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Abstract

Ecosystems can undergo sudden shifts to undesirable states, but recent studies with simple single-

species ecosystems have demonstrated that advance warning can be provided by the slowing down

of population dynamics near a tipping point. However, it is unclear how this “critical slowing

down” will manifest in ecosystems with strong interactions between their components. Here we

probe the dynamics of an experimental producer-freeloader ecosystem as it approaches a

catastrophic collapse. Surprisingly, the producer population grows in size as the environment

deteriorates, highlighting that population size can be a misleading measure of ecosystem stability.

By analyzing the oscillatory producer-freeloader dynamics for over 100 generations in multiple

environmental conditions, we find that the collective ecosystem dynamics slow down as the

tipping point is approached. Analysis of the coupled dynamics of interacting populations may

therefore be necessary to provide advance warning of collapse in complex communities.

INTRODUCTION

Climate change and overexploitation of natural resources are altering many of the earth's

ecosystems, often leading to habitat loss and species extinction. These regime shifts in

ecological systems can occur without obvious warning; and once they have transpired, they

may be extremely difficult to reverse, even after the agent that caused them is identified and

removed 1–6. This irreversibility is a consequence of the ecosystem undergoing a critical

transition, in which it switches from one stable state to another. Once this happens, the

feedback loops that stabilize the new state make it difficult to reverse the transition, leading

to memory effects or hysteresis 1,2,7.
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As ecosystems approach such critical transitions they may often lose resilience, making it

easier for external perturbations to induce a regime shift 8. Given the negative consequences

of these unwanted regime shifts, there is a desire to measure the stability of ecosystems and

identify early warning indicators preceding catastrophic transitions. Recently, there has been

growing interest in using bifurcation theory 7,9–11 and the signatures of critical slowing

down 12,13 (a phenomenon well studied in physics14,15 and many other fields 16–22) as a

paradigm to understand the dynamics before transitions between alternative stable states in

ecosystems. Theory further suggests that the loss of resilience of an ecosystem as it

approaches a tipping point should be accompanied by a slowing down of the collective

dynamics of the ecosystem 1,8,23–25. This prediction has been confirmed in single-species

laboratory microcosms, where critical slowing down and its indirect signatures (e.g.

increases in population variability and the correlation of fluctuations) have been

observed 26–28.

In parallel with the studies of simple laboratory populations, early warning indicators based

on critical slowing down have been studied in models of complex ecosystems 2,6,26,29,30.

Indeed, it is expected that sudden transitions will be common in ecological networks with

multiple interacting species 2. Theoretical analysis of concrete ecosystems with either two 23

or three 29 strongly interacting species concluded that the collapse of more complex

ecosystems may also be preceded by critical slowing down - in this case manifested as the

dominant eigenvalue of the community matrix approaching zero 30 (or one, for temporally

discretized dynamics 31). Encouragingly, recent experiments of exceedingly complex lake

ecosystems indicate that the effects of critical slowing down may be seen by investigating

the dynamics of individual species, or indirect reporters of the presence of other

species 32,33. Nevertheless, how critical transitions take place in complex ecological

networks is still poorly understood; for instance, as to how the inter-specific interactions

within the ecosystem 34 affect the collective dynamics on the brink of a regime shift, or

which particular indicator will exhibit the strongest signatures of critical slowing down. To

address these questions, and to understand how early warning indicators behave in

ecosystems with strong interactions between species, we set out to study the dynamics of a

laboratory producer-freeloader ecosystem consisting of two yeast strains with different

phenotypes.

Our producer-freeloader ecosystem consists of two different strains of budding yeast (S.

cerevisiae) growing on sucrose. Budding yeast requires the enzyme invertase to break down

sucrose into the simple sugars glucose and fructose. Invertase is secreted into the

periplasmic space between the cell membrane and the cell wall. Due to this secretion outside

of the cell, 99% of the glucose and fructose diffuse away from the cell that produced them,

and can be consumed by other cells in the population 35. In our experiments, the “producer”

strain expresses the SUC2 gene that encodes for invertase production; the second yeast

strain, the “freeloader” lacks this gene and does not contribute to the breakdown of sucrose.

Thus, the freeloader population exploits the producer population by consuming glucose and

fructose without paying the metabolic cost associated with their production. This

experimental system has been previously characterized as a model of the public-goods

evolutionary game dynamics between cooperators and cheaters35–39. This evolutionary

Chen et al. Page 2

Nat Commun. Author manuscript; available in PMC 2014 November 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



intra-species interaction is a particular realization of a more general ecological interaction

where one species (a producer) produces a resource that is also consumed by individuals that

benefit from it but which have not contributed to its production (freeloaders).

Mathematically, the cooperator-cheater dynamics has been shown to be equivalent to the

dynamics between producers and freeloaders (or prey and predators) 36,40.

RESULTS

Collapse of an experimental producer-freeloader ecosystem

Based on prior experiments with monocultures of the producer strain in sucrose media 27 ,

we expected our producer-freeloader ecosystem to exhibit a critical collapse as the

environment deteriorates. To test this, we grew replicate co-cultures of the two yeast strains

in sucrose media, and subjected the cultures to multiple daily cycles of growth-dilution (see

Methods). This experimental design naturally introduces an experimentally tunable dilution

factor (DF), akin to a mortality rate, which was our control parameter for environmental

deterioration 27,36. We followed the ecosystems for nine days and measured the density of

the producer and freeloader populations after each growth-dilution cycle. Our observations

are consistent with the presence of a tipping point in our ecosystem located around a DF of

2000: below that dilution factor the populations found a stable equilibrium, but when the DF

was increased beyond this value, the populations collapsed and went extinct (Fig. 1).

In previous experimental studies in monocultures 26–28, the population size always declined

with environment deterioration. In particular, this was the case for cultures of our producer

strain in isolation 27. In contrast, here we found that in the face of competition with the

freeloader strain (whose population size does show the expected decline) the producer

population increased in size as the environment deteriorated, and was maximal in the

proximity of the tipping point (Fig. 1b). This increase in population size of the producer

population as the environment deteriorates is a consequence of the non-linear coupled

dynamics in the system (Supplementary Fig. 1); at high dilution factors, the lower density of

freeloaders leads to weaker competitive interactions and allows for less hindered growth of

the producers. Species interactions may therefore lead to counter-intuitive changes at the

ecosystem level as the environment deteriorates. Thus, in contrast to simple single-species

ecosystems, changes in the population size of any individual species are not necessarily a

reliable indicator of loss of resilience in a complex ecosystem.

Loss of ecological resilience may be foreseen by critical slowing down

As a warning indicator of tipping points in an ecosystem, critical slowing down is

manifested in the collective dynamics of the whole ecosystem; in particular, it is

characterized by the dominant eigenvalue of the linearized discrete dynamics around

equilibrium (i.e. the interaction matrix31). The absolute value of the dominant eigenvalue of

the interaction matrix describing the discrete dynamics is expected to approach |λdom| = 1 as

the system approaches a critical transition 23

To observe the coupled dynamics in our population, we plotted the trajectories followed by

the ecosystem on the producer-freeloader phase plane (Fig. 2). Consistent with previous
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experiments36, the trajectories spiraled to an equilibrium at which the two populations

coexist. The observed damped oscillations is a hallmark of the coupled dynamics resulting

from the interactions between producers and freeloaders 41–47. Given our experimental

resolution and the level of noise, we cannot entirely rule out the possible existence of a very

small limit cycle, but our data of population trajectories at equilibrium in a longer

experiment (Supplementary Fig. 2e) as well as the dynamics in simulations (Supplementary

Fig. 3) indicate that our system converged to a stable fixed point. We estimated the

equilibrium point in the producer-freeloader phase plane (Supplementary Fig. 4), and fit the

spirals to a first-order multivariate autoregressive (MAR(1)) model to obtain an estimate for

the interaction matrix, from which the eigenvalues could be calculated (see Methods). As

expected from the spiraling trajectories, the eigenvalues had both a real and an imaginary

component. For the trajectory plotted in Fig. 2, corresponding to a dilution factor of 1333,

we found λ1,2 = |λ|e±iθ, where |λ| = 0.83 ± 0.11 and θ = 39 ° ± 6°. For these spiraling

trajectories, the magnitude of the eigenvalue |λ| specifies how rapidly the trajectories

radially converge to the equilibrium, whereas the angle θ reflects how quickly the

trajectories spiral tangentially around the equilibrium. The theory of critical slowing down

predicts that |λ| should increase, approaching ~1 as the ecosystem approaches the tipping

point of a critical transition. This means that as the environment deteriorates it takes longer

for the two subpopulations to reach equilibrium 23.

To test these theoretical predictions, we subjected our producer-freeloader ecosystems to

eight different dilution factors, ranging from 50 to 1600. Thirty replicate ecosystems were

tracked for each dilution factor. As expected, the absolute magnitude of the eigenvalue

increased substantially as the environmental quality decreased, and approached |λ| = 1 just

before population collapse (Fig. 3). Thus, our direct observation of critical slowing down in

an experimental producer-freeloader ecosystem lends support to the linearization approach

in assessing community stability and species interactions 31, as well as using the dominant

eigenvalue of the interaction matrix as a warning signal in multi-species ecosystems. We are

not aware of any theoretical predictions regarding the behavior of θ (argument of

eigenvalues) as the tipping point is approached, and indeed we did not observe any

noticeable change in θ (Supplementary Fig. 2e).

Indirect early warning indicators at the single-species level

Previous analyses of natural ecosystems had indicated that individual species may exhibit

behaviors consistent with critical slowing down as the ecosystem approaches a bifurcation32.

Mathematical analysis of the dynamics of a general two-species ecosystem reveals that the

variability in the fluctuations of population density of each species is expected to diverge

when |λ| approaches 1 near a tipping point 31 (Supplementary Note 1). Therefore, statistical

indicators based on the size of fluctuations in the population density of individual species

may provide indirect signatures of critical slowing down at the ecosystem level. To test this,

we measured the coefficient of variation (CV) between replicates on the final day of the

experiment for both the producer and freeloader populations (see Methods). We found that

the CV increased sharply with rising dilution factors for both producer and freeloader

populations (Fig. 4). Therefore, variability in the density of either species across replicates

provides an early warning signal of the approaching tipping point in our producer-freeloader
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ecosystem, even when the equilibrium population density increases (which is the case for

our producer population).

Several other indicators of critical slowing down have been proposed theoretically and some

observed experimentally in monocultures 1,2,26–28. They include the deterministic return

time following a pulse perturbation and the lag-1 autocorrelation of the fluctuations of the

population density. In our experiments with a relatively small sample size, both the

deterministic return time and the lag-1 autocorrelation based on single-species time series

failed to produce statistically significant increases with an increasing dilution factor

(Supplementary Figs. 2c,d and 5). In a previous experiment with monocultures of the

producer population 27, we observed a clear increase in the coefficient of variation, lag-1

autocorrelation and return time before population collapse. Our experiments and

mathematical analysis reported here suggest that certain warning indicators based on a

single species may fail in the presence of interactions between species (Supplementary

Notes 1 and 2). This failure of some indicators based on single-species data highlights the

importance of understanding species interactions in the application of early warning

indicators to complex ecosystems; it also supports the notion that stability is a property of

the entire community instead of its constituent species 48. Although properties of the whole

community may not always be inferred from a single species, replicate laboratory

ecosystems can help to elucidate the warning indicators that will be most useful and reliable

in real-world settings.

DISCUSSION

Our study represents an initial characterization of population dynamics near a regime shift in

an ecological network with strong inter-species interactions. Due to the impracticality of

assessing unstable systems, it is difficult to determine the exact nature of the transition. Our

model predicts a Hopf bifurcation (Supplementary Fig. 3), which exhibits critical slowing

down near its tipping point 6. While our system is two-dimensional, it is worth noting that

bifurcations in higher dimensions can be extraordinarily rich and complex 9. Even in low-

dimensional systems, not all bifurcations lead to critical slowing down, and regime shifts

may occur with no warning 49–51. On the other hand, recent theoretical studies have pointed

out that, in some instances, critical slowing down can be detected even in the absence of any

critical transitions 50,52,53. In spite of these potential caveats in using critical slowing down

to forecast ecological regime shifts, our experiments demonstrate that it may be possible to

observe the dominant eigenvalue of the interaction matrix increasing and approaching 1

before the collapse of a producer-freeloader ecosystem, and provide support to the utility of

critical slowing down as a warning signal in multi-species ecosystems 23,48,54. We also

recognize that there are other alternative indices based on the interaction matrix, which may

prove useful in quantifying the transient dynamics 48,55.

In many ecosystems it may not be possible to study the collective dynamics of the whole

system and obtain the eigenvalues, since that would require tracking the dynamics for each

of the interacting species. However, our optimism in understanding complex ecosystems

come from the belief that many ecosystems may consist of loosely coupled units with low

dimensionality 56.
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Recent experiments in a whole-lake ecosystem 32 provided evidence that some warning

indicators can be observed based on time series of individual species within a multi-species

ecosystem. In spite of this favorable empirical example, we caution that analyzing any single

species in an ecosystem does not necessarily provide reliable warning indicators, especially

when the coupling between species leads to oscillatory dynamics, as seen in this study. Our

study underscores the necessity of characterizing species interactions and collective

dynamics when applying early warning signals to complex ecosystems. More quantitative

studies in multi-species systems, especially in spatially extended contexts 24,57–59, will shed

light on how to monitor a complex ecosystem to maximize the utility of early warning

indicators.

METHODS

Strains

The producer strain, JG300A 35, is derived from BY4741 strain of Saccharomyces

cerevisiae (mating type a, EUROSCARF) that has a wild-type SUC2 gene. It constitutively

expresses YFP from the ADH1 promoter (inserted using plasmid pRS401, with a MET17

marker), and also has a mutated HIS3 (his3Δ1). The freeloader strain, JG210C 35 , is a SUC2

deletion strain (EUROSCARF Y02321, SUC2::kanMX4) of Saccharomyces cerevisiae. It

constitutively expresses dTomato from the PGK1 promoter (inserted using plasmid pRS301,

with a HIS3 marker).

Culture growth

The growth medium was composed of synthetic media (YNB and CSM-his; Sunrise

Science, CA), 2% sucrose, 0.001% glucose, and 8 μg/mL histidine 36. Cells were cultured in

200μL of media within the 60 internal wells of a Falcon flat-bottom 96-well plate (BD

Biosciences, CA), with the 36 external wells filled with 200μL growth media36. The plates

were incubated at 30°C, while being shaken at 800 rpm. During incubation, the plates were

covered with Parafilm as well as the plate cover. Cultures were subject to growth-dilution

cycles 36, where cells were allowed to grow for 23.5 hours and then diluted by a

predetermined dilution factor. The cultures were then incubated again, beginning a new

day's cycle.

Measurement of population densities

The optical density of each culture at 620nm was measured with a Thermo Scientific

Multiskan FC microplate spectrophotometer, following the end of each growth period27. To

measure the fractions of each population, at the end of each growth period a portion of cells

from each well (typically 5 μL, unless the low density conditions made it necessary to

transfer larger volumes) was transferred to a new plate containing 200μL sterile Cellgro PBS

buffer (Mediatech, VA). These samples were then analyzed at a BD LSRIIHTS flow

cytometer operating in high throughput (HT) mode, where we determined the ratio between

the producer and freeloader strains, distinguished by their fluorescence emissions 36. Given

the total density and the strain ratio, the densities of the producer and freeloader populations

were readily calculated.
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Calculation of coefficient of variation (CV)

CV was calculated for each subpopulation by dividing the standard deviation of the final-

day population by the final-day sample mean. Populations that were dying or dead were

filtered out, as per Supplementary Note 3. Errors were estimated by bootstrapping, with 100

resamplings.

Calculation of eigenvalues

The eigenvalues of the system are calculated by linearizing the dynamics of the trajectories

around the equilibrium point. Because we observe the producer and freeloader populations

in discrete time intervals (once per day), we can model their motion on the producer-

freeloader phase plane by a difference equation:

(1)

where (xt, yt) is the vector containing the producer (X) and freeloader (Y) populations on day

t. (X*, Y*) is the equilibrium point of the trajectory, and J is the 2×2 Jacobian matrix (or

“interaction matrix”) that describes the dynamics on the producer-freeloader phase plane.

Each day, this Jacobian matrix is applied to the previous day's population vector (Xt, Yt) to

generate the next day's set of producer and freeloader densities (Xt+1, Yt+1). Notice that this

is a linear transformation, which is not an exact reflection of the nonlinear dynamics for the

entire phase plane. However, in the vicinity of a fixed point (as in our experiments), we may

choose to retain only the first order terms of the Taylor expansion of the true transformation.

The ensuing linear system is thus a reasonable approximation to our spiraling trajectories

near the fixed point.

Once we determine our best estimate for the matrix J, we can perform an

eigendecomposition to calculate its eigenvalues (assuming that the Jacobian matrix is not

defective):

(2)

where λ1 and λ2 are the eigenvalues of J, and P is the matrix whose columns are the two

eigenvectors of J. In order to determine J from our experimental data, we took two

approaches in fitting the trajectories as per equation (1), which are further described in

Supplementary Note 4.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Environmental deterioration leads to a surprising increase in the producer population
size preceding collapse of a producer-freeloader ecosystem
(a) Yeast populations were grown in sucrose media and subjected to a range of daily dilution

factors. Experiments were started with identical initial concentrations of producers (which

carry the gene SUC2 required for sucrose break down) and freeloaders (SUC2 knockouts).

(b) The equilibrium population density of the producer (green) and freeloader (red)

populations as a function of dilution factor. Error bars represent standard error of the mean

(n = 20). The producer population size increases as the environment deteriorates,

highlighting that population size is not always a reliable indicator of population health.
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Figure 2. The coupled spiral dynamics of the producer-freeloader ecosystem can be
characterized by complex eigenvalues
(a) The dynamics of the population density can be visualized as trajectories in the producer-

freeloader phase plane. Replicate populations were grown from 30 different starting

densities with a daily dilution of 1333 for 14 days. Selected trajectories are colored

consistently on the three plots, with remaining trajectories shown in light grey. The indicated

blue trajectory has complex eigenvalues λ=0.83 e±i39°. The individual dynamics of the

producers (b) and the freeloaders (c) are plotted as a function of time (both are expressed in

units of 106 cells/mL)
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Figure 3. Consistent with critical slowing down, the magnitude of the complex eigenvalues
increases as ecosystem collapse is approached
Thirty replicate populations with varying initial conditions were grown at each of eight

different daily dilution factors. Their spiraling trajectories were analyzed to estimate their

eigenvalues (generally a pair of complex conjugates, see Supplementary Note 1). As

predicted by theory, the magnitude of the eigenvalues increases and approaches one as the

environment deteriorates. Dilution factors above 1600 were not assessed due to the difficulty

of calculating eigenvalues from very noisy data (See DF 2000 on Fig. 4). Error bars

represent standard error and were obtained by bootstrapping the experimental trajectories as

well as the location of the fixed point with 50 resamplings.
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Figure 4. Coefficient of variation of both sub-populations increases as the environment
deteriorates due to increasing dilution factor
The Coefficient of Variation (CV) measured for both producer (green) and freeloader (red)

populations as a function of dilution factor.

Populations were grown from the same initial density of producers and freeloaders, and the

coefficient of variation across the 20 replicates for each dilution factor was measured on the

final day of the experiment (day 9). Inset figures represent the time series of the producer

density (measured in 106 cells/mL) of each replicate at a low dilution factor (left panel) and

a high dilution factor (right panel). Similar results were found for the freeloader populations.

Error bars are standard errors obtained by bootstrapping with 100 resamplings.
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