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ABSTRACT 

A significant barrier to further use of hydraulic fracturing to recover shale oil and/or gas 

is the treatment and/or disposal of hypersaline produced water. This work is an analysis of 

produced water from Nova Scotia, with the aim of understanding how scale impacts the 

choice of desalination system used in its treatment. Four water samples are presented, and 

for a representative case, the supersaturation of some likely scalants is estimated as a 

function of temperature, recovery ratio, and pH. This supersaturation map is then compared 

to conditions representative of common desalination systems, allowing the identification of 

limitations imposed by the water’s composition. In contrast to many natural waters, it is 

found that sodium chloride is the most likely first solid to form at high recovery ratios, and 

that the top temperature of thermal desalination systems is unlikely to be scale-limited in the 

treatment of these waters. 
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INTRODUCTION 

 The use of hydraulic fracturing as a technique to recover vast amounts of new oil and 

natural gas is growing rapidly in North America and around the world [1,2]. Oil and gas 

obtained by hydraulic fracturing is bound in tight shale formations as little as about 30 meters 

in height located about 1200 to 3600 meters below the surface [3]. In order to recover this 

resource, a vertical well is drilled to the depth of the shale layer. The drill then turns and 

proceeds horizontally, i.e., parallel to the surface. A mixture of water, sand, and chemicals 

[3,4] is then pumped down the well causing small (micro) fissures to form in the shale layer, 

releasing the oil and/or gas contained within the formation. The sand, known as a proppant, 

keeps these fissures propped open, allowing the desired product to continue to escape from 

the shale after much of the fracturing fluid has returned to the surface. 

 Immediately following the fracture, an amount of fluid returns to the surface at relatively 

large flow rates. This is known as flowback, and consists mainly of the fracturing fluid itself. 

It is thus relatively low in total dissolved solids (TDS). The flowback continues for about 6–

21 days [5]. About 30–40% of the initial quantity of fracturing fluid will return to the surface 

as flowback; because of its relatively low salinity, much of this can be reused without 

significant treatment in subsequent fracturing operations [6]. 

 As time proceeds, a far more saline water returns to the surface at a much lower flowrate 

than the flowback. This water is known as produced water, because it is associated with a 

producing oil and/or gas well. The particularly high TDS of these waters—anywhere from 50 

to 300 g/kg [3], or about 1.5 to nearly 9 times that of seawater—makes them unusable in 

subsequent fractures and well above salinities for safe disposal to natural aquifers. 

 Current industrial practice comprises three methods for handling these waters: (1) they 

may be trucked away for treatment; (2) they may be re-injected into the ground into disposal 

wells; or (3) they are treated in situ, using portable or centrally located treatment facilities. 



 4 

All of these options pose challenges. In the case of trucking water away, the cost is generally 

high—typically 4 USD/bbl, or 34 USD/m3 in the Marcellus for the transportation alone [7]—

and most municipal treatment systems are not designed to handle high-TDS waters. The re-

injection of wastewater into disposal wells has been linked with significant local seismicity, 

both in the U.S. states of Ohio [8] and Oklahoma [9]. Increasingly common is the third 

option, on-site desalination. As it both significantly reduces the volume of highly saline 

wastewater and allows a large portion of the wastewater to be reused in later fractures, this 

option is both environmentally and economically attractive. 

 However, because of the highly saline nature of produced water and the desire for high 

recovery ratios (the ratio of fresh water to feed water), treatment using conventional 

desalination systems poses a high risk of crystallization fouling, or scaling [10,11]. Unlike 

seawater and natural surface and ground waters, the scaling envelope for these produced 

waters is relatively unknown, meaning system performance, which is often scale-limited, 

leaves the user potentially under-informed during the technology selection process. 

Complicating the process further, produced water is highly diverse in both constituent ion 

species and TDS, making a generalized quantification of produced water scaling potential a 

gross oversimplification. 

In this paper, an initial attempt to close this gap is made through consideration of the 

scaling potential of particular produced waters. Data obtained from several produced water 

samples from wells located in Nova Scotia, Canada is presented and analyzed in order to 

identify the most likely scale-forming compounds. A list of possible scales is compiled, and 

their solubility is quantified using the saturation index, calculated at thermophysical 

conditions representative of common desalination systems. The Pitzer model [12,13] for 

mixed electrolytes, extended by Harvie and Weare [14] and Harvie et al. [15], which has been 

validated for the computation of highly saline natural waters, is used to calculate activity 
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coefficients. Finally, some brief insights on the effect of scale formation in desalination 

system selection for this produced water sample are presented. 

 

PRODUCED WATER SAMPLE DATA 

 Four water samples of produced water from the Maritimes Basin in Nova Scotia, Canada 

were tested. The tests were performed by Microbac Laboratories, Inc. Each sample was tested 

for 27 possible dissolved ions: aluminum, arsenic, barium, beryllium, bicarbonate, boron, 

bromide, cadmium, calcium, chloride, chromium, cobalt, copper, iron, lead, lithium, 

magnesium, manganese, mercury, molybdenum, nickel, potassium, selenium, silver, sodium, 

strontium, and sulfate. Concentrations are not given where the result is lower than the 

resolution of the test. 

[Table 1 about here] 

The results of the test are shown in Table 1; the total concentration of the samples varies 

greatly, ranging from about 53 g/L to about 97 g/L, or roughly two to three times that of 

seawater. Individual ion counts are also highly diverse: boron is present at about 0.6 g/L in 

one sample but almost completely absent in all of the others. It should be noted that these 

samples do not perfectly (within 5–20%) satisfy electroneutrality, likely due to inaccuracies 

in chloride tests. Previous studies have also noted this discrepancy, and they adjusted the 

chloride count as appropriate [5]. 

Regrettably, complete pH and ion speciation data for the samples are unavailable. As a 

result, some assumptions are required in order to estimate the values of ionic strength shown 

in Table 1. Elsewhere in the literature [5], neutral to slightly acidic values of pH have been 

observed in produced water samples. The values of ionic strength shown in Table 1 were 

calculated under the following assumptions: all boron is present as B(OH)3 (typical of natural 
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waters at neutral pH [16]); all carbon is bicarbonate, as this was the ion tested; copper, 

manganese, and magnesium are all divalent free ions. 

 

METHOD OF SCALING ANALYSIS 

 In order for scale to form, the concentration of a dissolved compound must exceed its 

solubility limit, or become supersaturated. Supersaturation is quantified in a variety of ways 

throughout the literature, often as a function of the supersaturated concentration and the 

solubility, expressed as an algebraic difference, a ratio, or a percent [17]: 

 ∆𝑐 = 𝑐 − 𝑐!"#          𝑆 =
!
!!"#

        𝜎 = 𝑆 − 1  (1) 

where c is the supersaturated concentration, and csat is the solubility. However, the solubility 

may vary significantly with temperature, pressure, pH, and the concentration and species of 

other dissolved compounds. Thermodynamically, crystallization is favored when a 

compound's activity product exceeds its solubility product. Thus, supersaturation is best 

quantified, particularly in mixed electrolyte systems, by the saturation index: 

 
SI = log

𝑄
𝐾!"

 (2) 

where Q is the ionic activity product, and Ksp is the solubility product, both defined in the 

usual way [18,19].  

 Because the calculation of the saturation index involves the computation of an individual 

ion’s activity, it is, in general, a non-trivial task. This is particularly so for mixtures of high 

ionic strength, where Debye-Hückel theory [20] is not applicable. The general procedure for 

calculating SI from water sample data is iterative, and is outlined as follows. First, individual 

ions are compared to a database containing possible scales (solid, soluble compounds 

composed of those ions) and available thermodynamic data. Values of the solubility product 

for each scale are then computed and corrected to the desired temperature. Activity 
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coefficients are calculated using Pitzer’s model, and the speciation of ions at the given 

temperature and pH is computed iteratively. Finally, the saturation index is calculated 

according to Eq. (2). The details of each of these steps follow. All equations are implemented 

in MATLAB. 

Calculation of the Solubility Product 

The solubility product is defined as  

 𝐾!" = exp −∆!𝐺/𝑅𝑇 = 𝑎!
!!𝑎!

!!𝑎!
!! (3) 

where ΔrG is the standard Gibbs free energy change of reaction, a is activity, and ν is the 

stoichiometric coefficient. The subscripts M, X, and W indicate cation, anion, and water (for 

a hydrated compound), respectively. Values of the solubility product are corrected from their 

reference temperature to the desired temperature using van ’t Hoff’s law, integrated assuming 

a constant ΔrCP, when the data are available (for a derivation, see, e.g., [18]): 

 
ln

𝐾
𝐾° =

∆!𝐻°
𝑅

1
𝑇°−

1
𝑇 +

∆!𝐶!°

𝑅 ln
𝑇
𝑇° − 1+

𝑇°
𝑇  (4) 

Values of ΔrG and Ksp are taken from [21,22]. 

Calculation of Activity Coefficients 

The calculation of a single ion’s activity coefficient is performed using the semi-empirical 

Pitzer model [12,13], extended by Harvie and Weare [14] and Harvie et al. [15]. An excellent 

review of the Pitzer model and other models for calculating activity coefficients can be found 

in Zemaitis et al. [18]. It is derived from a virial expansion of the excess Gibbs free energy, 

and captures the effects of cation-cation, cation-anion, anion-anion, cation-cation-anion, and 

anion-anion-cation interaction. The model has been validated for solutions of high ionic 

strength (see, e.g., Zemaitis et al. [18] and Pabalan and Pitzer [23]). It should be noted that 

the activity coefficient of a single ion has no true physical meaning, as the condition of 

electroneutrality requires the presence of an ion of opposite charge to be present in a real-

world system. The model summary given here roughly follows Harvie et al. [15]. For an 
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electrolyte MX that dissociates into cation M and anion X, the molal ionic activity 

coefficients are given by: 

 ln 𝛾! = 𝑧!! 𝐹 + 𝑚!(2𝐵!" + 𝑍𝐶!")! + 𝑚! 2Φ!" + 𝑚!Ψ!"#!!   

       +    𝑚!𝑚!!Ψ!!!!!!!! + 𝑧! 𝑚!𝑚!𝐶!"!! + 𝑚!(2𝜆!"! )  (5) 

for the cation, and an analogous expression for the anion: 

 ln 𝛾! = 𝑧!!𝐹  + 𝑚! 2𝐵!" + 𝑍𝐶!"! + 𝑚! 2Φ!" + 𝑚!Ψ!"#!!   

       +    𝑚!𝑚!!Ψ!!!!!!!! + 𝑧! 𝑚!𝑚!𝐶!"!! + 𝑚!(2𝜆!")!   (6) 

The osmotic coefficient is given by: 

 (𝜙 − 1) 𝑚!! = 2[−𝐴!𝐼!/!/(1+   1.2 𝐼)+ 𝑚!𝑚!(𝐵!"
! + 𝑍𝐶!")!!   

+    𝑚!𝑚!! 𝛷!!!
! + 𝑚!𝛹!!!!!!!!!   

+    𝑚!𝑚!!(𝛷!!!
! + 𝑚!𝛹!!!!! )!!!!   

+ 𝑚!𝑚!𝜆!"!   ! + 𝑚!𝑚!𝜆!"!! ] (7) 

where z is the charge number, m is molality, λ is a parameter representing interactions 

between neutral and charged species, Ψ represents ternary interactions, 𝑍 = 𝑚!|𝑧!|! , and 

the functions F, B, C, and Φ are defined below. The lowercase subscripts c, a, and n indicate 

summation over all cations, anions, and neutral species (e.g., aqueous carbon dioxide), 

respectively. The notation a<a’ and c<c’ indicate summation over all distinguishable pairs of 

anions and cations, respectively. The function F is 

 𝐹 = −𝐴! !
!!!.! !

+ !
!.!
ln 1+ 1.2 𝐼 + 𝑚!𝑚!𝐵!"!!!   

        +    𝑚!𝑚!!Φ!!!
!

!!!! +    𝑚!𝑚!!Φ!!!
!

!!!!   

 

(8) 

where I is ionic strength, and 𝐴! is related to the Debye-Hückel parameter:  
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𝐴! =

1
3

2𝜋𝑁!𝜌!
1000

𝑒!

𝜀𝑘!𝑇

! !

 (9) 

where NA is Avogadro’s number, ρs is the density of the solvent (water), e is the elementary 

charge, ε is the relative permittivity of the solvent, and kB is Boltzmann’s constant. The 

functions B, B’, Bϕ, and C represent interactions between unlike-charged pairs: 

 𝐵!" = 𝛽!"
! + 𝛽!"

!   𝑔 𝛼!" 𝐼 + 𝛽!"
!   𝑔 12 𝐼  (10) 

 𝐵!"! = 𝛽!"
! 𝑔! 𝛼!" 𝐼 𝐼 + 𝛽!"

! 𝑔! 12 𝐼 𝐼 (11) 

 𝐵!"
! = 𝛽!!

(!) + 𝛽!"
! 𝑒!!!" ! + 𝛽!"

! 𝑒!!" ! (12) 

 
𝐶!" =

𝐶!"
!

2   𝑧!𝑧! ! ! (13) 

where 𝛼!" = 2.0 for n-1 electrolytes, 𝛼!" = 1.4 for 2-2 or higher electrolytes, and 𝛽!"
! , 

𝛽!"
! , 𝛽!"

! , and 𝐶!"
!  are tabulated for a given ion pair. The parameter 𝛽!"

!  is usually non-zero 

only for 2-2 electrolytes. The functions g and g’ are defined as 

 𝑔 𝑥 = 2(1− 1+ 𝑥 𝑒!!)/𝑥! (14) 

 
𝑔! 𝑥 = −

2
𝑥! 1− 𝑒!! 1+ 𝑥 +

𝑥!

2  (15) 

Interactions between like-charged pairs are represented by the functions Φ, Φ’, and Φϕ: 

 Φ!" = 𝜃!"+  !𝜃!"(𝐼) (16) 

 Φ!"
! =  !𝜃′!"(𝐼) (17) 

 Φ!"
! = 𝜃!"+  !𝜃!" 𝐼 + 𝐼  !𝜃!!! 𝐼  (18) 

Here, the only adjustable parameter for a given ion pair is θij. The terms Eθij and Eθ’ij 

represent excess free energy arising from electrostatic interactions between asymmetric ions 

(i.e., ions with charge of like sign and unlike magnitude), and are functions of ionic strength 

only.  
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In principle, each of the Pitzer parameters 𝛽!"
! , 𝛽!"

! , 𝛽!"
! , 𝐶!"

! , λ, θij, and Ψ are functions 

of temperature; however, that dependence is neglected in this analysis owing to incomplete 

data. A more recent, large collection of these parameters are available [24] as a function of 

temperature, but not all parameters are available over the temperature domain considered 

here. In addition, some derivatives of the Pitzer parameters with temperature at 25°C are 

available, e.g., from Pitzer [13]. However, these derivatives are often small [25], and it has 

been reported that much of the variation in activity coefficient with temperature is often 

confined to 𝐴!, both explicitly and implicitly through the strong temperature dependence of 

the relative permittivity [26]. In order to be internally consistent, the Pitzer parameters are 

taken as constants evaluated at 25°C, where the largest collection of data are available. As a 

result, the temperature dependence of the activity coefficients is confined to the Debye-

Hückel parameter. Some estimates of the error induced by this approximation are given in the 

validation section below. 

Particular values of the Pitzer parameters used in this work were taken from Harvie et al. 

[15] and Zemaitis et al. [18]. The range of molality (binary parameters) and ionic strength 

(ternary parameters) for which each parameter has been validated is given in Zemaitis et al. 

[18]. The extrapolation beyond these limitations, as can be the case at very high recovery 

ratios, may introduce some error. (See, e.g., Mistry et al. [27] for some discussion around the 

use of ionic strength to characterize mixed electrolyte behavior.) 

Speciation Calculations 

 In order to account for ion pairs, the speciation of ion systems must be taken into account. 

In general, we wish to solve for the molalities of all forms of a particular species Y, such that 

equilibrium constants are satisfied, and mass and charge are conserved: 

 
𝐾 =

𝑎! !!

𝑎! !!
 (19) 
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 Y! = 𝑚!,!!   (20) 

 𝑚!,!𝑧!,! = 0!   (21) 

where a is chemical activity, the subscript T indicates the total molality of species Y, and the 

subscripts P and R indicate multiplication over all products and reactants, respectively. Given 

a value of pH, these equations can be solved for the molalities mY,i. 

Dissociation constants for particular ion pairs, such as MgOH+ were selected according to 

the rules given by Harvie et al. [15], who found that experimental solubility data were 

accurately represented with and without the explicit inclusion of an ion pair only when the 

dissociation constant is above a threshold value. Below this threshold value, the tendency of 

the ions to associate is significant, and the ion pair must be explicitly included (i.e., its 

concentration and activity must be calculated in speciation computations). 

 

VALIDATION 

As mentioned above, the Pitzer model has been previously validated in the prediction of 

activity coefficients and mineral solubilities in mixed electrolytes. Nevertheless, a short 

validation of the present model follows in order to: (1) give a measure of confidence in the 

numerical implementation; and (2) estimate some of the error associated with the 

implementation of approximate temperature dependence, as discussed above. To do so, SI 

will be shown as a function of temperature, comparing the model described above to models 

with full temperature dependence in two example cases where full data on temperature 

dependence is available. 

[Figure 1 about here.] 

Figure 1 shows the saturation index as a function of temperature for NaCl at several 

concentrations. The open markers/dotted lines indicate the approximate temperature 

dependence, as implemented here, and the filled markers/solid lines indicate full temperature 
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dependence. To compute SI with full temperature dependence, both activity coefficients and 

solubility products as a complete function of temperature are required. The activity 

coefficients as a function of temperature are taken from tabulated data in Pitzer et al. [28]. 

Solubility products are calculated according to Eq. (3), where the Gibbs free energy as a 

function of temperature is computed using enthalpy and specific heat data from Pabalan and 

Pitzer [23]. As seen in Fig. 1, the difference in SI between the two models across the 

temperature domain here is less than 0.1. 

 Figure 2 shows the saturation index versus temperature for several MgSO4 hydrates 

evaluated at experimental solubilities from Linke and Seidell [29]. A perfect prediction of the 

solubility would result in a calculated SI value of zero. In order to calculate the SI with full 

temperature dependence, again, both activity coefficients and solubility products are required 

as a function of temperature. The activity coefficients are computed using Eqs. (5) and (6) 

with temperature-dependent Pitzer parameters from Pabalan and Pitzer [23]. Solubility 

products are calculated according to Eq. (3), with Gibbs free energy as a function of 

temperature calculated from enthalpy and specific heat data given by Pabalan and Pitzer [23] 

and Archer and Rard [30]. Both models predict values of SI less than 0.05 for temperatures 

up to about 50°C, after which the present method is less satisfactory. Nevertheless, the 

difference in SI predicted by the full and approximate methods never exceeds about 0.3. 

[Figure 2 about here.] 

 

RESULTS AND DISCUSSION 

Produced Water Test Case Sample 

In the analysis that follows, a fictitious test-case sample was created that represents the 

data shown in Table 1. The composition of the fictitious, representative sample is given in 

Table 2. Note that, in contrast to the value shown in Table 1, the concentration of carbonates 
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is given as total carbonate, or total carbon (the sum of aqueous CO2, HCO3
-, H2CO3, and 

CO3
2-), and not bicarbonate. Given in this manner, the value is pH independent. In order to 

satisfy electroneutrality, individual ion concentrations may deviate slightly from exact 

averages over the four data samples. Concentrations here are given in mg per kg solution; we 

have used a representative density of 1.04 kg/L in the conversion from mg/L. For reference, a 

sodium chloride solution with a TDS of 60 ppt has a density of 1.040 kg/L at 25°C; seawater 

has a density of 1.043 kg/L at the same TDS and temperature. Of course, because the sample 

is fictitious and only intended to represent real water samples, an exact value is not needed 

for this conversion. Note that borates are not considered in this test-case water, as they were 

only present in significant amounts in one of the four measured samples shown in Table 1. 

The ionic strength of the sample was calculated under the same speciation assumptions as 

outlined above for the values in Table 1. 

[Table 2 about here.] 

Identification of Possible Scales 

In general, the identification of possible scales from a water sample of given composition 

may seem a fairly simple matter of combinatorics, where possible scales comprise all 

neutrally-charged combinations of cations and anions. However, care must be taken to 

identify which combinations do and do not exist; to identify possible hydrates and 

polymorphs, whose thermodynamic behavior may differ significantly; and to identify 

potential non-binary scales. Data on certain compounds may or may not be readily available.  

To the authors’ estimation, then, Fig. 3 shows a list of twenty reasonably common 

possible binary scales, ranked in order of smallest to greatest solubility product at 25°C. 

These solids were selected from compounds listed in [21,22] that can dissolve into any two 

ions listed in Table 2. Where present and data available, only the least soluble (in terms of 

smallest Ksp value) hydrate or polymorph is shown in the figure. Values of the solubility 
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product were calculated according to Eq. (3), or taken from tabulated data when Gibbs free 

energy data were not available [21,22]. 

[Figure 3 about here.] 

Parametric Analysis 

 What follows are the results of an attempt to describe the scaling potential of the test-case 

produced water through the calculation of the saturation index at conditions representative of 

typical desalination systems. In particular, the effects of three variables are presented: 

recovery ratio, up to 90%; pH, from 3–8, and temperature, from 25°C up to 80°C, which is 

near or above the top temperature in many thermal desalination systems. Some multistage 

flash (MSF) systems for seawater desalination operate at higher top temperature and higher 

pH; however, this pH range is more typical of produced water, and temperatures above 80°C 

may introduce increasing amounts of error in the present model, as discussed in the 

Validation section above. 

Effect of recovery ratio.  Recovery ratio is defined as the quotient of the product (fresh) 

water flow rate and the feed (incoming produced water) flow rate. Owing to a variety of 

concerns ranging from high salinity brine disposal to insufficient membrane strength, in 

typical seawater desalination systems, the recovery ratio rarely exceeds about 50%. However, 

because the cost of produced water disposal is a strong function of wastewater volume, high 

recovery ratios are desirable. 

Figure 4 shows the saturation index of the carbonate scales with SI > -5 at pH = 6 and 

25°C as a function of recovery ratio up to 90%; Figure 5 shows the chloride salts at the same 

conditions. With the exception of Mg(OH)2, most scales with OH anions remain below a 

saturation index of 5 over the entire range of recovery ratio, and are thus not shown. 

(Mg(OH)2 only barely exceeds SI = −5 at RR = 90%, pH = 6, and T = 25°C.) Despite 

carbonate salts being, in general, sparingly soluble—four of the five least soluble scales in 
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this system are carbonates (see Fig. 3)—calcium carbonate becomes supersaturated only once 

a recovery ratio of about 85% is reached at 25°C. Most other carbonate salts are able to 

remain in solution up to recovery ratios of 90% at this temperature and pH, though SrCO3 is 

close to its saturation limit at that condition. Moreover, in contrast to typical seawater 

systems, an examination of Figure 5 shows that NaCl is the solid that places the limit on 

recovery ratio in this system at just over 80%. 

[Figure 4 about here.] 

[Figure 5 about here.] 

Effect of pH.  The effect of pH on the saturation index is an implicit result from ion 

speciation calculations. Scale-forming cations or anions that form aqueous complexes with 

H+ or OH- ions reduce the concentration of the scalant, thus lowering its ionic activity 

product and pushing the equilibrium away from saturation. 

Figure 6 shows the saturation index of carbonate salts with SI > −5 as a function of pH, 

showing the expected efficacy of pH adjustment as a measure of scale control. Although the 

pH data on the samples presented here is incomplete, other samples in literature have values 

of pH ranging from about 5.5 to about 7. Thus, even a small adjustment in pH, e.g., from 6 to 

5, will reduce the saturation index of all carbonate salts to −3 or below, allowing very high 

recovery ratios to be reached, effectively shifting the curve shown in Figure 4 to the right. 

The inconsistency among the trends of SI between the various carbonate salts in Figure 6 

is readily explained with a comparison to Figure 7, which shows the concentration of pH-

dependent ions. As pH reaches about 6, most of the carbonate ions are present as bicarbonate, 

resulting in a flat curve for the NaHCO3 saturation index in Figure 6. The concentration of 

free carbonate increases over the entire range of pH, ultimately dominating other forms of 

carbonate outside the range of interest. 

[Figure 6 about here.] 
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[Figure 7 about here.] 

A scale of particular concern in seawater desalination is Mg(OH)2 (see, e.g., [31]), which 

can form at high pH. As shown in Figure 8, Mg(OH)2 appears to remain subsaturated over the 

more acidic range of pH considered here. Moreover, the mass fraction of Mg2+ ions in 

seawater is an order of magnitude higher than the produced water test case shown in Table 2. 

This combination of slightly more acidic pH and lower Mg2+ concentration is likely to result 

in a lower risk for Mg(OH)2 scaling relative to seawater systems. Nevertheless, if increases in 

pH occur outside the domain explored here (which can occur locally in multi-effect distillers 

[32]), particularly when coupled with high recovery ratios, Mg(OH)2 scale may still form. 

[Figure 8 about here.] 

 The reader is reminded that in varying pH in this analysis, the mass of total carbonate has 

been conserved. The release of CO2, for example, which can occur in thermal desalination 

systems (see, e.g., Al-Rawajfeh et al. [33]), can increase the pH and would change the total 

carbonate concentration, resulting in a shift of these equilibrium curves. This analysis only 

considers equilibria where mass is conserved and the pressure is atmospheric. 

Effect of temperature.  The effect of temperature on solubility is well known to be 

problematic in water treatment, particularly in the case of inverse solubility compounds, or 

compounds that display a decreasing solubility with increasing temperature. Here, however, 

many of the compounds associated with inverse solubility—particularly those with a sulfate 

anion—are absent. 

The result is shown in Figure 9, a plot of saturation index versus temperature for 

carbonate salts with SI > −5 at pH = 6 and RR = 0. Both CaCO3 and MgHCO3 display 

measures of inverse solubility (i.e., decreasing solubility with increasing temperature, or 

increasing SI with increasing temperature) over the range of temperatures presented, but both 

remain well below saturation (SI = 0) at RR = 0. At a recovery ratios of about 80%, the SI of 
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CaCO3 increases by about 1 or so  (see Fig 4.), indicating that the combination of high 

temperature and recovery ratio may cause saturation to be reached. However, with a slight 

decrease in pH, the use of an anti-scalant [34], or nanofiltration pretreatment [35], for 

example, the risk of CaCO3 scaling can be reduced. 

Although aragonite is generally the polymorph of calcium carbonate that scales in 

seawater thermal desalination systems, it is only kinetically preferred (see, e.g., Berner [36]), 

and is metastable under the conditions presented here. As a result, calcite is has an SI closer 

to zero in Fig. 9. This trend is consistent with the results of Plummer and Busenburg [37], 

who treat the temperature dependence of the solubility product in more detail. The solubility 

product for aragonite was calculated using data from Anderson and Crerar [38]. 

It should be emphasized again that, owing to lack of data, the temperature dependence of 

both activity coefficients and equilibrium constants are not complete in this model. 

Nevertheless it appears that, in contrast to many other natural waters where sulfate scale 

becomes particularly problematic in thermal systems, temperature is unlikely to be as 

significant a limiting factor in these particular produced waters. 

[Figure 9 about here.] 

Consequences for Desalination System Selection 

 In the treatment of highly saline produced water, where high disposal costs and high 

water consumption costs drive the desire for high recovery ratio treatment systems, scaling 

can present a huge challenge, particularly where scale-limited performance is an unknown. In 

the test case presented here, one significant traditional design limit may not apply—scale-

limited top temperature. With pH adjustment for carbonate scale control, sodium chloride 

becomes the first likely solid to form at high recovery ratios. As a result of the lack of sulfate 

ions, many of the inverse solubility salts that limit the top temperature of thermal systems are 
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not present here, allowing desalination at much higher temperatures1. Furthermore, owing to 

the normal solubility behavior of the limiting scale, sodium chloride, the NaCl curve shown 

in Figure 5 is shifted right at higher temperatures. Combined with the availability of a high 

temperature thermal source (the combustion of gas from the producing well), robust, high-

temperature thermal desalination may prove to be an attractive option in the treatment of 

these produced waters. 

 Finally, as a result of increasing interest in small-scale desalination in the produced water 

segment, there have been attempts to adapt existing systems originally envisaged for low-

cost, low-maintenance, community-level drinking water treatment to this purpose. Two 

promising technologies in this area are membrane distillation, or MD [41–46], and 

humidification-dehumidification, or HDH [47–52]. HDH, which uses air as a carrier gas to 

evaporate pure water from a saline stream, may become a particularly attractive option. 

Although the use of a carrier gas limits the recovery attainable in a single pass, a system that 

recirculates brine several times through the system can achieve very high recovery ratios 

when not scale-limited. In treating produced water like the sample presented here, where 

sodium chloride is the primary solid of concern, the potential for high recovery combined 

with portability, scalability, and robust components may make a system like HDH highly 

effective in produced water treatment. 

 

CONCLUSIONS 

 In this paper, the potential for scaling in the treatment of produced water from the 

Maritimes Basin in Nova Scotia, Canada is estimated. The following results were obtained: 

                                                             
1 Active research into mitigation technologies like surface modification (see, e.g., [39,40]) 
may, in the future, remove the top-temperature limit from waters that do include significant 
concentrations of sulfates by slowing or inhibiting the nucleation of scale on process surfaces. 
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1. Data on the composition of produced water from four samples was presented, resulting in 

the determination of a 60 ppt test case to be used in subsequent analyses of Nova Scotian 

produced water. 

2. The limiting scale in the treatment of these waters was found to be sodium chloride, with 

crystallization possible at recovery ratios around 80% or higher. 

3. With minor pH adjustment, alkaline scales such as Mg(OH)2, CaCO3, and SrCO3 were 

found unlikely to limit desalination system recovery ratios. 

4. Traditional limits on thermal desalination system top temperature were shown to be 

inapplicable in the treatment of these waters. 
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NOMENCLATURE 

Roman Symbols 

Aϕ Debye-Hückel parameter, kg1/2/mol1/2
 

a Chemical activity, - 

B Pitzer binary interaction parameter (also Bϕ), kg/mol 

B’ Pitzer binary interaction parameter, kg2/mol2
 

C Pitzer third virial coefficient (also Cϕ), kg2/mol2 

CP Specific heat capacity, kJ/mol-K 
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c Concentration, mol/L 

e Elementary charge, C 

F Pitzer equation, defined by Eq. (8), - 

G Gibbs free energy, kJ/mol 

g, g’ Pitzer function, defined by Eqs. (14) and (15) 

H Enthalpy, kJ/mol 

I Ionic strength, !
!

𝑚!𝑧!!! , mol/kg 

K Equilibrium constant, - 

Ksp Solubility product, - 

kB Boltzmann’s constant, kJ/K 

m Molality, mol/kg 

NA Avogadro’s number, mol-1 

Q Ionic activity product, - 

R Universal gas constant, kJ/mol-K 

S Supersaturation ratio, - 

SI Saturation index, - 

T Temperature, °C or K 

TDS Total dissolved solids, mg/L or mg/kg 

Z Pitzer equation, 𝑍 = 𝑚!|𝑧!|! , mol/kg 

z Charge number, - 

 

Greek Symbols 

α Pitzer parameter, kg1/2/mol1/2 

β Pitzer parameter (unlike-charged interactions), kg/mol 

γ Molal activity coefficient, - 



 21 

Δr Change of reaction 

ε Relative permittivity, - 

θ Pitzer parameter (like-charged interactions), kg/mol 

Eθ Pitzer parameter (like-charged interactions), kg/mol 

Eθ’ Pitzer parameter (like-charged interactions), kg2/mol2 

λ Pitzer parameter for neutral species, kg/mol 

ν Stoichiometric coefficient, - 

ρ Density, kg/L 

σ Supersaturation, 𝑆 − 1, - 

ϕ Osmotic coefficient, - 

Φ Pitzer parameter (like-charged interactions; also Φϕ), kg/mol 

Φ’ Pitzer parameter (like-charged interactions), kg2/mol2 

Ψ Pitzer parameter (ternary interactions), kg2/mol2 

 

Subscripts 

M, c Cation 

n Neutral species 

P Products 

R Reactants 

s Solvent (water) 

sat Saturation 

X, a Anion 

W Water 

 

Superscripts 
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° Reference state 
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Table 1: Constituent ion data from the four produced water samples 

 

 

 

 

 

 

 

 

 

 

Ion Concentration (mg/L) 
No. 1 No. 2 No. 3 No. 4 

Aluminum   0.26  
Barium   0.85 6 
Bicarbonate 68 124 58  
Boron 580  0.59  
Calcium  920 670 773 
Chloride 37900 63700 38300 33000 
Copper   0.072  
Magnesium 272 518 316 309 
Manganese   0.52  
Potassium  200 83 37 
Sodium 19000 32000 22000 19200 
Strontium 20 8 7 8.7 
TDS (mg/L) 57840 97470 62159 53334 
I (mol/L) 0.98 1.69 1.08 0.95 
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Table 2. Composition of representative, test-case produced water from Nova Scotia 

Ion Mass Fraction 
(mg/kg-soln) 

Millimolal 
(mmol/kg-solv) 

Barium 1.6 0.0128 
Calcium 568 15.1 
Carbonate 83 1.41 
Chloride 36221 1090 
Magnesium 340 14.9 
Potassium 77 2.10 
Sodium 22164 1030 
Strontium 11 0.128 
Total 59465.6 2154 
Ionic Strength - 1093 
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Figure 1. Saturation index versus temperature of NaCl at the indicated molalities. Solid lines 

correspond to full temperature dependence; dotted lines correspond to the approximate 

method in the present work. 
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Figure 2. Values of saturation index versus temperature evaluated at experimental solubilities 
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Figure 3. Possible scales from test-case Nova Scotia produced water 
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Figure 4: Saturation index vs. recovery ratio for carbonate salts with SI > -5 at pH = 6 and T 

= 25°C 
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Figure 5: Saturation index vs. recovery ratio for chloride salts with SI > -5 at pH = 6 and T = 

25°C 
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Figure 6: Saturation index vs. pH for carbonate salts with SI > -5 at RR = 0 and T = 25°C 
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Figure 7: Concentration of pH-dependent ions in the test-case water sample. 
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Figure 8: Saturation index vs. pH for several solid compounds containing OH- anions. 
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Figure 9: The variation of saturation index for carbonate scales with temperature at pH = 6, 

and RR = 0. 

  

-5 

-4 

-3 

-2 

-1 

0 

25 35 45 55 65 75 

S
at

ur
at

io
n 

In
de

x 
 

 
 
 
 

Temperature (°C) 

CaCO3 (calcite) 

SrCO3 

NaHCO3 

MgHCO3 

SI = 0 

CaCO3 (aragonite) 



 41 

Gregory P. Thiel is a Ph.D. candidate in the Department of Mechanical 
Engineering at MIT. His research foci include hypersaline wastewater 
treatment, entropy generation minimization, and desalination system design. 
He is a recipient of the Martin Family Fellowship for Sustainability and an 
Eni-MIT Energy Initiative Fellowship. Greg holds an S.M. in mechanical 
engineering from MIT and a B.S.E. in mechanical engineering from Case 
Western Reserve University.  

 
 

Dr. Syed M. Zubair is a Distinguished Professor in the Mechanical 
Engineering Department at King Fahd University of Petroleum & Minerals 
(KFUPM). He earned his Ph.D. degree from Georgia Institute of 
Technology, Atlanta, Georgia, U.S.A., in 1985. He is active in both teaching 
and research in the area of thermal sciences. During the past twenty-seven 
years, he has taught several courses related to heat transfer and 
thermodynamics at both the graduate and undergraduate levels. He has 

participated in several externally and internally funded research projects here at KFUPM, and 
has published over 150 research papers in internationally referred journals. Due to his various 
activities in teaching and research, he was awarded Distinguished Researcher award by the 
university in academic years 1993-1994, 1997-1998, and 2005-2006 as well as Distinguished 
Teacher award in academic years 1992-1993 and 2002-2003.    
 
 

John H. Lienhard V is the Samuel C. Collins Professor of Mechanical 
Engineering at MIT. During more than 25 years on the MIT faculty, 
Lienhard’s research and educational efforts have focused on heat 
transfer, desalination, thermodynamics, fluid mechanics, and 
instrumentation. He has also filled a number of administrative roles at 
MIT. Lienhard received his bachelors and masters degrees in thermal 

engineering at UCLA from the Chemical, Nuclear, and Thermal Engineering Department, 
and his PhD from the Applied Mechanics and Engineering Science Department at UC San 
Diego. He has been the Director of the Rohsenow Kendall Heat Transfer Laboratory since 
1997, and he is the Director of the Center for Clean Water and Clean Energy at MIT and 
KFUPM. 


