [12]. The amount of information about the sound position
encoded by spike count of neurons in A1 and PAF regions has a distribution closely similar to
that of model units (compare with the left panel of figure 11 in [46]). Spike count (which essen-
tially corresponds to a firing rate) is a feature of a neuronal response most directly

Fig 8. Distribution of tuning curve centroids andmaximal slope positions in the model and experimental data. A) Histograms of positions of tuning
curve centroids (gray) and maximal slopes towards the midline (black) measured experimentally in the auditory cortical areas from the cat. Figure modified
from [8]. B) Distribution of the same features computed for model tuning curves belonging to each cluster.

doi:10.1371/journal.pcbi.1004294.g008
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corresponding to coefficients s in the model described here. The median of mutual information
estimated from model coefficients (marked by a diamond symbol in panel A) aligns well with
the same quantity estimated from neuronal data, and is close to 0.2 bits [46]. Overall, physio-
logical measurements and the behavior of the model were highly similar.

While single neurons did not carry much spatial information, the joint population activity
was sufficient to decode the sound position [8–10, 46]. Therefore in the second step of the de-
coding analysis, multiple coefficients s were used to train and test the GMM decoder. Results of
the population decoding are plotted in Fig 9B. The decoder was trained with a progressively
larger number of second-layer units (from 1 to 256) and the mutual information was estimated
from obtained confusion matrices. Each line in the plot depicts the number of bits as a function
of the number of units used to perform decoding. Line colors correspond to the number of
samples over which the average activity was computed. Broadly speaking, larger populations of
second-layer units allowed for a more precise position decoding. As in the case of single units,
averages over larger amounts of samples were also more informative—population activity aver-
aged over 32 samples saturated amount of bits required to perform errorless decoding (4.17).
Two confusion matrices obtained from raw population activity and an average over 16 samples
are displayed in subfigures Fig 9C and 9D. In the former case, the decoder was mostly misclas-
sifying sound positions within each hemifield. Averaging over 16 sound samples yielded an al-
most diagonal (errorless) confusion matrix. The decoding analysis allowed us to draw the

Fig 9. Population decoding analysis. A) Histogram of position-specific information carried by second layer sparse coefficients s. The diamond symbol
marks the distribution median. B) Mutual information plotted as a function of the number of units used to decode the position. Colors of lines correspond to
data averaged over different number of samples. The scale ends at 4.17 bits, which is the amount of information required to perform errorless decoding
(log2(18) = 4.17) C) Confusion matrix for decoding of population responses from a single sample, and D) averaged across 16 samples.

doi:10.1371/journal.pcbi.1004294.g009
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conclusion that while single units carried very little spatial information, their population en-
coded source location accurately, consistent with experimental data.

Second layer units achieved spatial tuning by assigning different weights to amplitudes in
each ear, and to IPD values in different frequency channels. At the same time they encoded
spectrotemporal features of sound, as depicted in Fig 4. Their activity should therefore be mod-
ulated by both sound position as well as its quality. Such comodulation is a prominent feature
of the majority of cortical auditory neurons [1, 7]. In order to verify this, model spatial tuning
curves were estimated with a second sound source, very different from a hiss created by rub-
bing paper—human speech (see Materials and Methods for details). Frequency spectra of both
test stimuli are depicted in Fig 10D. Test sounds distributed their energy over non-overlapping
parts of the frequency spectrum. While speech consisted mostly of harmonic peaks below 1.5
kHz, the paper sound was much more broadband and its energy was uniformely distributed be-
tween 1.5 and 4 kHz.

Panels A-C of Fig 10 depict three amplitude/IPD basis function pairs together with their
spatial tuning curves estimated using different sounds. The spatial preference of depicted units
(left or right hemifield) was predictable from their binaural composition. Each of them, howev-
er, was activated stronger by a stimulus, which spectrum matched better amplitude basis func-
tions. Basis functions visible in panels A and C had a lot of energy accumulated in higher
frequencies, therefore the paper sound activated them stronger (on average). Basis function B)
was spectrally better corresponding to speech sounds, therefore speech was a preferred class of
stimuli. This observation suggests that tuning curves i.e. position-conditional means μi, θ
should be understood not as averages of coefficient ensembles conditioned only on the sound
position θ but also on spectral properties of sound. When interpreting coefficients s as neuronal

Fig 10. Comodulation of unit responses by sound position and identity. A)-C) Three representative second layer basis functions plotted with spatial
tuning curves obtained using two different sounds—female speech (gray) and paper noise (black). D) Frequency spectra of both test sounds.

doi:10.1371/journal.pcbi.1004294.g010
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activity this means that spatial tuning curves would alter their shapes when the neuron is tested
with two different sound sources. Taken together, one can state that the second-layer represen-
tation encoded position and identity of the stimulus in an interdependent fashion.

Discussion
Previously proposed statistical models of natural acoustic stimuli focused predominantly on
monaural sounds [22–25, 30, 38]. Studies modelling binaural stimuli were constrained to a lim-
ited representation—either IPDs [45] or spectrograms [31]. In contrast, the assumption behind
the present work was that spatial sensitivity of cortical neurons is formed by fusing different
cues. Therefore, in order to understand the role played by the auditory cortex in spatial hearing,
the entire natural input processed by the auditory system was analyzed.

To this end, a novel probabilistic model of natural stereo sounds has been proposed. The
model is based on principles of sparse, efficient coding—its task was to learn progressively less
redundant representations of natural signal. It consisted of two hidden layers, each of them
could be interpreted as an analogy to different stages of sound processing in the nervous sys-
tem. The purpose of the first layer was to form a sparse, non-redundant representation of natu-
ral sound in each ear. By analogy to the cochlea, the encoding was supposed to extract and
separate temporal information (i.e. phase) from the amplitude of the signal. In order to do so, a
dictionary of complex-valued basis functions was adapted to short sound epochs. On top of the
first model layer, which encoded sound in each ear independently, the second layer was
trained. Its goal was to encode jointly amplitude and phase—two kinds of information crucial
for sound localization, which may be fused together in higher stages of the auditory system.
The higher-order representation captured spectrotemporal composition of the signal, by learn-
ing amplitude patterns of the first layer output as well as interaural disparities present in form
of interaural phase and amplitude differences. It is important to stress that the model was fully
unsupervised—at no point information about positions of sounds sources or the spatial config-
uration of the environment was accessible. Yet, when tested with a set of spatial sounds, activity
of second layer units revealed strong dependence on sound position. Tuning curves describing
relation between the sound position and model activity were in good correspondence with ex-
perimentally measured spatial tuning properties of cortical auditory neurons.

A sparse representation of natural binaural sounds forms a panoramic
population code for sound location
In mammals, the location of a sound is encoded by two populations of broadly tuned, spatially
non-specific units [32]. This finding challenges initial expectations of finding a “labelled-line
code” (i.e. a topographic map of neurons narrowly tuned to small areas of space). The “spatio-
topic map” was expected by analogy to the tonotopic structure of the cortex, as well as the high
localisation accuracy of humans and animals. Instead, it has been found that auditory cortical
neurons within each hemisphere are predominantly tuned to far, contralateral positions. Peaks
of observed tuning curves did not tile the auditory space uniformly, rather they were clustered
around the two lateral positions. A prominent observed feature of cortical representation of
sound location were slopes of the tuning curves. Regardless of the position of the tuning curve
peak, slopes were steepest close to the interaural midline—the area where behavioral localisa-
tion acuity is highest [32]. From described observations, two prominent conclusions were
drawn. Firstly, that the slope of tuning curves, not the distribution of their peaks determines
spatial acuity [8, 32, 47, 48]. Secondly that sound position is encoded by distributed patterns of
population activity, not single neurons [8–10]. It has been argued that these properties are a
manifestation of a coding mechanism which evolved to specifically meet the demand of
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binaural hearing tasks [8, 32]. Here it is shown that crucial properties of cortical spatial tuning
emerge in an unsupervised learning model, which learns a sparse representation of natural bin-
aural sounds. The objective of the model was to code the stimulus efficiently (i.e. with a mini-
mal redundancy within limits of applied transformations), while minimizing unit activity.
Properties of the learned representation are therefore a reflection of stimulus statistics, not of
any task-specific coding strategy (required for instance to localize sounds with the highest ac-
curacy at the midline).

The position of the sound-generating object is a latent variable for the auditory system. It
means that its value is not explicitly present in the raw stimulus—it has to be estimated. This
estimation, (or inference) is a non-trivial task in the real acoustic environment, where sounds
reaching ear membranes are a reflection of intricate auditory scenes. Sensory neurons perform
transformations of those sound waveforms to reconstruct the spatial configuration of the
scene. Therefore, in an attempt to understand cortical representation of space, it may be helpful
to think what is the statistical structure of the naturally encountered binaural stimulus that the
auditory system operates on. Sounds reaching the ear contain information about their generat-
ing sources, the spatial configuration of the scene, position and motion of the organism and the
geometry of its head and outer ears.

Results obtained here suggest that the shapes of the model spatial tuning curves reflect regu-
larities imposed on the sensory data by the filtering properties of the head. At lateral positions
(directly next to the left or the right ear) there is no acoustic attenuation by the skull, hence
sounds are loudest and least delayed. This in turn, elicits the strongest response in units prefer-
ring that side. When the sound is at a contralateral position, response is much weaker, due to
the maximal head attenuation and largest delay. The curve connecting those two extrema is
steepest in the transition area—at the midline. Since the auditory environment was uniformly
sampled at both sides of the head, model units were clustered into two roughly equal subpopu-
lations, basing on the shapes of their tuning curves. Clusters were symmetric with respect to
each other—one tuned to to the left and the other to the right hemifield. This groupping is
reminiscent of the “opponent-channel” representation of the auditory space, which has been
postulated before [8, 32]. Present results provide a theoretical interpretation of this tuning pat-
tern. They suggest that neuronal population which forms a sparse, efficient representation of
natural stimuli would reveal two broadly tunned channels, when probed with sounds located at
different positions.

It has been shown previously that IPD coding strategies in different species can be predicted
from statistics of binaural sound [45]. Harper and McAlpine demonstrated that if the goal of
the nervous system is to represent IPD values with the maximal possible accuracy (quantified
by Fisher information) two populations of neurons tuned to opposite locations constitute an
optimal representation of low-frequency IPDs. Their approach differs significantly from the
one presented here. On the most abstract level, the authors of [45] assume that the purpose of
IPD sensitive neurons is to maximize Fisher information, while here mutual information is the
quantity implicitly maximized by the representation (although interesting relationships exist
between those two measures [49]). Secondly, Harper and McAlpine limit their analysis to IPD
statistics only—here entire binaural waveforms are modelled. Finally the current study does
not assume any parameteric shape of tuning curves, nor make any other assumptions about
physiology as is the case in [45]. The similarity of model responses and neuronal activity
emerges from data statistics.
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Interdependent coding of spatial information and other features of the
sound
There is an ongoing debate about the presence (or lack of thereof) of two-separate “what” and
“where” streams in the auditory cortex [5]. The streams would separate spatial information
from other sound features which determine its identity. An important prediction formed by
this dual-stream hypothesis is that there should exist neurons selective to sound position and
invariant to other aspects in the auditory cortex. While some evidence has been found support-
ing this notion [3, 4] it seems that at least in vast parts of the auditory cortex neural activity can
be modulated by multiple features of sound such as pitch, timbre and location [1]. Neurons are
sensitive to sound position (i.e. changing position affects their firing patterns), but not selective
nor invariant to it. The majority of studies analyzing spatial sensitivity in the auditory cortex
use a single class of sound and the source position is the only varying parameter. Therefore, de-
spite initial efforts, the influence jointly exerted by sound quality and position on neuronal ac-
tivity is not yet well understood.

The statistical model proposed here suggests that no dissociation of spatial and non-spatial
information is necessary to either reconstruct the sound source or identify its position. The
learned second-layer representation carries both kinds of information—about the sound quali-
ty (contained in the spectrotemporal structure of basis functions) and about spatial aspects
(contained in the binaural amplitude weighting and IPD vectors). The learned code forms a
“what is where” representation of the stimulus (i.e., those two aspects are represented interde-
pendently). A manifestation of this fact is visible in different scaling of spatial tuning curves,
when probed with two different sound sources. Such comodulation of neuronal activity by
sound position and quality has been observed experimentally [1], which may suggest that re-
corded neurons form a sparse, efficient representation of binaural sound. An advantage of an
interdependent “what is where” representation is the absence of the “feature binding problem”,
which has to be solved if spatial information is processed independently. After separating the
location of a source from its identity they would have to be fused at processing stages beyond
the auditory cortex. A code similar to the one described here does not create such a problem.
This idea goes in hand with results of a recent perceptual study [50]. Parise et al. demonstrated
that the perception of sound source elevation is strongly influenced by its frequency. Further-
more they show that this relationship can be explained by adaptation to the joint distribution
of natural sounds’ positions and spectra. This implies that the quality of the sound source as
well as its spatial position are mutually dependent, and as such should be represented jointly, if
the goal of the nervous system is to increase coding efficiency.

Limitations and possible extensions
The model proposed in this work is a statistical one—it constitutes an attempt to describe func-
tional, not anatomical modules of the auditory system. Rather than explicitly modelling stages
of the auditory pathway, its goal is to approximate the distribution of natural binaural sounds.
The behaviour of units in the highest layer reveals a strong resemblance to cortical auditory
neurons in an abstract, information processing domain. In the mammalian auditory system
the sound is processed in at least five anatomical structures before it reaches the cortex [51]. It
is therefore almost certain that the stimulus is subjected to many more complex transforma-
tions than the ones proposed here. On the other hand, the fact that similiarities between corti-
cal and model responses emerge despite this lack of detail, imply that the model may be
capturing some aspects of information processing, as it happens in the real auditory system.

The relationship between abstract computational principles such as sparse coding and
neurophysiology is an area of ongoing research [52–54]. An interesting extension of the
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present work would attempt to increase the level of biological detail, and see whether this al-
lows formation of more refined experimental predictions. This could be done by implementing
sparse coding computations using spiking neuron models, as it has been done in studies of the
visual system (e.g. [52, 54]). The match between the model and biology could be also improved
by including phenomena specific to the auditory system, such as the phase locking in the
auditory nerve.

This study focuses predominantly on explaining the broad spatial tuning of cortical auditory
neurons estimated by the analysis of firing rates. With progressively larger amounts of biologi-
cal detail added to the model, one could attempt to explain other aspects of spatial information
encoding. For instance, the notion of spike timing does not exist in the approach proposed
here, while temporal spike patterns of cortical neurons seem to carry relevant spatial informa-
tion [9, 10, 46]. Moreover, as mentioned in the results section, the concept of contra- and ipsi-
laterality is spurious for high-layer model units since they are not associated with any
anatomical locus (left or right hemisphere). Overrepresentation of the contralateral ear is an in-
teresting feature of panoramic population codes [8], which is also not addressed by the present
work. Further exploration of the relationship between specific biological observations and spa-
tial information processing constitutes a possible goal for future research.

It is highly likely that the main result of this study (i.e., spatial tuning properties of the bin-
aural sound representation) could be reproduced by replacing the first layer with a different
sort of spectrotemporal signal representation. It would not necessarily have to be the sparse, ef-
ficient encoding of sound epochs. A spectrogram could be a candidate signal, although it has
been demonstrated that a sparse code of relatively long binaural spectrogram chunks generates
features of very different spatial tuning [31]. In this work, for the sake of theoretical consisten-
cy, both layers were learned using the same principles and statistical assumptions—sparse
factorial coding.

The data used for comparisons originated from studies of cat auditory cortex ([8, 46]). Since
statistics of the binaural signal are affected by the geometry of ears and the head of the organ-
isms, one could argue that model trained on binaural recordings performed by a human should
not be compared with cat physiology. As long as detailed features of neuronal tuning to a
sound position may vary across those species, tuning patterns highly similar to those of the cat
have been observed in the auditory cortex of primates [55, 56]. Overall, the cortical representa-
tion of sound position seems to be highly similar across mammals [32].

Finally, in the current study a binaural recording of only a single auditory scene was used to
train the model. Even though the recording included many types of sound—ambient environ-
mental noises, transient cracks and clicks and harmonic structures such as the human speech,
it did not include many other possible sources (for instance animal vocalizations). The record-
ing included also only a narrow range of other parameters which characterize natural auditory
scenes, such as reverberation. Analysis of longer recordings performed in different environ-
mental settings may generate more diverse results and additional insights. One should note
however, that certain properties of the learned representation (such as the tradeoff in the spec-
trotemporal modulation) seem to be a general proprerty of natural sounds as such and remain
invariant to a specific dataset [25, 40]. Basing on this observation one may expect that units re-
vealing similar spatial tuning can be learned from recordings of numerous, diverse sets of
natural sounds.

Conclusion
Taken together, this paper proposes a candidate theoretical mechanism explaining how neu-
rons in the auditory cortex represent spatial information. This model allows us to speculate
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they do not have to implement any task-dependent strategy. Instead, their behavior can be ex-
plained by sparse coding—a statistical model which has succesfully predicted properties of
multiple other sensory systems [18, 21]. Taking a broad perspective, (as suggested by Barlow in
his later work [57, 58]) this means that redundancy reduction by sparse coding can be used by
the brain to identify sensory data patterns allowing sucesful interaction with the environment.

Methods

Ethics statement
Sound recordings received approval of the Ethics Council of the Max-Planck Society. Human
participants provided a written consent to participate in recordings.

Binaural recordings
Sounds used to train and test the model were recorded using Soundman OKM-II binaural mi-
crophones placed in the ear channels of a human subject, whose head circumference was 60
cm. While recording training sounds, the subject walked freely in a wooded area accompanied
by another person who spoke rarely. In this way, collected data included transient and ambient
environmental sounds as well as harmonic speech. The binaural composition of sound was af-
fected by spatial configuration of the environment and motion patterns of the recording sub-
ject. The recording used to train the model was 60 seconds long in total. Binaural recordings
are availible in the supplementary material of [59].

Test recordings used to map the spatial tuning of second-layer units was performed in an
anechoic chamber at the Department of Biology, University of Leipzig. The same recording
subject was seated in the middle of the chamber. A female speaker walked at a constant pace
following a circular path surrounding the recording subject. While walking she counted out
loud. This was repeated four times. The second test recording was performed in a similar fash-
ion, however instead of speaking the walking person rubbed two pieces of cardboard against
each other, generating a broadband sound. To estimate the conditional distribution of sparse
coefficients given the position and identity of the sound, test recordings were divided into 18
intervals, each corresponding to the same position on a circle.

All recordings were registered in an uncompressed wave format at 44100 Hz sampling rate.
Prior to training the model, sounds were downsampled to 8000 Hz. Test recordings are avail-
ible in the supplementary material (S1, S2, S3, S4, S5, S6, S7, S8 Files).

Learning and inference
The goal of the learning procedure was to estimate first- (A), and second- layer basis functions
(B, ξ). This was done using a two-step approach. Firstly maximum a posteriori (MAP) esti-
mates of model coefficients (z in the first layer, s and w in the second) were inferred via gradi-
ent descent [18, 33]. Secondly, a gradient update on basis functions was perormed using
current coefficient estimates. Those two steps were consecutively iterated until the
model converged.

A dictionary of complex-basis functions in the first layer was created by first, training a
standard sparse code of sound epochs x 2 R

T:

xt ¼
XT
i¼1

ciYi;t þ Z ð18Þ
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The negative log-posterior of this model was:

Esðx; c;YÞ / 1

s2

XT
t¼1

ðxt � x̂ s
tÞ2 þ l

XT
i¼1

SðciÞ ð19Þ

where x̂ s
t ¼

PT
i¼1 ciYi;t is the reconstruction of the data vector. Corresponding gradients over

linear coefficients c and basis functions Θ were given by:

@

@ci
Es / � 2

s2

XT
j¼1

Yj;tðxt � x̂ s
tÞ þ 2l

ci
log ð1þ c2i Þ

ð20Þ

@

@Yi;t

Es / � 2

s2

XT
t¼1

ciðxt � x̂ s
tÞ ð21Þ

Learned basis functions Θi were used as real vectors A<
i and extended with their Hilbert

transforms. Such complex basis function dictionary was used to encode monaural sound ep-
ochs. Gradients of Eq 5 over phase ϕi and amplitudes ai of complex coefficients zi were equal
to:

@

@ai
E1 / � 2

s2

XT
t¼1

cos�iA
<
i;t þ sin�iA

I
i;t

� �
ðxt � x̂ tÞ þ 2l

ai
log ð1þ a2i Þ

ð22Þ

@

@�i

E1 / � 2

s2

XT
t¼1

aiðAI
i;t cos�iA

I
i;t � A<

i;t sin�iA
<
i;tÞðxt � x̂ tÞ ð23Þ

The second layer of the model was trained after the first layer converged, and cofficient val-
ues z were inferred for all training data samples. The higher order encoding formed by coeffi-
cients s as well as the scaling factor w was inferred via gradient descent on function E2 (Eq 13):

@

@si
E2 / � 2

s2
2

X2�T

n¼1

Bi;nðan � ânÞ þ kjwj
XP
m¼1

sin ðD�m � cD�mÞxi;m þ 2l2

si
log ð1þ s2i Þ

ð24Þ

@

@wi

E2 / k
w

jwj2
XP
m¼1

cD�m sin ðD�m � cD�mÞ þ lw
1

a

� �b

bwjwjb�2

" #
ð25Þ

The gradients steered sparse coefficients s to explain amplitude and phase vectors a and Δϕ
while preserving maximal sparsity. Simultaneously the multiplicative factor w was adjusted to

appropriately scale the estimated vector D̂�.
Finally, learning rules for second-layer dictionaries were given by:

@

@Bi;k

E2 / � 2

s2
2

siðak � âkÞ ð26Þ

@

@xi;k
E2 / sikjwj sin ðD�k � cD�kÞ ð27Þ

Altogether 75000 epochs of binaural sound were used to train the model. Each of them was
T = 128 samples long, which corresponded to 16 ms. Both layers were trained separately. Be-
fore training the first layer, Principal Component Analyis was perfomed and 18 out of 128
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principal components were rejected, which corresponded to low pass filtering the data. Left
and right ear sound epochs were shuffled together to create a 150000 sample training dataset
for the first layer. The first layer sparsity coefficient λ was set to 0.2. Noise variance σ2 was
equal to 2. The sparse coding algorithm converged after 200000 iterations.

A complex-valued dictionary was created by extending the real valued one with Hilbert-
transformed basis functions. Amplitude and phase vectors a and ϕ were inferred for each sam-
ple using 20 gradient steps. Amplitude vectors were concatenated and transformed with a loga-
rithmic function, and IPD vectors Δϕ were computed by substracting left ear phase vectors ϕL
from right ear ones ϕR. The second layer was trained by performing 250000 gradient updates
on basis functions B and ξ. The amplitude sparsity coefficient λ2 was set to 1. The λw parameter
was set to 0.01 and the noise variance s2

2 as well as the von Mises concentration parameter κ
were set to 2.

Numerical values of the prior-controlling parameters λ, λ2, λw as well as noise parameters σ,
σ2, κ were set empirically in this study. By running simulations with multiple parameter set-
tings it has been found that due to the presence of a strong environmental noise in the training
recording, noise variances σ, σ2 and the von Mises concentration parameter κ should be rela-
tively large in order to achieve convergence. Sparsity of the high layer representation was set to
be larger than that of the first layer in order to mimic the biological intuition that neural re-
sponses in the ascending auditory pathway become progressively less redundant and sparser
[20, 60]. It has been found however, that the exact value of sparsity paramaters did not affect
the spectrotemporal properties, nor the spatial tuning of the second layer units strongly. The
λw parameter which controls the strength of the prior over the multiplicative factor w was set
to be relatively small. Otherwise the w prior term in the Eq 16 became too strong and dominat-
ed learning, preventing the convergence. More principled and theoretically sound ways of pa-
rameter selection are possible. One could ask what are the natural noise levels and sparsity
values of the training data by specifying them as hyperparameters of the model and learning
the appropriate values. Also the number of basis functions at each level could be treated as a
parameter and estimated from the data, not chosen ad-hoc. After extending the model in this
way, the choice of the correct parameter setting could be performed by cross-validation or
Bayesian model selection (as in [61]).

Computation of modulation spectra of second-layer basis functions
Spectrograms of amplitude basis functions Bi were computed by combining spectrograms of
real, first layer basis functions A<

n , linearly weighted by a corresponding weight exp(Bi, n). First
layer spectrograms were computed using T = 29 windows, each 16 samples (0.002 second)
long, with a 12 sample overlap. Altogether, F = 128 logarithmically-spaced frequencies were
sampled. A two-dimensional fourier transform of each spectrogram was computed using the
matlab built-in function fft2. The amplitude spectrum of obtained transform is called the Mod-
ulation Transfer Function (MTF) of each second layer feature [40]. The center of mass i.e. the

point ðCf
S;i;C

t
S;iÞ of each monaural part (S 2 {L, R}) of basis functions Bi was computed in the

following way:

Ct
Si
¼
X

t

t
X
f

MTFðBS;iÞ ð28Þ

Cf
Si
¼
X
f

f
X

t

MTFðBS;iÞ ð29Þ

where t and f are time and frequency respectively.
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Estimation of spatial tuning curves
To estimate conditional distribution of sparse coefficients given the position and identity of the
sound, test recordings of a sound source (either speech, or rubbed paper) moving around the
recording subject were used. Each source circled the recording person 4 times resulting in 4 re-
cordings. Each of them was divided into 18 intervals. Intervals corresponding to the same area
on the circle were joined together across all recordings. For each out of 18 sound positions
3000 random sound chunks were drawn and encoded by the model. Position-conditional en-
sembles were then used to compute conditional histograms. Conditional mean vectors μi, θ
were computed by averaging all values of coefficient si at position θ. Mean vectors were mapped
to a [0, 1] interval by adding the absolute value of a minimal entry and dividing it by the value
of the maximum. For plotting purposes in Fig 10, endings of tuning curves were connected if
values at −180° and 180° were not exactly equal.

Decoding of stimulus position
The decoding analysis was performed using K second-layer sparse coefficients s averaged over
D of samples. The response vectors d 2 R

K were therefore formed as:

d ¼ 1

D

XD
i¼1

sf1;...;Kg ð30Þ

Such averaging procedure can be interpreted as an analogy to computation of firing rates in
real neurons.

The marginal distribution of response coefficients d over all 18 sound positions θ 2 {−180°,
−160°, . . .,160°,180°} was equal to:

pðdÞ ¼
X
y

pðdjyÞpðyÞ ð31Þ

where each conditional p(djθ) was a K-dimensional Gaussian distribution with class specific
mean vector μθ and covariance matrix Cθ:

pðdjyÞ ¼ N ðmy;CyÞ ð32Þ

The prior over class labels p(θ) was uniformly distributed i.e. pðyiÞ ¼ 1
18
for each i.

The decoding procedure iterated over all class labels and returned the one, which maxi-
mized the likelihood of the observed data vector. Out of the entire dataset, 80% was used to
train the model and remaining 20% to test and estimate the confusion matrix.

Confusion matrixM was a joint histogram of a decoded and true sound position ŷ and θ.

After normalization, it was an estimate of a joint probability mass function pðŷ; yÞ. Mutual in-
formation was estimated from each confusion matrix as:

MIðŷ yÞ ¼
X
ŷ

X
y

pðŷ; yÞ log 2

pðŷ; yÞ
pðŷÞpðyÞ

 !
ð33Þ

Supporting Information
S1 File. Recording of a test sound source (paper hiss) moving around the recording subject.
The recording was used to estimate spatial tuning curves of model units. The sound source
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circles the recording subject in a clockwise direction.
(WAV)

S2 File. Recording of a test sound source (paper hiss) moving around the recording subject.
The recording was used to estimate spatial tuning curves of model units. The sound source cir-
cles the recording subject in a clockwise direction.
(WAV)

S3 File. Recording of a test sound source (paper hiss) moving around the recording subject.
The recording was used to estimate spatial tuning curves of model units. The sound source cir-
cles the recording subject in a clockwise direction.
(WAV)

S4 File. Recording of a test sound source (paper hiss) moving around the recording subject.
The recording was used to estimate spatial tuning curves of model units. The sound source cir-
cles the recording subject in a clockwise direction.
(WAV)

S5 File. Recording of a test sound source (female voice) moving around the recording sub-
ject. The recording was used to estimate spatial tuning curves of model units. The sound source
circles the recording subject in a clockwise direction.
(WAV)

S6 File. Recording of a test sound source (female voice) moving around the recording sub-
ject. The recording was used to estimate spatial tuning curves of model units. The sound source
circles the recording subject in a clockwise direction.
(WAV)

S7 File. Recording of a test sound source (female voice) moving around the recording sub-
ject. The recording was used to estimate spatial tuning curves of model units. The sound source
circles the recording subject in a clockwise direction.
(WAV)

S8 File. Recording of a test sound source (female voice) moving around the recording sub-
ject. The recording was used to estimate spatial tuning curves of model units. The sound source
circles the recording subject in a clockwise direction.
(WAV)
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