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Passive immunization using antibodies is a promising alternative to other antiviral
treatment options. The potential for seasonal protection arising from a single injec-
tion of antibodies is appealing and has been pursued for a number of infectious
agents. However, until recently, antibody-based strategies to combat infectious agents
have been hampered due to the fact that most antibodies have been found to be
strain specific, with the virus evolving resistance in many cases. The discovery of
broadly neutralizing antibodies (bNAbs) in influenza, dengue virus, and HIV, which
bind to multiple, structurally diverse strains, has provided renewed interest in this
area. This review will focus on new technologies that enable the discovery of bNAbs,
the challenges and opportunities of immunotherapies as an important addition to
existing antiviral therapy, and the role of antibody discovery in informing rational
vaccine discovery – with agents targeting influenza specifically addressed. Multiple
candidates have entered the clinic and raise the possibility that a single antibody or
small combination of antibodies can effectively neutralize a wide variety of strains.
However, challenges remain – including combating escape variants, pharmacodynam-
ics of antibody distribution, and development of efficacy biomarkers beyond virologic
endpoints.
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Introduction

New alternative countermeasures for influenza are urgently needed. Vaccines to seasonal and
pandemic influenza are foundational to provide widespread herd immunity to influenza. However,
most inactivated and live-attenuated vaccine technologies are strain specific – requiring constant
updating of the strains used in yearly multivalent vaccine preparations. In addition, severe influenza
disease occurs each season in many high risk groups, to whom the vaccine provides limited or
no protection, such as young children, the elderly, patients that are immunocompromised or who
have pulmonary conditions, inflammatory conditions, or malignancies, as well as pregnant women
(1, 2). In addition to vaccines, current treatment and prophylaxis of influenza is limited to the
neuraminidase inhibitors oseltamivir (Tamiflu) and zanamivir (Relenza). Despite the availability
of these treatments, 10–44% of hospitalized patients require intensive care and 25–50% of these
patients die. In the United States, it is estimated that over 200,000 patients are hospitalized with
influenza, with up to 48,000 deaths, per year (3). A comparison of annual mortality rates from
infectious disease in theUnited States further demonstrates the lack of effective interventions against
this deadly disease (Table S1 in Supplementary Material).
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Furthermore, certain strains of influenza have resulted in infec-
tions with high mortality rates: the 1918 H1N1 Spanish Flu strain
resulted in deaths of 1–3% of the world’s population, compared
to the 1968 pandemic strain that resulted in the death of 0.03%
of the world’s population (4). More recently, Avian H5 strains
have had documented mortality rates up to 60% despite the use of
currently licensed anti-viral treatments (5). Finally, the continued
emergence of resistance to current anti-viral drugs increases the
need for new therapeutics (6).

Passive Immunotherapy has a Long History

Prior to the advent of antibiotics, convalescent serum was the
only antidote available for bacterial toxins, such as diphtheria
and tetanus (7). Eventually, it was discovered that the protec-
tive properties within the serum were predominantly due to
neutralizing antibodies. The therapeutic use of passive antibod-
ies has been well established for several viral infections. There
are licensed polyclonal antibody products for several viruses,
including hepatitis B (HBIG), varicella (VZIG), cytomegalovirus
(Cytogam), rabies (HRIG), and respiratory syncytial virus (RSV)
(Respigam). More recently, monoclonal antibodies (mAbs) for
viral infections have been developed, including licensure of
Synagis for prevention of RSV infection. mAbs for the pre-
vention and treatment of a number of other viral targets,
including Hepatitis C, Rabies, and West Nile Virus, are in
clinical development (8–11). Historically, these antibody prod-
ucts have primarily focused on the prevention of viral dis-
ease, although application to treatment of infection has been
investigated for RSV (12). Of note, no monoclonal antibody-
based solution has been approved for the treatment of active
infection.

In the absence of development of a universal, broadly protective
vaccine, passive immunization using antibodies potentially offers
several benefits. First, passive immunity provides the opportunity
to protect at-risk individuals from infection. At-risk segments
of the population include first responders to a relatively novel
strain as well as those who do not mount an immune response
to vaccines including the immunocompromised, those in poor
health, pregnant women, and critically ill patients. Indeed, recent
modeling analyses completed by us and our collaborators (M.
Boni, OxfordUniversity Clinical ResearchUnit) indicate that for a
sufficiently potent and long-lasting antibody (t1/2 =~18 days, pro-
tective period= 3 half-lives), population coverage of only 4–6%
would be required to significantly reduce hospitalization rates.
Notably, given the current state-of-the-art in the production of
antibodies, it is possible to readily generate enough monoclonal
antibody to protect the population at the epicenter of an epidemic
outbreak in amuch shorter time scale than that of vaccine produc-
tion (>6months) (13). The potential for long-lasting protection,
covering an entire exposure period (i.e., an entire season for
influenza), arising from a single injection of antibodies is appeal-
ing and has been pursued for a number of infectious agents. For
example, in the case of hepatitis A, prophylactic administration
of immunoglobulins can protect against viral exposure. Addition-
ally, post-exposure prophylaxis with immunoglobulin is >85%
effective in preventing hepatitis A if administered within 2weeks

after viral exposure, and efficacy is evenhigherwhen administered
early in the incubation period (14).

The use of antibody therapy to treat influenza has recently
received more attention, with some clinical experience to sup-
port efficacy. A meta-analysis of studies conducted during the
1918 pandemic using blood products strongly supports a benefit
for treated patients (15). Overall, the six studies documented a
21% reduced risk of mortality in treatment groups (16 vs. 37%
mortality in controls, 95% of risk difference, CI: 15–27). Further-
more, a recent study evaluated the use of convalescent plasma
in 93 patients with H1N1 2009 influenza in Hong Kong (16).
In this prospective multi-center case-control study, patients with
severe influenza, who were hospitalized and required intensive
care unit support, were recruited and offered convalescent plasma
containing influenza neutralizing antibody in addition to the
standard of care with either oseltamivir or zanamivir. Mortality
was significantly lower in the treatment groups who received
convalescent plasma compared to the controls (20.0 vs. 54.8%,
p= 0.01).

Given the overall promise (and current limitations) of pas-
sive immunization approaches, as well as the overarching goal
of accounting for viral mutations, it is highly desirable to iden-
tify and/or engineer antibodies that bind with high affinity
and that neutralize many or all strains that are capable of
infecting humans. To this end, there is intense focus on anti-
bodies that bind to influenza hemagglutinin (HA) since anti-
bodies to HA are known to be protective in animal models
and in humans. The challenge is that HA is a highly diverse
protein; there are 18 subtypes categorized into two groups –
1 and 2. As such, the ability to identify an antibody or small
collection of antibodies that can bind to and neutralize all clin-
ically relevant strains is a substantial challenge. The ability to
rapidly identify broadly neutralizing antibodies (bNAbs) has been
enhanced by the development of several new high-throughput
technologies that now promise to enable comprehensive track-
ing of all of the immunological cell subsets, extending even
to the level of the individual clones of B cells that carry out
adaptive responses (17, 18). Improvements in the toolkit for
human immunological studies are continually evolving and are
likely to increase our understanding/discovery of antibodies for
therapeutic use.

Characterization of the overall B-cell response to infection
or vaccination has provided potentially important insights into
lasting immunity, including the heterogeneous nature of individ-
ualistic responses to vaccination/infection. However, with next-
generation deep sequencing data, it has become clear that, in
different individuals, expansion of B-cell clones in response
to infection arising from similar or “convergent” antibody
gene rearrangements can be detected. For example, tracking of
B-cell clones following pandemic single antigen H1N1 vaccina-
tion revealed a strong clonal signature dominated by antibodies
using the IGHV3-7V gene, and correspondence of highly similar
CDR3 sequences in different humans. Convergent monoclonal
antibody sequences display HA inhibition activity against H1N1
and other influenza strains (19). This raises the possibility of
a so-called “universal” vaccine strategy-through selection of the
appropriate immunogen(s) to elicit the most effective immune
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response. Other recent work using regions of or chimeric proteins
derived from the stem region of HA seem to elicit a broadly
protective response against multiple subtypes of influenza (20,
21). Furthermore, studies in the area of HIV have suggested
that a broadly protective response may, in principle, be com-
pleted through eliciting specific B-cell responses (i.e., “training
the immune system”) using temporally spaced immunizationwith
different antigens (22).

In addition to the use of the above tools to study the adaptive
immune response, there has recently been a concerted effort
to identify, engineer, and characterize antibodies that bind to a
number of influenza subtypes (so-called “broadly” neutralizing
antibodies). Several of these antibodies are listed inTable 1. These
broadly neutralizing mAbs are a new, promising modality for
treatment of influenza, potentially across all strains of the virus.
Such antibodies have been identified through panning the B-
cell repertoire of vaccinated or infected individuals (23, 24) and
are estimated to be ~0.001–0.01% of the total antibody response
(23). Identification of such antibodies has generated interest for
several reasons, including (i) mapping of the epitopes to which
these antibodies bind provides insights into epitopes that can
be targeted for vaccine development and (ii) the antibodies by
themselves are useful products to provide passive immuniza-
tion or therapeutic efficacy against a wide variety of influenza
subtypes.

Study of bNAbs has led to Insight on
Universal Vaccine Targets

In the context of vaccine efforts, identification of bNAbs to
infectious agents provides a basis for the design of more pro-
tective vaccine strategies (25). Recent work on the evolution of
bNAbs containing the Vh1-69 heavy chain demonstrates that
somatic mutations to the germline, which result in recognition
of a hydrophobic patch on the HA stem results in the antibodies
becoming more hydrophobic and binding influenza HA with
higher avidity (26). Another recent study characterized ~200 anti-
stem antibodies and identified two key elements that are required
for the initial development of most VH1-69 antibodies: a poly-
morphic germline-encoded phenylalanine at position 54 and a
conserved tyrosine at position 98 in the third complementary
determining region of the heavy chain (27). By tracing the devel-
opment of such antibodies, these studies have demonstrated that
it may be possible to develop an immunofocusing strategy to
promote the production of bNAbs containing Vh1-69.

Properties of bNAbs

Antibodies to two major surface antigens, the M ion channel
and HA, have been studied as potential passive immunotherapies
(Table 1). Antibodies that target the highly conserved M2 protein
possess the requisite breadth of binding across group 1 and group
2 (i.e., all subtypes of influenza A). However, such antibodies are
non-neutralizing; the predominant mechanism of action for M2-
specific antibody is indirect through ADCC-mediated killing of
infected cells. This leads to incomplete protection. For example, in
a lethal influenzamousemodel; anM2-targeted antibody product

TABLE 1 |Recent discoveries in broadly neutralizing antibodies to influenza.

Antibody Target Breadth Development

CR6261 Stem region/HA Group 1 Phase II
CR8020 Stem region/HA Group 2 Phase II
CR9114 Stem region/HA Group 1/group 2 Pre-clinical
F10 Stem region/HA Group 1 Pre-clinical
F16 Stem region/HA Group 1/group 2 Pre-clinical
TCN-032 M2 Group 1/group 2 Phase II
MHAA4549A Stem region/HA Group 1/group 2 Phase II
CH65 Receptor binding site/HA H1 Pre-clinical
VIS410 Stem region/HA Group 1/group 2 Phase II

required three injections with M2-specific antibodies at 24, 72,
and 120 h post-infection and still provided only a partial (~60%)
protective response (28).

In contrast, antibodies to HA can clearly neutralize influenza
virus in vitro, provide complete protection after a single admin-
istration in vivo, and protect against multiple strains of influenza
(24, 29, 30). Additionally, use of such antibodies likely also miti-
gates bacterial secondary infection, since rapid reduction in viral
titers prevents bacterial adherence (31). These data are supported
by the fact that the efficacy of current vaccine approaches to
influenza (especially inactivated virus strategies) is measured by
the HA neutralizing titer. However, through the processes of
antigenic drift and shift, the HA of influenza virus can develop
resistance to antibodies that target HA. Such has been the case
with, for example, CR6261 (32), CR8020 (24), and F10 (33), where
several mutations are known to lower the binding affinity of the
antibody to HA and confer resistance. The fact that HA is subject
to mutation and the virus can undergo reassortment questions
whether an immunotherapy strategy can be adequately developed
due to facile development of escape mutants.

Strategies to Design Effective
Immunotherapy

There are at least two points that need to be considered with
regard to an ideal immunotherapeutic strategy, particularly when
considering a variable system like HA. The first is the epitope
targeted by the antibody. Many of the bNAbs in Table 1 target
the relatively conserved stem region of HA. While certain stem-
binding-antibodies target epitopes that canmutate under selective
pressure with apparently little or no fitness cost, other epitopes
are less amenable to mutation and are more likely to engender a
fitness cost (34). A structure-based network approach (35) can
be used to provide insights into the tolerance to mutability of
an amino acid in a protein system. This approach is based on
analysis of sequences across different viral surface proteins that
reveal amino acids that are highly networked (higher weighted
contacts with neighboring amino acids), and therefore are more
constrained in their ability to mutate (Figure 1A). By target-
ing these amino acids, it is possible to generate an antibody-
based solution that is more refractory to resistance develop-
ment while still maintaining binding to a potent and broadly
neutralizing epitope. Additionally, in the context of therapy, it
is likely that any antibody can be used in combination with a
neuraminidase inhibitor, where there appears to be synergistic
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FIGURE 1 | (A) Network-view of bNAb epitopes. HA trimer is represented in a
solvent accessible surface format and colored based on normalized residue
network scores. Coloring varies from white to red where white indicates poorly
networked residues and red indicates highly networked residues. The three
bNAb epitopes are highlighted by dotted borderlines (green: antibody targeting
trimeric interface; blue: CR6261; pink: CR8020). The 2D network map of the
epitope is also shown. A network is made up of nodes and edges. Nodes
colored in red indicate functional epitope residues whereas nodes colored in
blue indicate residues that are in the network environment of the epitope

residues. (B) Different bispecific formats that have demonstrated activity against
infectious disease targets. (a) A dual-variable domain immunoglobulin format
containing two distinct Vh-Vl pairings (one in red and one in green) has
demonstrated activity against hepatitis B. (b) A bispecific format where a single
chain variable region against Psl (red) targets the antibody to the cell surface of
Pseudomonas enables engagement of a traditional Vh-Vl paratope with the
rarer PcrV target. (c) Crosslinking of binding domains of variable and constant
regions (VH-CH1/VL-CL; Fabs), either homotypic (left) or heterotypic (right) with a
defined DNA-based spacer enables more potent neutralization of HIV virus.
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activities due to distinct mechanisms of action (36). Furthermore,
as has become apparent in other viral diseases, such as HIV
or hepatitis C, combination approaches are less likely to elicit
resistance. Finally, recent studies have indicated that the activity
of bNAbs is enhanced in the presence of the natural immune
response (37).

The second important point to an ideal strategy is that there
are a number of engineering-based strategies outside of the vari-
able or binding region that can be used to enhance the efficacy
of the antibody-based solutions. Certainly, one of the relevant
approaches is Fc engineering to enhance the recruitment of com-
plement and/or innate immune cells. In the context of bNAbs
against influenza, it is known that the various stem-binding
antibodies are able to recruit complement and that Fc effector
functions are critical to their protective effect (38). However, the
efficiency of complement recruitment is based on the geometry
of engagement, with some antibodies being able to better engage
complement as compared to others (39). The effector functions
can be further enhanced through engineering of Fc mutations
and/or alteration of the glycosylation site to enhance ADCC.
Finally, in other therapeutic areas, particularly oncology, there
has been an emphasis on discovery of bispecific antibody for-
mats (40) (Figure 1B). In the context of antibodies to infectious
agents, initial examples have provided intriguing results. Alter-
native formats have been investigated including use of multiple
antibody binding domains (VH-VL), or inclusion of antibody-
like binding domains, such as scFv or Fab fragments. Recently,
data have been reported for a bispecific antibody-like construct
to Pseudomonas where one binding site binds to a high density
ligand (Psl) and thus targets the antibody, and the other binding
site targets a highly neutralizing epitope (PcrV) (41). Furthermore,
with reference to viral diseases, a recent report of a bispecific
antibody to hepatitis B reported synergistic activity compared
to the activity of the parent antibodies alone (42). Finally, in
HIV, where the density of the gp140 spike protein at the viral
surface is highly limiting, bridging through the use of a bispecific

antibody resulted in much higher activity (43). Such a dual-
targeting strategy may also be useful for other viruses such as
influenza.

Conclusion

If technologies can identify high affinity, bNAbs, passive immu-
nization can likely provide an important adjunctive prophylactic
and therapeutic option to supplement vaccination technologies.
Antibody-based therapies are generally safe and well-tolerated,
particularly when the antigen is an exogenous target. Even one of
the more common effects of therapy, which is the development
of anti-drug antibodies, at most serves to limit drug exposure
rather than resulting in significant adverse effects. Recentmatura-
tion of several tools in antibody characterization, discovery, and
engineering may enable a resurgence of passive immunotherapy
strategies. With several antibody candidates that are currently
in clinical development for influenza (Table 1) and potentially
others, it is likely that we will determine in the near future
whether an old idea becomes a new powerful tool to coun-
teract the rapidly evolving threat of influenza and other virus
infections.
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