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Abstract
Intelligent organisms face a variety of tasks requiring the acquisition of expertise within a

specific domain, including the ability to discriminate between a large number of similar pat-

terns. From an energy-efficiency perspective, effective discrimination requires a prudent

allocation of neural resources with more frequent patterns and their variants being repre-

sented with greater precision. In this work, we demonstrate a biologically plausible means

of constructing a single-layer neural network that adaptively (i.e., without supervision)

meets this criterion. Specifically, the adaptive algorithm includes synaptogenesis, synaptic

shedding, and bi-directional synaptic weight modification to produce a network with outputs

(i.e. neural codes) that represent input patterns proportional to the frequency of related pat-

terns. In addition to pattern frequency, the correlational structure of the input environment

also affects allocation of neural resources. The combined synaptic modification mecha-

nisms provide an explanation of neuron allocation in the case of self-taught experts.

Author Summary

One neural correlate of being an expert is more brain volume—and presumably more neu-
rons and more synapses—devoted to processing the input patterns falling within one's
field of expertise. As the number of neurons in the neocortex does not increase during the
learning period that begins with novice abilities and ends with expert performance, neu-
rons must be viewed as a scarce resource whose connections are adjusted to be more
responsive to inputs within the field of expertise and less responsive to input patterns out-
side this field. To accomplish this enhanced, but localized improvement of representa-
tional capacity, the usual theory of associative synaptic modification is extended to include
synaptogenesis (formation of new synapses) and synaptic shedding (rejection of synapses
by a postsynaptic neuron) in a manner compatible with the original, associative synaptic
modification algorithm. Using some mathematically simplifying assumptions, a theory is
developed that predicts the algorithm's eventual outcome on expert neuronal coding, and
then without the simplifying assumptions, computational simulations confirm the theory’s
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predictions in long, but finite periods of simulation-time (i.e., finite-sampling leads to sta-
ble connections, and thus, stable expert encodings).

Introduction
Adaptive synaptogenesis [1–4] is designed to allocate neural resources in a thrifty manner or in
a manner to regulate function. The three resources of concern are number of synapses, number
of neurons, and firing-rate of the neurons. Inspired by the Bienenstock-Cooper-Munro (BCM)
algorithm [5] and its forcing of a neuron to a predefined activity level, adaptive synaptogenesis
achieves a similar goal that not only guarantees the average activity of a postsynaptic neuron
but does so in a way that rations synapses.

Previously, adaptive synaptogenesis was used as a mechanism to produce compressive cod-
ing with small information losses [6–10]. It also successfully models developmental studies of
ocular dominance [11–12]. Both results are achieved by postsynaptic neurons discovering
implicit correlational structures within the input data space. Through the random acquisition
and forced shedding of synapses, associated inputs find their way to the same neuron, and
uncorrelated or anti-correlated inputs are ignored. As thus conceived, adaptive synaptogenesis
consists of (1) a random Bernoulli process that selects a new excitatory connection between
nearby axon i and postsynaptic neuron j; (2) once formed, associative synaptic modification
controls the strength of each existing synapse, and this control includes the possibility of poten-
tiation, depression, or no change of a synaptic weight; but with enough long-term depression,
(3) shedding of a synapse occurs when the weight is appropriately weak (near zero for a suffi-
ciently long time) (Fig 1). Critically, the possibility of forming a new synapse on neuron j is
determined by j’s long-term average firing-rate.

Instead of compressive coding, the context for studying adaptive synaptogenesis here is self-
taught discrimination. The motivating idea is that if one studies a particular field and its subject
matter over a long enough period of time (perhaps the oft quoted ten thousand hours [13])
and if one studies over a wide enough variety of representative examples, the allocation of neu-
rons in the cerebral cortex is enhanced for this particular concentrated field of study.

After a detailed description of the neural algorithm and the input data structures, we estab-
lish a mathematical theory that quantifies relationships (e.g. synaptic weights) required for sta-
bility (or lack thereof) of the neurons formed by this algorithm. Computational simulations
follow these theoretical developments. The simulations demonstrate the development of stable
neuron configurations without turning-off the algorithm. Moreover, these simulations also
reveal the effect of input statistics—frequency of input patterns and the input correlational
structure—on neuron allocation. As shown, the form of adaptive synaptogenesis used here pro-
duces neuron allocations that are appropriately biased by the statistics of the input environ-
ment (more experience produces more neurons devoted to the experience). Also revealed is an
important effect of the input world’s statistical structure that can help or hinder this propor-
tional neuron allocation.

Methods

Neurons
Here we study an adaptively constructed, feedforward network of McCulloch-Pitts neurons.
The inputs are vectors with binary elements, xi(k)�{0,1}, and the outputs are vectors with binary
elements, zj(k). For the j

th neuron, postsynaptic excitation is linear, yj(t) = Sixi(t)�cij(t)�wij(t)
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Fig 1. The three processes of adaptive synaptogenesis: Random synaptogenesis, bi-directional associative modification of existing synapses,
and synaptic shedding. (Top) Synaptogenesis and positive associative modification (LTP). (Left) Receptivity for new innervation is below the cutoff firing-
rate and three sites for a new synapse are indicated by the broken circles. (Center) Of the three locations, one new synapse is randomly generated (small
complete circle), the uppermost available synapse. (Right) The new synapse increases strength due to the associative modification equation and positive
correlation with enough of the other synapses on this neuron. Because of the increased excitation due to the new synapse, the post-synaptic neuron
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with connection indicator cij(k)�{0,1}, with all weights wij positive, and output zj(k): = {1 if
yj(k)�θ, and 0 otherwise}. Threshold θ is 3.0 for dataset A and 0.8 for datasets B. The “sensory”
input dimensions are 80 (dataset A) or 390 (datasets B) as described below. The number of post-
synaptic neurons simulated is 2000 per dataset. Because there is no interaction between the out-
puts of these neurons (i.e. there is no feedback or lateral inhibition) and because there is no
avidity rule [7], each neuron develops its connections independent of all other neurons.

Each neuron is initialized with one connection from a randomly chosen input line with
weight 0.2.

Adaptive synaptic modification
There are three distinct aspects of synaptic modification: synaptogenesis, associative synaptic
modification, and synaptic shedding.

Synaptogenesis. Synaptogenesis, when it is allowed to occur, is a random Bernoulli pro-
cess with parameter γ. Synaptogenesis onto postsynaptic neuron j changes cij from 0 to 1 when
uij(τ) = 1, where uij(τ) is the generated Bernoulli random variable. Here, synaptogenesis only
depends on the average output of j itself at time τ, i.e., �zjðtÞ. This moving average is updated on

each timestep: �zjðtÞ ¼ �zjðt � 1Þ � ðaÞ þ zjðt � 1Þ � ð1� aÞ. Moreover, to keep things as simple

as possible and consistent with our requirement for asymptotic stability and certain observa-
tions of [14], j’s receptivity for new innervation, rj(τ), is either positive or zero; specifically,
rjðtÞ ¼ fg if �zjðtÞ< r; and 0 otherwiseg where ρ = 0.09 for dataset A and 0.1 for datasets B1,

B2, and B3. The parameter ρ is referred to as the minimum desired firing-rate because neurons
that fire above rate ρ will no longer add new synapses.

When a new synapse is formed, its initial weight, wij, is 0.2.
Associative synaptic modification. Associative synaptic modification is as suggested in

[15]. With rate constant ε, wij(t+1) = wij(t)+ε�cij(t)�(xi(t) – E[xi] – wij(t))�yj(t), or equivalently,
DwijðtÞ : ¼ wijðt þ 1Þ � wijðtÞ ¼ ε � cijðtÞ � ðxiðtÞyjðtÞ � E½xi�yjðtÞ � wijðtÞyjðtÞÞ

where t advances one with each new input. Weights do not change if cij(t) = 0 (i.e., the connec-
tion does not exist so there is no weight to change). Because the average firing-rate of all inputs
i is positive (i.e. E[Xi]> 0), an individual weight can be driven negative by the synaptic modifi-
cation equation. However, such negative values of wij are prevented by the third mechanism
controlling synapses and connectivity.

Synaptic shedding. A synapse is shed whenever its value goes below 0.01, formally
cij(t) = 0 if wij(t)< 0.01. Thus no negative weights exist; moreover, new synapses, with their ini-
tial value of 0.2, are not immediately subject to shedding.

Summary of basic definitions
A connection from input neuron i to output neuron j is indicated as cij (t)�{0,1}. The strength
(weight) of this connection is wij(t)�(0.01,1). Inputs are binary, i.e., xi (t)�{0,1}. Excitation of a
neuron on a timestep is linear, yj(t) = Sicij(t)�wij(t)�xi(t). There is no inhibition. A neuron,
whose excitation reaches threshold, fires by the rule zj(t) = {1 if yj(t)�θ, and 0 otherwise}. A

increases its average firing-rate above the prescribed design value; as a result of exceeding this value, receptivity for new innervation goes to zero (the
broken circles disappear). (Bottom) Negative associative modification (LTD) and shedding. (Left) Having randomly acquired a certain set of inputs, one
positively correlated subset (shown in shades of blue) dominates the excitation of the postsynaptic neuron while another input (shown in red) is negatively
correlated with this subset. (Center) Associative synaptic modification decreases the weight of the uncorrelated input as indicated by the smaller circle.
(Right) Associative synaptic modification further decreases the weight of the uncorrelated input, and because the weight value falls below the threshold, the
synapse is shed.

doi:10.1371/journal.pcbi.1004299.g001
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weight is updated according to [15]; in particular, Δwij(t) = ε�cij(t)�(xi(t) – E[xi] – wij(t))�yj(t).
On each timestep, a neuron’s moving-average of firing-rate, �zj, is updated as

�zjðtÞ ¼ �zjðt � 1Þ � ðaÞ þ zjðt � 1Þ � ð1� aÞ.
Synaptogenesis is controlled by �zj and a random variable: uij �{0,1} where prob(uij = 1) = γ.

if ðcijðtÞ ¼ 0 & �zjðtÞ < r & uijðtÞ ¼ 1Þ;
then cijðtþ 1Þ ¼ 1 & wijðtþ 1Þ ¼ 0:2;

else cijðtþ 1Þ ¼ cijðtÞ:

A connection/weight is shed whenever it falls below 0.01; that is,

if ðwijðtÞ < 0:01Þ; then cijðtþ 1Þ ¼ 0 & wijðtþ 1Þ ¼ ;:

Parameters
There are two sets of parameterizations. There is one parameterization for dataset A and one
parameterization for datasets B1, B2, and B3. However, many parameterizations were exam-
ined for each dataset, and in fact there are ranges of parameter settings for which the generic
results presented below are valid. In this case ‘valid’means a parameter set that produces stable
connections and postsynaptic neurons that exceed the desired minimum firing-rate. For the
results presented here, the parameterizations produce a relatively large number of synapses per
neuron compared to other valid settings. The parameterizations are listed in Table 1. Neuron
parameterizations that change between dataset A and datasets B1, B2, and B3 are threshold to
fire (3.0 versus 0.8) and minimum desired firing-rate (9% versus 10%).

Time-scales
As an explicit part of the model, there are three time-scales: i) the shortest is the neuron update
(fire or not, given an input); ii) the next in duration is synaptic modification of existing synap-
ses, which occurs every timestep; and iii) the slowest time-scale, which occurs after each train-
ing block, synaptogensis and shedding. In one cycle, all input vectors are presented to the
network. A training block of inputs equals 10 cycles (e.g. if there are 50 input states, a block
occurs after the network is presented with 500 inputs). The length of the simulations are shown
in Table 2.

For each postsynaptic neuron the input blocks are repeated until no synapses are gained or
lost for 200 blocks. At this time, a neuron’s synapses are assumed stable. At this point, as
shown in the results, the synaptic weights have achieved their predicted values.

Table 1. Network parameters.

Dataset A Datasets B

ε 0.001 0.001

α 0.95 0.99

γ 0.001 0.001

initial connections 1 1

initial synaptic weight 0.2 0.2

threshold for shedding 0.01 0.01

ρ 0.09 0.1

θ 3.0 0.8

doi:10.1371/journal.pcbi.1004299.t001
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Network analysis
S1 Code contains the Matlab program used for simulations. There are 2000 neurons simulated
per dataset; this large number serves the purpose of producing accurate statistics. However,
because the synaptic modification algorithms used here yield feed-forward networks with
excellent data compression and little information loss, certain analyses only make sense when
the number of neurons are much fewer than 2000; in particular we limit the number of ran-
domly sampled neurons to 1 through 50 out of the 2000.

Statistical dependence. Statistical dependence is a measure of redundancy. A decrease in
statistical dependence is called ‘compression’. Statistical dependence is calculated by summing
the Shannon entropy of each dimension (input line) and then subtracting the Shannon entropy
of the entire input set. It is only evaluated for dataset B1.

Discrimination errors. The output of the network is decoded using a supervised centroid
rule. First, the centroid of the output vectors of each category is calculated from the training
set. Then, each output vector (from the training and testing set) is categorized by selecting the
closest centroid (Euclidean distance). If this selected centroid is from the appropriate category,
there is no error; otherwise there is an error.

Neuron allocation index. The 2000, adaptively formed neurons are evaluated with a novel
input set (a testing set). The primary evaluation is the neuronal allocation index (per category),
i.e. the fraction of total firings of the 2000 neurons produced by the inputs drawn from a single
category. For example, suppose that ten neurons fire a total of 100 times to an input set with
three categories: category one accounts for 18 of these firings, category two accounts for 32 of
these firings, and category three accounts for the remaining 50 firings. Then, category one, two,
and three will have neuron allocations of 0.18, 0.32, and 0.5, respectively.

Datasets
Neuron construction is driven by repeated presentation of patterns from a predetermined data-
set. Four different input environments are studied (Table 3). The first dataset (dataset A, see
Fig 2A and S1 Dataset) has 80 input lines. There are five orthogonal prototypes that define the
corresponding categories: the five prototypes correspond to a higher probability of firing
within one of five distinct sets of input lines 1–16, 17–32, 33–48, 49–64, or 65–80. The five
exemplars are generated from these prototypes, and presented with relative frequency 0.1, 0.15,
0.2, 0.25, and 0.3 for a total of 100 input patterns.

Table 3. Datasets.

Dataset A Dataset B1, B2, B3

input dimensions 80 390

axons active per pattern 16 20

number of input categories 5 9

positive noise (0 to 1) Yes No

negative noise (1 to 0) Yes Yes

doi:10.1371/journal.pcbi.1004299.t003

Table 2. Simulation parameters.

block length in cycles 10

number of blocks presented 2000

total cycles 20000

doi:10.1371/journal.pcbi.1004299.t002
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In the case of dataset A, each prototype is randomly perturbed such that the total number of
active input-lines for each generated pattern remains constant. Specifically, two randomly
selected active input-lines of the prototype are inactivated, and two randomly selected inactive
input-lines of the prototype are activated. Fig 2A illustrates the binary input vectors of dataset
A. Note the small amount of overlap between the input patterns only occurs due to noise.

Dataset B1 is much more complex in terms of relationships between input vectors. This set
consists of nine categories each with its own prototype. Each of the nine individual categories
has the same relative frequency (11.1%). The nine categories can be partitioned evenly into
three super-categories: I, II, and III. Fig 2B visualizes the input set. These inputs are coded as
390-dimensional binary vectors. Between super-categories, the input patterns are orthogonal.
Within a super-category, the prototypes and the patterns they generate overlap; the degree of
overlap varies as a function of the super-category. Within the three super-categories overlap
increases from 5 to 10, and then 15 input lines for super-categories I, II, and III, respectively.
Each super-category has some input lines that are activated by only a single category; other
input lines of this super-category are shared by two of the three categories; and the remaining
input lines of the super-category are shared by all three categories. Super-category I has the
least overlap: category A has 45 potentially active input lines that belong only to category A, 5

Fig 2. Randomly generated input vectors. (A) shows the 100 patterns of dataset A. An input pattern is built by perturbing one of five binary, 80-dimensional
orthogonal vectors, see methods. Each of these five orthogonal vectors can be considered the central, unseen prototype pattern that defines the five distinct
categories. The perturbation rule randomly complements two 1's and two 0's of such a prototype. Black pixels represent 1’s, and white pixels represents 0’s.
Note the different relative frequencies of the categories: 10, 15, 20, 25, and 30%. (B) shows the 225 patterns of dataset B1. A pattern is built by perturbing
each one of nine binary 390-dimensional vectors, see methods. Each of these nine vectors can be considered the central, unseen prototype that defines a
distinct category. The perturbation rule randomly selects 20 out of 60 input lines from the central pattern to be active. Black pixels represent 1’s and white
pixels represents 0’s. Note the three orthogonal super-categories, and note the differing overlaps of the categories across super-categories. The equal
frequencies of each category only applies to dataset B1.

doi:10.1371/journal.pcbi.1004299.g002
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that belong to A and B, 5 that belong to A and C, and 5 that belong to A, B, and C for a total of
60 potentially active input lines per category. Super-category II has more overlap between its
three categories (D, E, and F). There are 30 potentially active input lines that belong only to cat-
egory D, 10 that belong to D and E, 10 that belong to D and F, and 10 that belong to D, E and F
for a total of 60 potentially active input lines. Super-category III has the most overlap. There
are 15 potentially active input lines that belong only to category G, 15 that belong to G and H,
15 that belong to G and J, and 15 that belong to G, H, and J for a total of 60 potentially active
input lines. Thus, each category has a total of 60 potentially active input lines.

Exactly 20 of the 60 potentially active input lines from each category are pseudo-randomly
chosen to be active for each pattern. None of the super-category’s designated inactive input
lines are turned into active input lines.

Datasets B1, B2, and B3 are carefully constructed to illustrate the effects of category overlap
(Fig 3 and S1 Dataset) versus category probability on neuron allocation. Datasets B2 and B3
are constructed in a similar way as dataset B1, but with different relative frequencies for each
category. Dataset B2 has relative frequencies: 0.13, 0.13, 0.13, 0.11, 0.11, 0.11, 0.098, 0.093, and
0.093. Dataset B3 has relative frequencies: 0.18, 0.17, 0.15, 0.12, 0.11, 0.087, 0.063, 0.058, and
0.053.

Results

Theory
The most important idea of this section is that there is a mathematical derivation that charac-
terizes the stable connectivities for a feedforward neuron whose connections are governed by
adaptive synaptogenesis.

This theory’s convergence results provide a means for identifying stable configurations
when simulations are performed. Going in the other direction, and of secondary importance is
establishing the relevance of the theory via simulations because the theory requires multiple
infinities of sampling: thus, simulations must be used to establish the existence of parameteri-
zations capable of achieving the predicted, stable connectivities.

The stable weight values on a neuron with a stable connectivity are a function of the sub-
space covariance matrix that arises from the set of input lines received by this neuron. For
example, one of our input environments is a random vector of 390 distinct input lines (axons
arising from distinct neurons which may or may not be correlated in activity). Out of these 390
lines, a postsynaptic neuron may acquire a small fraction of this number, for example 20 input
lines. Such an acquired set defines a subspace of the original space, and just as there is a
390-by-390 covariance matrix associated with the full input space, there is a specific 20-by-20
covariance matrix associated with the subspace defined by this neuron's input connections.
Then for this neuron (call it j), we can also associate a dominant eigenvector and its associated
eigenvalue arising from j's covariance matrix. A simple theorem states that the weights of these
inputs are proportional to this subspace’s dominant eigenvector. (A pleasing result since this
vector maximizes the information throughput compared to all other linear, n-by-1 input filters
for a given y.) Moreover, the theorem below tells us 1) the proportionality constant that scales
this eigenvector to the stable weight values, 2) the average excitation of j, and 3) the variance of
j's excitation.

In what follows, we assume that ε is a small positive constant and assume synaptic modifica-
tion has been going on for a long time with a fixed set of input lines. Therefore the synaptic
weights, i.e. the column vector w(t) for neuron j, change very slowly and thus can be treated
deterministically. For a fixed set of input lines, each input-activation is random column vector X
(t) (with realizations x(t)) with mean value E[X]. Via the definition of excitation, y(t) = x(t)Tw(t),
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the average excitation is E[Y] = E[XTw]. As noted above, the weights can be treated as a constant;
thus in the limit, the mean excitation is E[Y] = E[XT]w(1). The variance of this excitation arises
from the covariance matrix of the input to this neuron j. That is, define j’s covariance matrix of
its input space as Cov(X): = E[XXT] − E[X]E[XT], and then note that

wðtÞTCovðXÞwðtÞ ¼ E½wðtÞTXXTwðtÞ�� E½wðtÞTX�E½XTwðtÞ�¼ E½Y2�� E½Y �2¼ VarðYÞ ð1Þ

Finally, define λ1 to be the largest eigenvalue of this covariance matrix and e1 as its associated
eigenvector of unit length (the so-called dominant eigenvector).

Fig 3. A visualization of super-category II of the B datasets. All three super-categories have seven constructed regions of overlap, this visualization
shows the proportional overlap for the categories D, E, and F that make up super-category II. Category D is a union of the possibly active input lines from sub-
regions 1, 4, 5, and 7. Similarly, Category E is a union of the possibly active input lines from sub-regions 2, 5, 6, and 7. Lastly, Category F is a union of sub-
regions 3, 4, 6, and 7. Note that 30 input lines define sub-region 1, 10 define sub-region 4, which is shared between D and F, 10 define sub-region 5 which is
shared between D and E, and 10 define sub-region 7 which is shared by D, E, and F.

doi:10.1371/journal.pcbi.1004299.g003
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Theorem. Assuming a stable set of input weights is achieved via the synaptic modification
equation Δwij = ε(X(t) – E[X] – w(t))X(t)Tw(t) operating along with the shedding rule then,

E½Y � ¼ l1
wð1Þ : ¼ lim

t!1
wðtÞ ¼ ke1; where

k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðYÞ=E½Y �p

:

ð2Þ

Proof.
By definition, stability implies lim

t!1
E½DwðtÞ� ¼ 0. Then, taking this same expectation and

limit on the other side of the synaptic modification equation yields
E[Δw(1)] = 0 = ε((E[XXT] − E[X]E[XT]) w(1)–w(1)E[Y]), or ε(Cov(X) w(1)–w(1)E[Y]) =
0, which implies

CovðXÞwð1Þ ¼ wð1ÞE½Y �: ð3Þ

Note that (3) is the eigen-equation, and the shedding rule guarantees all weights are positive while
the synaptic modification equation guarantees wij is bounded from above because X–E[X]< 1.
Therefore because y is bounded both below and above, convergence is implied. With our old syn-
aptic modification rule based on a correlation matrix of a non-negative input, the Perron-Frobe-
nius (PF) theorem implies that the dominant eigenvector (associated with λ1) is in the all-positive
orthant. Here however, without an all-positive covariance matrix, we must conjecture an exten-
sion to PF (see below). Thus, by this perturbation conjecture, the synaptic weights align with e1
(proving 2). Now designate an unknown positive constant k and define w(1) = ke1. Pre-multiply-
ing (3) by eT1 quickly yields (2): e

T
1CovðXÞwð1Þ ¼ eT1wð1ÞE½Y � implying l1e

T
1 ke1 ¼ eT1 ke1E½Y �:

For (2), pre-multiple both sides of (3) by w(1)T, and note that by Eq (1) the left hand side is var
(Y) while the right hand side yields k2E[Y]. Thus,

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðYÞ=E½Y �

p

If a neuron happens to acquire enough synapses, a valid central limit theorem (with mean and
variance of the excitation values) would even tell us where threshold should be placed to produce
the desired activity level. That is, the right-hand tail, beginning at threshold, yields the fraction of
times a neuron fires to a randomly sampled input.

This theorem assumes convergence of all algorithmic processes. However there is an impor-
tant exception to the convergence hypothesis. Certain input configurations will never produce
stable connectivities nor achieve their algorithmically guaranteed firing-rates. Sensibly, such
neurons might be killed-off; such neurons might lower their firing threshold; or from another
perspective, such an input configuration will be very unlikely to exist. For example, we must
conjure an input environment in which a set of input patterns is orthogonal to all others (thus
very unlikely) and the probability of a member of this set occurring is less than the receptivity
cutoff. For example, suppose synaptogenesis remains positive until a neuron fires 10% of the
time. Suppose a subset of patterns occurs 9% of the time and that this set of patterns is orthogo-
nal to all the other patterns. If a subspace of this set with its positively correlated input lines
gains a controlling influence on a postsynaptic neuron, then any other input line not positively
correlated but acquired through synaptogenesis will have its weight decreased by the synaptic
modification equation and then it will eventually be shed. Nevertheless, no matter how many
positively correlated input lines are acquired, synaptogenesis continues never to halt (because
postsynaptic firing will converge to 9%, a value below the required 10% that halts synaptogen-
esis on such a neuron).

Adaptive Synaptogenesis

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004299 July 15, 2015 10 / 23



Extending the Perron-Frobenius theorem. For any one neuron, the algorithmic con-
struction of its all-positive weight vector hinges, in a mathematical sense, on a perturbation of
the classic PF result. The classic PF result specifies a sufficient condition for an all-positive
dominant eigenvector, specifically an all-positive (and positive definite) symmetric matrix.
However, this sufficient condition is not a necessary condition. In fact, one can mildly perturb
an all-positive covariance matrix into a matrix with a relatively small number of not-too-nega-
tive entries, and it is still the case that the dominant eigenvector is all-positive. Although we
know of no theorem that makes, much less quantifies this statement, it is easy to construct
such matrices using Mathematica. Moreover, by inspection, we know that the subspaces of the
covariances associated with our data sets and the simulation-discovered input vectors have
such negative entries while at the same time have an all-positive dominant eigenvector.

From a purely algorithmic perspective, it is the shedding rule that enforces the all-positivity
of a neuron’s inputs; thus it is the shedding rule that allows a neuron’s input covariance matrix
to be such a suitably mild perturbation of a positive matrix. An issue that needs to be resolved
from the combined perspective of random matrix theory and neuroscience is the relative abun-
dance of such mildly perturbed covariance matrices. In regard to this combined perspective, it
seems that one needs to examine distributions of covariance entries. For example, here is a
sketched proof-heuristic for such a perturbed PF result with an explicit distributional assump-
tion on covariance entries.

There are two steps to the heuristic. First note that the algorithm being used to find the
dominant eigenvector can be replaced by the von Mises power method. Then, if for any sym-
metric matrixM,M raised to some integer power p>1 is all-positive, then the PF result can be
applied even ifM itself is not all-positive. Here we just consider p = 2 and the construction of
random vectors that are mostly positive but whose inner products with each other are, with
high probability, positive. Construct two random vectors each with n elements. Suppose the
random elements are chosen from a uniform distribution that ranges from—a to 2a (a>0).
Then, when n is large, 1/3 of the values fall into one of the three ranges. [-a,0), [0,a), and [a,2a].
Now it should be easy to see that the inner product of two such high-dimensional vectors tends
to be positive (and the greater the positive offset of the mean from zero the faster this occurs).
That is, consider the partitioned inner products of the elements in the range of [a,2a] times
those in the other two ranges [-a,0) and [0,a). For large n these two inner products will sum to
nearly zero; the inner product of values in [-a,0) times (0,a) will be negative, but this sum
approximately matches the positively valued inner product of the [-a,0) elements with the
other vector’s (-a,0) elements, and then an even greater tendency toward positivity occurs
when we add in the positive inner products produced by the two matched partitions of the
non-negative elements; thus, the grand total inner product is greater than zero with high prob-
ability. Finally, note that it is such inner products that populateM2 ifM is randomly con-
structed with such a distribution of covariances.

Simulations
Convergence to stable weights. The results of this paper and their interpretation hinge on

the stability of the adaptively formed neurons and their input synapses. Because the underlying
theory assumes that time goes to infinity multiple times, there is reason to question the physio-
logical applicability of the theory. Here simulations show that, for appropriate settings, the
three dynamic aspects of synaptic modification can be combined to produce stable connectivity
and stable weights; that is, synaptogenesis and shedding eventually come to a halt and the syn-
aptic weight vectors (both in terms of direction and length) converge to the values predicted by
the theory.
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In all of the simulations that follow, the synaptic weights are stable and connections are no
longer being added or shed. Fig 4 shows the number of synapses for ten representative neurons
as a function of the number of input blocks. For the last 200 blocks, there is no change in the
number of synapses on each neuron. Of course these data could arise from a tread-milling
effect in which each new synapse generated is exactly matched by a synapse shed, but the next
evaluation denies this possibility. Therefore synaptogenesis and shedding have ceased.

Just as predicted by (2) of the theorem, each neuron has final weights proportional to the
dominant eigenvector of its local covariance matrix (i.e. the subspace defined by the neuron’s
input lines). For any neuron j the constant of this proportionality is equal to the square root of
the variance of its excitation value, y, divided by the mean of its excitation value as described by
Eq (2). For example, the dominant eigenvector of the local covariance matrix of neuron 28
from the simulations with dataset B1 is [0.192, 0.107, 0.305, 0.226, 0.307, 0.123, 0.416, 0.394,
0.608], and the weights for that neuron are [0.169, 0.094, 0.269, 0.198, 0.27, 0.109, 0.366, 0.347,
0.535]. The element-by-element ratio of the eigenvector to the weight vector is 0.880 for all ele-
ments (variance is 10−27). In fact, the square root of the variance of yj divided by E[Yj] (k from
the theorem) is 0.882 (a difference of less than 0.23%). Thus, the simulations confirm the the-
ory, even though the theory requires an infinite number of training blocks.

Convergence and dynamics. Although convergence occurs for all datasets studied here,
the time to converge to stable weights is not uniform across input categories. For dataset B1,
the neurons that are captured by super-category I take significantly more training blocks to
converge than neurons captured by super-category III (t-test, p = 9.15 � 10−61, Table 4). Thus,

Fig 4. Driven by the adaptive algorithm, synapses are acquired and discarded but eventually a stable connectivity is achieved. This illustration
follows the total connections for each of 10 representative neurons in one simulation as a function of number of blocks of input presentations. Note the wide
distribution, across neurons, of the time-to-stable connectivity. Nevertheless all neurons illustrated here achieve stable connectivity by block 310 (the upper
orange-red line), but one neuron achieves a stable connectivity as early as block 82 (purple).

doi:10.1371/journal.pcbi.1004299.g004
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time to convergence for neurons learning about one particular super-category is negatively cor-
related with the number of neurons captured by this super-category (see neuron allocation
below). Also, neurons that are captured by super-category I have significantly more synapses
than neurons captured by super-category III. Thus, time to convergence for a super-category is
positively correlated with the mean number of synapses on neurons captured by that super-
category.

Characterization of the recodings. Feed-forward networks formed from such adaptively
generated neurons have been characterized as efficient means of compressing patterns while
preserving most of pattern information [6, 8–9]. Although compression is not the issue here, it
still can be quantified, and indeed, compression occurs. However, as is the case with the antag-
onism between compression and mutual information in the earlier studies, there is an inverse
relationship between pattern recognition errors and statistical dependence when the indepen-
dent variable is number of post-synaptic neurons.

As indicated in Fig 5, the discrimination error rate of networks with 10 neurons is quite
high (32%) while statistical dependence is extremely low (1.61 bits). But for networks defined
by 30 randomly sampled neurons, the mean error rate decreases to 10.42% while mean statisti-
cal dependence increases 10.72 bits. For networks of 50 randomly chosen neurons (out of
2,000), the mean error rate decreases to 5.2% and mean statistical dependence increases to
21.68 bits (still a substantial reduction from the input statistical dependence 102.4 bits).

Since these feed-forward networks are reducing statistical dependence while achieving a rea-
sonably low error-rate for unsupervised neurons, we conclude that the algorithm produces effi-
cient data compression.

Neuron allocation. Recall that the basic conjecture: the more frequent the exemplars of a
category, then the greater the neural representation for that category [10]. Thus, the fraction of
neurons devoted to the different categories of an input space is the measurement that produces
our most important result.

The simplest demonstration of the input frequency hypothesis uses dataset A. In dataset A
there are five categories, occurring with frequency {.1, .15, .2, .25, .3}. After enough cycles for
neurons to stabilize, fractional neuron allocation per category is 0.04, 0.13, 0.20, 0.29, and 0.34,
respectively. Thus, higher category frequency does lead to greater neuron allocation, and the
relationship is nearly linear as can be seen in Fig 6. With a little thinking, this is an intuitive
result for the synaptogenesis and synaptic modification algorithm: Having relatively more
inputs belong to a category leads to more postsynaptic neurons learning that category because
there is a competition ongoing, a computation biased by category frequency (i.e. higher activity
inputs tend to chase-off lower activity inputs through the associative modification equation
and shedding).

Although this allocation result clearly supports the basic contention of this paper, the sim-
plicity of this observation belies an additional complexity that occurs when categories are not
orthogonal in the input domain.

As the datasets become more complicated, category frequency alone will no longer have a
simple linear relationship with neuron allocation, a point made quite strongly by dataset B1.

Table 4. Synapses and convergence.

super-category: I II III

mean synapses per neuron: 22.8 22.2 16.6

mean blocks to convergence: 280.2 212.6 178.7

doi:10.1371/journal.pcbi.1004299.t004
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Recall that this dataset consists of nine categories, all with equal frequency, where these nine
categories arise from three orthogonal “super-categories” as defined in the methods. For this
dataset and its equal probable categories, allocation is quite different across categories, not at
all uniform as the equiprobable frequency might have suggested. Fewer neurons are allocated
to categories with less overlap, while more neurons are allocated to categories with more over-
lap (Fig 7A). For dataset B1 the fraction of neurons allocated to the three super-categories is
17.4%, 33.45%, and 49.15%. The fractional neuron allocations for each category (grouped by
consecutive super-categories) are {0.06, 0.06, 0.05}, {0.11, 0.11, 0.11}, and {0.17, 0.16, 0.16}.
Since the relationships between categories within a super-category are relatively constant
(small differences due to the randomization algorithm that built the dataset), there is low allo-
cation variance between categories that share a super-category. From a theoretical perspective,
increasing overlap within a super-category increases the largest eigenvalue of the covariance
matrix of that super-category, which in turn positively correlates with increased neuron
allocation.

Interacting category probability with category overlap. Dataset B2 specifically modifies
dataset B1 to produce ca. equal neuron allocations across all categories. To achieve this equal
allocation, the relative frequencies change from equiprobable to 13, 13, 13, 11, 11, 11, 10, 9, and

Fig 5. Error rate and statistical dependence depend on network size (Dataset B1). (A) As the number of postsynaptic neurons in a network increases,
decoding error-rate monotonically decreases. A 10% error rate is reached once there are 34 neurons, and the amount of error continues to decline reaching
5.2% error at 50 neurons. (B) As the number of neurons increase, statistical dependence monotonically increases. When 34 neurons are sampled, statistical
dependence is 12.84. Note that this is much less than the input statistical dependence of 102 bits.

doi:10.1371/journal.pcbi.1004299.g005
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9 percent. These new frequencies produce corresponding relative neuron allocations of 0.11,
0.12, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11, and 0.11.

Thus, adjusting category frequency compensates for the overlap effect, so that if viewed in
isolation, this result appears to contradict the thesis of this paper. Dataset B3 also modifies data-
set B1. However, this time the modification produces data that, even in isolation, support the
main theme of this paper, i.e. higher frequencies produce greater neuron allocations. To illus-
trate this point, the category relative frequencies are set to 18, 17, 15, 12, 11, 9, 6, 6, and 5 per-
cent. These frequencies produce relative neuron allocations of 0.26, 0.24, 0.17, 0.11, 0.09, 0.06,
0.022, 0.020, and 0.016, respectively. In this case, neuron allocation is monotonically decreasing
across categories as appropriate to the hypothesis (Fig 7B). Thus, even with the more complex
input structure of the B datasets, there are category frequency values that qualitatively reproduce
the result of the simpler dataset A; i.e., neuron allocation clearly depends on category frequency.

For the same simulations using dataset B1, an additional characterization quantifies the
fraction of neurons that fire exclusively to each category’s centroid (Fig 8). Note that, regardless
of overlap within a super-category, a large number of neurons demonstrate such exclusivity,
with values ranging from 95 neurons for the third category to 164 for the fourth category out of
2000 post-synaptic neurons. Unsurprisingly, when comparing such results across super-
categories, the fraction of neurons exclusively fired by a category centroid, as a percentage of
the total number of neurons fired, decreases with category overlap. For example, the fraction of

Fig 6. Neuronal allocation is linear in category probability for dataset A. The fraction of postsynaptic neurons firing to a category is proportional to
category probability. For this low overlap dataset (see Fig 2A), each postsynaptic neuron fires exclusively to a single category. The linear regression slope is
1.5 (the intercept is -0.1). Each plotted data point is the fraction of 2000 neurons allocated.

doi:10.1371/journal.pcbi.1004299.g006

Adaptive Synaptogenesis

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004299 July 15, 2015 15 / 23



neurons that fire exclusively to the one of the three category centroids of super-category I is
greater than the fraction of neurons that fire exclusively to one of the three categories of super-
category III. Even so, regardless of super-category, there are more than enough exclusive neu-
rons for a supervised decoder to capture the information needed for selective recognition
across all nine categories.

A third and more subtle characterization of the neuronal allocation quantifies the neurons
that respond to the sub-regions of input space created by the overlap between the nine catego-
ries (see Fig 3). The number of neurons fired by sub-regions, exclusively and non-exclusively,
is presented in Fig 9. Neurons that fire in response to individual super-category I sub-regions
do so almost entirely in a non-exclusive manner. In super-category III, more than one quarter
of the neurons firing to sub-region II-7 (the triple overlap) are firing exclusively and zero neu-
rons are firing exclusively to sub-regions III-1, III-2, and III-3. On the other hand, the most
reliable exclusive recognition of the sub-regions occurs for super-category II. In super-category
II (sub-regions II-1 through II-6), the vast majority of firings are non-exclusive, but there are
also many neurons firing exclusively to each sub-region. Across sub-regions II-1 through II-6,
the exclusively fired neurons are nearly uniformly distributed.

Fig 7. Category frequency can overcome the advantage of highly overlapping super-categories in capturing post-synaptic neurons. (A) shows
neuron allocation for dataset B1. Even though the nine categories are equiprobable, categories capture post-synaptic neurons in a non-equiprobable fashion.
The greater the overlap within a super-category, the more neurons that are captured by that super-category's base categories. For each category inside a
super-category, there is similar neuron allocation. The x-axis labels both category and category frequency (e.g. 11.1%, 11.1%, 11.1%. . .). (B) shows neuron
allocation for dataset B3. By changing the category frequencies, the neuron allocations change, and the effect of overlap is overcome. The change in
frequency leads to more neurons allocated to categories with the highest frequency, even inside a super-category. The x-axis labels both category and
category frequency (e.g. 18.4%, 17.4%, 15.5%. . .). Numbers 1 through 9 on each x-axis correspond, in sequence, to the three base patterns comprising the
three, sequential super-catergories.

doi:10.1371/journal.pcbi.1004299.g007
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In sum, the higher the overlap inside a super-category, the more likely there will be neurons
learning the highly overlapped sub-region and the less likely there will be neurons learning the
non-overlapping sub-regions. But as is the case for super-category II, codes can develop that
are quite appropriate for learning the sub-regions. Thus, the adaptive algorithm has created
codes that refine the environment consistent with the idea that an expert can be self-taught.
That is, pattern differences only implicit through relationships within the data will be discrimi-
nated by unsupervised neurons.

Discussion

Historical perspective
The theory of adaptive synaptogenesis was developed from observations of empirical neurosci-
ence (see [1], [2], and [16] for motivating studies), from the underlying assumption that in
order for a neuron to be most useful, its afferent synapses must reflect the statistical structure

Fig 8. Neurons fired exclusively and non-exclusively by each category’s centroid. All post-synaptic neurons fire exclusively to only one super-category,
but some neurons are exclusive to a single category within a super-category (filled bars). Unfilled bars count neurons that fire in response to two or three
categories within a super-category. Numbers 1 through 9 on the x-axis correspond, in sequence, to the three base patterns of comprising the three,
sequential super-catergories. In all cases, testing threshold is 2.4 because the prototypes are noiseless. Training to B1; testing to full prototype.

doi:10.1371/journal.pcbi.1004299.g008
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of the input world, and from one more motivating idea. We assume that there are desirable
operating values for balancing costs versus information (e.g. mean firing-rate or mean excita-
tion or variance vs. excitation). Then, as the outcome of the algorithm, adaptive synaptogenesis
guarantees such desirable, predetermined values. In this regard, BCM theory led the way, as it
explicitly creates postsynaptic neurons with a particular average excitation [5].

In this regard, BCM theory provided the inspiration for adaptive activity control over the
long term. More generally, the importance of producing an average activity level in a postsyn-
aptic neuron became clearer with the demonstration [17] that neuron parameters (such a axo-
nal leak current) imply a particular optimum firing-rate in order to maximize the bits per joule

Fig 9. Neurons fired exclusively and non-exclusively by each sub-region. The sub-regions, as in Fig 3, can be learned in an exclusive fashion. Such
novel learning is poorest for super-category I; Exclusively fired neurons do not exist in sub-regions I-4, I-5, and I-6. Nearly all of the exclusive neuron firing in
super-category I occurs in sub-regions I-1, I-2, and I-3. Super-category II has an even distribution of neurons firing exclusively to II-1 through II-6, while II-7
garners approximately twice the number of neurons as any of the other sub-regions. A majority of neurons that learn super-category III are fired by sub-region
III-7 (the triple overlap) and the majority of these neurons fire exclusively. There are a sizeable number of neurons that are learning to fire to III-4, III-5, and III-
6 exclusively. Such results are dependent on synapse number per neuron. The 21 sub-regions arising from the totality of all super-categories are numbered
here as in Fig 3 but expanded by the sequence of the three super-categories.

doi:10.1371/journal.pcbi.1004299.g009
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of an axon. Given a neuron with such an optimized axon, the values of synaptic excitation
must be important in terms of matching dendro-somatic-initial segment computation with the
axon’s optimal firing-rate. As well, its synapses should in some sense maximize incoming infor-
mation [15]. In any event, the BCM algorithm with initial full-connectivity conjoined with an
appropriate shedding rule, may well produce identical results to what is found here. Of course
spike-timing rules will also work, again assuming full initial connectivity [18].

Indeed, in its earliest version, the utility of adaptive synaptogenesis was understood in the
context Barlow’s information-conserving compressive coding idea [19–20], a clearly energy
saving transformation with its reduction in both firing-rate and number of neurons while
maintaining almost all of the information of the inputs.

The idea of using random connectivity to create network codes has always been part of our
synaptogenesis algorithm; in fact, it is the baseline condition in [6–7]. Independently, such
ideas have been used to study efficient connectivity distributions [21] and abstract functions
[22]. As documented in our early work [7], just random connectivity without shedding is still
quite useful for compressive coding. That is, these randomly formed networks produce large
values of mutual information while decreasing statistical dependence. However, as documented
in the series of articles [6, 8–9], random connectivity with associative modification is inferior
to using the algorithm that includes synaptic shedding of small weights.

Although we know of no first-principles theory for optimizing number of synapses, it is
clear from synapse count data and the volume penalties incurred by synaptic structures [23]
that only a minute fraction of an input space (for example the lateral geniculate as the input to
V1) can form synapses with any one postsynaptic neuron in the cerebral cortex. In this light, it
may be possible to tune adaptive synaptogenesis to achieve an appropriate range of synapses
per neuron.

There are four differences between the adaptive synaptogenesis algorithm used previously
and the current version: two of these (A and B below) are improvements that can be applied to
the compressive algorithm, a third (C) is a specialization for neurons performing discrimina-
tion, and the fourth (D) is largely inconsequential in the context of the data structures used
here.

(A). The learned weights are a function of the local covariance matrix [15] instead of the local
correlation matrix.

(B). Instead of an asymptotic approach to zero, receptivity goes to zero for finite values of the
relevant variable (here, each neuron's firing-rate).

(C). For the discrimination problem, receptivity is controlled by firing-rate, E[Zj], while aver-
age internal excitation, E[Yj], controls receptivity for the information-based compression
problem.

(D). Finally, the presynaptic synaptogenesis constraint represented by the parameter ‘avidity’
(e.g., see [9]) is largely irrelevant here, and possibly counter-productive, because its pur-
pose is to balance presynaptic territory. If taken too far, such a balance could work
against the desired neuronal allocation result. Nevertheless with the incorporation of an
appropriate avidity function, it is possible that there will be some small improvement in
resource allocation for the problem studied here.

New results
There are three primary results here: 1) extension of the adaptive synaptogenesis algorithm
from data compression to discrimination; 2) documentation of neuronal allocation as a function
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of a category’s relative frequency and of the statistical input structure; and 3) when suitably for-
mulated, adaptive synaptogenesis produces a stable connectivity in a stable input world.

Convergence to stable input connections. As confirmed here for the first time – using the
combination of the covariance-based synaptic modification rule and a receptivity rule that gets
driven to zero – neuronal allocation can be adaptively controlled by experience in a sensible
way. Also for the first time, we show that convergence occurs for connections and their weight
values in finite time. Stable connectivity, i.e. convergence in finite time, is required in the context
of a hierarchical network like the visual system of the neocortex because code alteration (map-
pings from inputs to their neural representation) at the bottom of a hierarchy will require that
all the subsequent levels of the hierarchy to re-organize their codes. Indeed, some systems have
“critical periods”; a critical period turns off the algorithm after a given time interval. Thus, criti-
cal periods guarantee stability (even for non-stationary inputs) but do not guarantee activity lev-
els or information rates as is the case for the adaptive synaptogenesis algorithm.

Controlling neuronal allocation. The correlations between any subset of input patterns
and the frequency of experience of these input patterns have a strong effect on the rate of con-
vergence. In particular, the greater the pattern-overlap within a super-category, the faster the
convergence to stable connectivity for neurons coding said super-category (See Table 4). Such
a relationship makes sense because with more overlap there is a better chance that a randomly
chosen input-line will be retained due to the probability of positive correlation with other input
lines. Moreover, fewer synapses will be needed on average to reach threshold. Going in the
other direction, relatively isolated patterns are unlikely to win neuronal allocations and in the
extreme of low correlation and low probability, neurons acquiring input lines used by an iso-
lated pattern will never converge, and thus, such patterns will receive the smallest neuronal
allocation.

The one final issue that might appear as a disconnect between theory and simulations is
average firing rates. That is, there is a coarseness of the achieved firing levels compared to the
desired levels. In all cases this coarseness can be understood in terms of the probability of the
input patterns. For example, suppose that the desired activity level is 10% (i.e. receptivity for
new innervation goes to zero once a neuron fires at least 10% of the time). It is quite conceiv-
able (and we have observed such instances) that a neuron could be firing 8 or 9% of the time
and then, one more synapse is added and the neuron fires 15% of the time. Such coarseness
will be unavoidable when there are relatively few patterns encoded by relatively small number
of input lines. Presumably with a higher dimension input system and many more patterns
being sampled, there will be more variability, more synapses per neuron, and thus, such large
jumps in activity will become less likely. Also contributing to the large excitatory effect of single
synapses is the lack of any shunting inhibition and leak effects. Such inhibition will act divi-
sively to downgrade the effectiveness of all activated excitatory synapses, thus biasing develop-
ment for more synapses per neuron and, in turn, greater precision of actual firing rate
compared to desired firing rate.

Functional interpretations. The conjecture of energy-efficient brains, constructed from
energy-efficient neurons, begs for adaptive processes to control average neuronal activity and
to control the information, or the utility, to justify the expense of positive firing-rates and even
a neuron’s existence. Studies of compressive coding implicitly, or explicitly, are concerned with
optimizing bits per joule. However, when it comes to making decisions, which neurons surely
must encode, discriminations are ultimately concerned with some kind of payoff structure gen-
erally referred to as utility. Negative error rates can be used as the simplest kind of utility in a
discrimination problem. Assuming that all neurons within one class are spread broadly across
the input patterns of that class—i.e. in a way such that neurons are equally useful for their cost,
the modified adaptive synaptogenesis algorithm can be successfully applied to discrimination
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problems. Here we picture groups of firing neurons as working together to encode each input
pattern, where information inherent in such a group is enough for correct classification. Thus,
we do not necessarily require that an individual neuron, by itself, makes a correct classification,
although this is certainly very useful. It is also useful when a neuron is one of many that make
the classification of the pattern easier by eliminating some of the competing classes. In this
regard, the results illustrate (see Figs 8 and 9) the manner in which neuron allocations contrib-
ute to various degrees of sub-region specificity.

In general, neural network theories treat discrimination problems as supervised learning
problems (e.g. [24]). However, such supervision may not always exist, and – our very point
here – it is not always necessary. Again, note in Figs 8 and 9 that some neurons can get classifi-
cation exactly right even without supervision while other neurons can help eliminate many of
the possibilities without supervision. This unsupervised learning of a precise discrimination –

and indeed creation of sub-region codes as occurs uniformly for super-category II (Fig 9) –
seems relevant to human learning, particularly in the case of becoming an expert where many
years of study are required.

To explain the cognitive relevance of such an unsupervised algorithm, we first considered
that, in language, the number of terms and therefore the discriminability of some aspect of the
world (e.g., Eskimos and snow, Laps and reindeer, see [25]) varies with amount of experience.
That is, the more experience one has with some aspect of the world, then the more refined is
one’s ability to discriminate among patterns in that aspect of the world. Along with this cogni-
tive idea is the neuroscientific idea: the more neurons devoted to an aspect of the world, the
greater a network’s ability to create discriminable neural codes for that aspect. However, by
tying language to this cognitive interpretation, the coding problem becomes intertwined with
the possibility of supervised learning, including supervised learning without error correction.
Thus, rather than an example with supervised learning, a more apt analogy is self-taught dis-
criminations. Consider the chess expert who can discriminate thousands of board positions
while only a handful of specific distinguishing names exist [26]. After five to fifteen moves into
a named opening, the board positions cease to have names, but the grandmaster can recognize
the board position vector as being familiar and as a variant of a particular set of positions previ-
ously encountered. For example, after a sequence of 12 unseen moves, the grandmaster can
classify the current position as either emerging from the Slav Accepted Alapin Variation or the
Catalan opening, but definitely not the Kings Gambit.

Thus, we submit a valid cognitive analogy: the problem studied here is much like a grand-
master chess-player gaining the capability to discriminate unnamed board positions at a
glance. The theory of adaptive synaptogenesis predicts that the relative frequency of board
positions (amongst games studied) will control the neuronal allocation. But also, board posi-
tions that have greater similarity with other board positions (frequencies being equal) will
receive a greater neuronal allocation.

Supporting Information
S1 Dataset. Matlab data files illustrated by Fig 2A and 2B.
(ZIP)

S1 Code. The Matlab program used for the simulations; parameter settings described in the
main manuscript are used with this program.
(M)
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