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Abstract 30 

The mobile genetic element ICEBs1 is an integrative and conjugative element found in 31 

Bacillus subtilis. One of the ICEBs1 genes, cwlT, encodes a cell wall hydrolase with two 32 

catalytic domains, a muramidase and a peptidase. We found that cwlT is required for ICEBs1 33 

conjugation. We examined the role of each of the two catalytic domains, and found that the 34 

muramidase is essential, whereas the peptidase is partially dispensable for transfer of ICEBs1. 35 

We also found that the putative signal peptide in CwlT is required for CwlT to function in 36 

conjugation, consistent with the notion that CwlT is normally secreted from the cytoplasm. We 37 

found that alteration of the putative lipid attachment site on CwlT had no effect on its role in 38 

conjugation, indicating that if CwlT is a lipoprotein, the lipid attachment is not required for 39 

conjugation. Finally, we found conditions supporting efficient transfer of ICEBs1 into and out of 40 

B. anthracis and that cwlT was needed for ICEBs1 to function in B. anthracis.  The mature cell 41 

wall of B. anthracis is resistant to digestion by CwlT, indicating that CwlT might act during cell 42 

wall synthesis, before modifications of the peptidoglycan are complete.   43 

 44 

45 
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Introduction 46 

Integrative and conjugative elements (ICEs) are mobile genetic elements that are found 47 

stably integrated into a bacterial chromosome. Under certain conditions, an ICE can excise from 48 

the chromosome, circularize, and transfer to a recipient cell via the ICE-encoded conjugation 49 

machinery (reviewed in 1, 2). ICEs are found in a wide variety of bacterial species, both Gram 50 

positive and Gram negative (3), and they often bestow physiologically and clinically relevant 51 

traits, including nitrogen fixation, biofilm formation, virulence, and antibiotic resistance.   52 

ICEBs1 is a mobile genetic element found in many isolates of Bacillus subtilis (4-6). It is 53 

approximately 21 kb in length with 24 open reading frames (Fig. 1A). ICEBs1 is found 54 

integrated in trnS-leu2, the gene for a leucine-tRNA, and it remains stably integrated as long as 55 

its major operon is repressed. Derepression of ICEBs1 gene expression and subsequent excision 56 

occur in response to DNA damage, or when the cell-cell signaling regulator RapI is produced 57 

and becomes active, usually when cells are crowded by potential recipients that do not have 58 

ICEBs1 (4, 7, 8). 59 

The ICEBs1 gene cwlT (cell wall lytic; previously yddH) encodes a  bifunctional cell wall 60 

hydrolase (Fig. 2) capable of degrading peptidoglycan (9). Peptidoglycan is the major component 61 

of the bacterial cell wall and is composed of long carbohydrate chains of alternating amino 62 

sugars, N-acetylglucosamine and N-acetylmuramic acid, crosslinked by short peptide chains (10-63 

12). In B. subtilis, the cell wall is approximately 40-50 nm thick (13, 14), and the genome 64 

encodes a complement of >30 hydrolases that digest the various covalent bonds in the cell wall 65 

peptidoglycan to facilitate processes such as growth, separation of cells after division, and 66 

mother cell lysis during sporulation (12, 13).   67 
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Peptidoglycan hydrolases are widespread in mobile genetic elements and are often found 68 

associated with Type IV secretion systems (T4SS) involved in conjugation (15-19). One of the 69 

best characterized of the Type IV secretion systems is the VirB/D4 system from Agrobacterium 70 

tumefaciens. This system is composed of a large multiprotein channel that spans the cell 71 

envelope and mediates the secretion of conjugative DNA and associated proteins. It is generally 72 

assumed that the hydrolases cause localized degradation of the cell wall to allow the assembly of 73 

the large secretion apparatus. However, relatively little is known about their function in 74 

conjugation. Hydrolases in Gram negative organisms tend to have one hydrolytic domain and are 75 

usually not essential for conjugation (20-22). Hydrolases from conjugative systems in Gram 76 

positive organisms typically have two or more catalytic domains, and conjugation is significantly 77 

reduced or eliminated in mutants (23-25).  78 

Cell wall hydrolases from B. subtilis phage and conjugative elements typically have multiple 79 

domains (9, 26).  CwlT has two domains for peptidoglycan hydrolysis and each has been 80 

characterized biochemically (9). The N-terminal domain is an N-acetylmuramidase 81 

(muramidase) that cleaves the linkage between N-acetylmuramic acid and N-acetylglucosamine. 82 

The C-terminal endopeptidase (peptidase) domain cleaves the bond between D-γ-glutamate and 83 

meso-diaminopimelic acid (9). 84 

We found that cwlT is required for conjugation of ICEBs1. Using mutants in each of the two 85 

domains (Fig. 2), we found that the muramidase function is essential, and that the peptidase 86 

function is important but partially dispensable, for ICEBs1 conjugation. We found that the signal 87 

sequence involved in secretion of CwlT is critical for its function in conjugation. It was 88 

previously predicted that CwlT might be a lipoprotein (9, 27).  We found that alteration of the 89 

putative lipid anchor site in CwlT had no affect on conjugation, indicting that if CwlT is a 90 
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lipoprotein, lipid attachment is likely not required for CwlT function. We also analyzed whether 91 

CwlT functions were needed for ICEBs1 to function in B. anthracis, whose cell wall is modified 92 

and resistant to hydrolysis by CwlT (and lysozyme). Our results indicate that CwlT activity is 93 

essential for ICEBs1 to transfer into and/or out of B. subtilis and B. anthracis.   94 

 95 

 96 

Materials and Methods  97 

Strains and alleles. B. subtilis and B. anthracis strains used are listed in Table 1. Standard 98 

techniques were used for cloning and strain construction (28). Some alleles related to ICEBs1 99 

were previously described  and are summarized below. Donor strains contained a derivative of 100 

ICEBs1 that contains a deletion of rapI-phrI and insertion of a kan cassette, ∆(rapI-phrI)::kan (4, 101 

29-31) (Fig. 1B). rapI was overexpressed from Pxyl-rapI integrated into amyE, amyE::{(Pxyl-102 

rapI) spc} (29) to induce ICEBs1 gene expression and excision in donor cells. ICEBs10 indicates 103 

that the strain is cured of ICEBs1. B. subtilis recipients were streptomycin-resistant due to the 104 

spontaneous streptomycin-resistant allele str84, most likely in rpsL (30), and this was used as a 105 

counter-selective marker in mating experiments.  106 

Deletion of cwlT. ∆cwlT19 is unmarked deletion that removes cwlT entirely and fuses the 107 

stop codon of conG (upstream of cwlT) to the intergenic region upstream of yddI. A 2.1 kb 108 

fragment of ICEBs1 DNA with the ∆cwlT19 allele was obtained by the splice-overlap-extension 109 

PCR method (32, 33) and cloned into the EcoRI and BamHI sites of pEX44 (34), a 110 

chloramphenicol-resistant vector containing E. coli lacZ. The resulting plasmid, pTD6, was used 111 

to introduce ∆cwlT19 into the chromosome of MMB970 by first integrating by single crossover 112 
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and then screening for loss of the plasmid by virtue of loss of lacZ, and then testing by PCR for 113 

introduction of the indicated allele, essentially as described (31). 114 

Modification of muramidase and peptidase domains. Mutations in the muramidase and 115 

peptidase domains were created using a strategy similar to that for ∆cwlT. cwlT-E87Q contains a 116 

missense mutation at position 87 of cwlT, converting a glutamate to a glutamine codon. cwlT-117 

C237A contains a missense mutation at position 237, converting a cysteine to an alanine codon. 118 

cwlT-E87Q-C237A contains both of these mutations. cwlT∆(207-329) is a deletion of the entire 119 

peptidase domain, consisting of a fusion of the first 206 codons of cwlT to its stop codon (Fig. 2). 120 

DNA fragments (~1.2 kb) containing one or both of these mutations were constructed and cloned 121 

into pCAL1422 by isothermal assembly (35) to yield pTD8 (cwlT-E87Q), pTD9 (cwlT-C237A), 122 

pTD10 (cwlT-E87Q-C237A), and pTD310 (cwlT∆207-329). These plasmids were used to 123 

introduce their respective alleles into the chromosome of ∆cwlT19 strain TD19 as described for 124 

pEX44 above. Mutations in cwlT were then confirmed by sequencing appropriate PCR products 125 

from genomic DNA. 126 

Modifications to cwlT signal sequence. cwlT∆1-29 contains a deletion of the first 29 codons 127 

of cwlT and introduces a start codon at the beginning of the truncated gene (Fig. 2).  cwlT-C23A 128 

contains a missense mutation that removes the putative lipoprotein anchoring site by converting 129 

the cysteine codon at position 23 to an alanine codon. These mutations were introduced into 130 

MMB970 with pCAL1422-derived plasmids pTD95 (cwlT∆1-29), pTD99 (cwlTspoVD1-32), and 131 

pTD116 (cwlT-C23A) as described above.  132 

Construction of ICEBs1-cwlT at thrC. To test for complementation of various cwlT mutants, 133 

we provided wild type cwlT from an ectopic copy of ICEBs1 integrated at thrC (29, 31).  We 134 

found that complementation required expression of cwlT along with the upstream genes, similar 135 
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to findings with complementation of other ICEBs1 mutants (29).  As discussed previously, we 136 

suspect that this has to do with some type of coupling, perhaps translational, between expression 137 

of many of the ICEBs1 genes (29).  A complementation construct, thrC11::{mls ICEBs1∆(yddI-138 

attR::tet)} (Fig. 1C), was created by starting with CAL229, which contains the entire ICEBs1 139 

integrated into an attachment site (attB) placed at thrC and marked with macrolide-lincosamide-140 

streptogramin (mls) resistance. Genes downstream from cwlT were deleted and a tetracycline-141 

resistance cassette inserted, analogous to previously described alleles (31), yielding strain TD11. 142 

Transformation with chromosomal DNA from TD11 was used to introduce the complementation 143 

construct to other strains.  144 

Construction of donor and recipient B. anthracis strains. In mating experiments, counter 145 

selection for B. anthracis recipients was with either chloramphenicol or nalidixic acid. 146 

Chloramphenicol resistance in B. anthracis was from the plasmid pBS42, introduced into B. 147 

anthracis strain UM44-1C9 (AG1924) (4, 36) by ICEBs1-mediated mobilization from B. subtilis 148 

strain CAL1394 (37). Nalidixic acid resistance was due to a spontaneous mutation (4). ICEBs1 149 

elements with mutations in cwlT were introduced into B. anthracis via conjugation from B. 150 

subtilis donors harboring a wild type cwlT allele at an exogenous chromosomal locus, 151 

complementing the loss of cwlT function and allowing transfer. B. anthracis strains TD322 152 

(cwlT-E87Q), TD324 (cwlT-C237A), and TD326 (cwlT-E87Q-C237A) were created by 153 

conjugation of ICEBs1 from B. subtilis strains TD62, TD52, and TD57 respectively. 154 

Construction of cwlT overexpression plasmids. Plasmids for the overproduction of CwlT, and 155 

both mutant and wild type versions of the peptidase domain of CwlT were constructed similarly 156 

to those previously described (9).  Overproduction of full length CwlT in E. coli caused rapid 157 

cell lysis. However, deletion of the N-terminal 29 amino acids prevented lysis in E. coli, and this 158 
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deletion was used to express CwlT for purification.  In contrast, overproduction of full length 159 

CwlT in B. subtilis had no obvious effect on cell growth or viability, perhaps indicating that 160 

activation of CwlT might be regulated.  A fragment of cwlT containing codons 30–329 (with an 161 

N-terminal initiation codon) was amplified by PCR and cloned into pET21b (Novagen) digested 162 

with NdeI and HindIII, placing a hexa-histidine tag (his6) at the C-terminus of the protein. This 163 

yielded pTD3, which was used for overexpression of CwlT-his6. For expression of the peptidase 164 

domain, a fragment encoding amino acids 207 to 329 of cwlT was amplified by PCR either from 165 

AG174 (wild type cwlT) or TD48 (cwlT-C237A), and cloned into pET28a (Novagen) digested 166 

with NdeI and HindIII, placing a hexa-histidine tag at the N-terminus of the protein. This yielded 167 

plasmids pTD106 (his6-CwlT-Pep) and pTD107 (his6-CwlT-PepC237A). 168 

Media and growth conditions. Cells were grown at 37°C with agitation in LB medium (28, 169 

38) as indicated. Antibiotics were used at the following concentrations: ampicillin (100 μg/ml), 170 

chloramphenicol (5 μg/ml), kanamycin (5 μg/ml for B. subtilis, 25 µg/ml for E. coli), 171 

spectinomycin (100 μg/ml), streptomycin (100 μg/ml), and nalidixic acid (40 μg/ml). 172 

Erythromycin and lincomycin were used together (0.5 and 12/5 µg/ml, respectively) to select for 173 

macrolide-lincosamide-streptogramin B (MLS) resistance. Isopropyl-β-D-thiogalactopyranoside 174 

(IPTG, Sigma) was used at a final concentration of 1 mM.  175 

Mating assays. Matings were performed essentially as previously described (4). Briefly, 176 

donor and recipient cells were grown in LB. Expression of ICEBs1 genes was achieved in one of 177 

two ways: either by production of the activator RapI from the xylose-inducible promoter Pxyl, or 178 

by activation of the SOS response by addition of the DNA damaging agent mitomycin C (MMC) 179 

(4). For activation of the Pxyl promoter, Xylose (1%) was added to donor cells in mid-180 

exponential growth (OD600 ~0.2) to induce expression of Pxyl-rapI. For mitomycin C induction, 181 
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1 µg/ml mitomycin C (MMC, Sigma) was added to donor cells in mid-exponential growth 182 

(OD600 ~ 0.5). After one hour of induction, approximately equal numbers of donor and recipient 183 

cells were mixed and filtered onto sterile nitrocellulose filters. When cultures were induced with 184 

MMC, the filter was then washed with 25 ml of LB to minimize exposure of recipients to MMC 185 

in the donor culture.  186 

The filters were placed on plates comprised of Spizizen minimal salts (28) and 1.5% agar for 187 

3 hr. Cells were collected from the filter and spread on selective plates. Transconjugants were 188 

identified and mating frequencies were calculated per donor cell. The reported transfer 189 

frequencies are the mean (± the standard error of mean) of at least two independent biological 190 

replicates. In mating experiments induced by MMC, donor CFU was determined prior to 191 

addition of MMC, as it can cause a drop in cell viability.  192 

Purification of CwlT Proteins. Plasmids pTD3 (CwlT-his6), pTD106 (his6-CwlT-Pep), and 193 

pTD107 (his6-CwlT-PepC237A) were introduced into E. coli strain BL21-A1 (Invitrogen), 194 

generating strains TD103, TD106, and TD107 for expression of the different alleles of cwlT.  195 

Cells were grown in LB containing 100 µg/ml ampicillin (pTD3) or 25 µg/ml kanamycin 196 

(pTD106 and pTD107), shaking at 37º C. At OD600 ~0.7 to 0.9, L-arabinose (final concentration 197 

of 0.2%) and IPTG (final concentration of 1 mM) were added to induce expression of the T7 198 

polymerase and derepress expression of cwlT. Cells were collected after 2 hours of induction and 199 

pelleted by centrifugation.  Cell pellets were stored at -80ºC until needed.   200 

For purification of CwlT, the cell pellet was thawed on ice, re-suspended in 0.2 volumes lysis 201 

buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, pH 8.0) and lysed by addition (final 202 

concentration of 1x) of CelLytic B (Sigma) and by sonication (microtip, 50% power) on ice 4 x 203 

20 s. The lysate was incubated with DNase I (10 µg/ml) for 30 minutes on ice, and the 204 
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supernatant was separated by centrifugation at 14,000xg at 4ºC for 20 minutes. CwlT-his6, his6-205 

CwlT-Pep, and his6-CwlT-PepC237A were purified by Ni-NTA column chromotography 206 

(Qiagen) according to the manufacturer’s protocol for batch purification under native conditions.  207 

Elution fractions were analyzed by SDS-PAGE. Those containing more than ~95% CwlT 208 

were pooled and exchanged into storage buffer (50 mM NaH2PO4, 300 mM NaCl, 1 mM DTT, 209 

pH 7.4) using PD-10 desalting columns (GE Healthcare). Protein concentration was determined 210 

by Bradford assay (Bio-Rad), glycerol was added to 25%, and protein was stored at -80ºC.  CwlT 211 

was often unstable (degraded) after storage, so most assays were done with freshly purified 212 

protein.   213 

Activity of CwlT against B. subtilis and B. anthracis. Cells (B. anthracis or B. subtilis) 214 

were grown to mid-exponential phase in LB liquid medium at 37ºC with shaking. Purified CwlT-215 

his was added to the growing culture in final concentrations ranging from 1 µg/ml to 1 mg/ml.  216 

Cultures were incubated for 20 minutes and then cells were plated to determine colony forming 217 

units. Survival percentage was determined by comparison to a culture for which no CwlT was 218 

added.   219 

Preparation of cell walls. Cell walls from B. subtilis and B. anthracis were prepared 220 

essentially as described previously (9, 39, 40). Briefly, cells were harvested from cultures (2 221 

liters) in mid-exponential growth phase, resuspended in cold phosphate-buffered saline (PBS) 222 

(40 ml), and disrupted by sonication (microtip, 50% power) 15 x 30 s. After low-speed 223 

centrifugation (1500xg, 10 min) to remove unbroken cells, the crude cell wall was pelleted at 224 

27,000xg for 5 min at 4ºC, suspended in 20 ml of a 4% (w/v) sodium dodecyl sulphate solution 225 

(SDS) and put in a boiling water bath for 20 min. Pellets were washed three times with warm 226 

deionized water (to prevent precipitation of SDS), two times with 1 M NaCl, and again four 227 
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times with deionized water. After each of the last four washes, the sample was first spun at low 228 

speed (1500xg, 5 min) to separate whole cells and other contaminating material from the cell 229 

wall fraction, which was then pelleted by spinning at 27,000 x g for 5 min.   230 

Determination of hydrolytic activities of CwlT proteins.  Hydrolytic activities were 231 

determined essentially as described (9). Reactions were performed in 50 mM MOPS-NaOH 232 

buffer, pH 6.5 at 32ºC, with 1 mg/ml B. subtilis or B. anthracis cell wall preparations. Proteins 233 

were added to a final concentration of 10 µg/ml (CwlT-his6) or 5 µg/ml (his6-CwlT-Pep and 234 

his6-CwlT-PepC237A), and the reaction mixture was agitated constantly to maintain the cell 235 

walls in suspension. Turbidity of the reaction was monitored at 540 nm using a 236 

spectrophotometer (Genesys 10 Bio, Thermo Corporation).  237 

Polyacrylamide gels and zymography. Sodium dodecyl sulfate-polyacrylamide gel 238 

electrophoresis (SDS-PAGE) and zymography were performed as previously described (38, 41). 239 

For zymography, approximately 1 µg of various purified CwlT proteins were electrophoresed 240 

through a 12% polyacrylamide gel containing cell wall preparations (~1 mg/ml) from B. subtilis 241 

or B. anthracis. Following electrophoresis, gels were soaked in deionized water for 30 minutes 242 

and then transferred into renaturation buffer (25 mM Tris-HCl, 1% Triton X-100, pH 7.2) at 243 

30ºC overnight with gentle agitation. After incubation, the gels were rinsed with deionized water, 244 

stained with 0.1% methylene blue in 0.01% KOH for 3 hr, and destained with deionized water. 245 

Hydrolytic activity appeared as zones of clearing in the blue background of the stained cell walls.  246 

Western blot analysis. Samples were collected from cultures after 3 hr of induction of 247 

ICEBs1 expression.  Cells were pelleted and stored at -80ºC. Pellets were thawed and 248 

resuspended in buffer (10 mM Tris, 10 mM EDTA, pH 7) containing 0.1 mg/ml lysozyme and 249 

the protease inhibitor 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF) at 1 250 
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mM. The volume of buffer used to resuspend each sample of cells was adjusted to the optical 251 

density at 600 nm (OD600) in order to normalize the concentration of proteins in each sample. 252 

Resuspended cells were incubated at 37°C for 30 min, SDS sample buffer was added, and 253 

samples were heated at 100°C for 10 min followed by centrifugation to remove insoluble 254 

material.   255 

Proteins were separated by SDS-PAGE on 12% gels and transferred to an Immobilon 256 

polyvinylidene difluoride (PVDF) membrane (Millipore) using a Trans-blot semidry electroblot 257 

transfer apparatus (Bio-Rad). Membranes were blocked in Odyssey Block (Li-Cor Biosciences) 258 

for 1 hr, and then incubated in a 1:5,000 dilution of anti-CwlT rabbit polyclonal antisera (made 259 

commercially by Covance using CwlT-his6 protein purified from E. coli) in Odyssey Block with 260 

0.2% Tween for 1 hr, and washed several times in phosphate-buffered saline, pH 7.8, with 0.1% 261 

Tween. Membranes were then incubated with 1:5,000 goat anti-rabbit IRDye 800 CW conjugate 262 

(Li-Cor) in Odyssey Block, 0.2% Tween, and 0.01% SDS for 1 hour, and washed several times 263 

in PBST. Signals were detected using the Odyssey Infrared Imaging System (Li-Cor) according 264 

to manufacturer protocols, and gel image was desaturated and inverted using Adobe Photoshop. 265 

 266 

 267 

Results and Discussion   268 

CwlT is required for horizontal transfer of ICEBs1 269 

We constructed a deletion of cwlT (∆cwlT19) in ICEBs1 (Materials and Methods) and tested 270 

for the ability of ICEBs1∆cwlT to function in conjugation. The conjugation efficiency of wild 271 

type (cwlT+) ICEBs1 was ~5% transconjugants per donor (Table 2, line 1), similar to frequencies 272 

described previously (4). In contrast, there was no detectable transfer (≤ 5 x 10-5 %) of 273 
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ICEBs1∆cwlT (Table 2, line 2). The mutant phenotype was largely complemented by expression 274 

of wild type cwlT and all upstream ICEBs1 genes (Fig. 1) from an ectopic locus (Table 2, line 3). 275 

We were unable to complement ICEBs1∆cwlT by expressing cwlT alone at an exogenous locus 276 

(data not shown). We suspect that proper expression of cwlT requires coupling to expression of 277 

the upstream genes, similar to what has been observed with other ICEBs1 mutants (29). The 278 

complementation results indicate that the defect in conjugation was due predominantly to loss of 279 

cwlT and not an unexpected effect on downstream genes or a site in ICEBs1, and that the 280 

ICEBs1-encoded cell wall hydrolase CwlT is indispensable for conjugation.   281 

Our results with cwlT contrast those for cell wall hydrolases from Gram negative conjugative 282 

elements, and are consistent with recent findings in Gram positive organisms. In Gram negative 283 

bacteria, loss of the element-encoded hydrolase reduces, but does not eliminate, conjugative 284 

transfer. For example, deletion of virB1 from the A. tumefaciens Ti plasmid (20), gene 19 of R1 285 

(21), and traL of pKM101 (22) results in an approximately 10- to 100-fold reduction in 286 

conjugative transfer. In contrast, loss of the hydrolase from Gram positive conjugative elements 287 

causes either a complete elimination in transfer, or a more severe reduction than that observed 288 

for conjugative elements from Gram negative bacteria.  For example, loss of the hydrolase TcpG 289 

from pCW3 in Clostridium perfringens causes an approximately 1,000-fold decrease in 290 

conjugation (25), and loss of TraG from pIP501 (23) or PrgK from pCF10 (24) in E. faecalis 291 

causes complete elimination (>105-fold) of transfer.  292 

We suspect that the apparently greater contribution to conjugation by the element-encoded 293 

hydrolases in Gram positive bacteria than that in Gram negative bacteria is partly due to the 294 

thicker cell wall. Consistent with the increased hydrolytic requirement, many hydrolases 295 

associated with Gram positive mobile elements have multiple hydrolytic domains. Like CwlT, 296 
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TraG (from pIP501) is predicted to contain both muramidase and peptidase function (23). PrgK 297 

(from pCF10) contains three hydrolytic domains: two muramidases, and one peptidase (24). It 298 

has been suggested that the peptidase domains are important in assisting digestion of highly-299 

crosslinked Gram positive cell wall (19, 42, 43).  300 

Partial requirement for some hydrolases in conjugation might be due to redundant functions 301 

in the host. Many hydrolases have a high degree of cross-functionality (13, 18, 44).  That is, 302 

there can be redundancy and the loss of one hydrolase is masked by the presence of others.  For 303 

the conjugative elements, we suspect that the partial requirement for hydrolases, in either Gram 304 

positive or Gram negative bacteria, could be due to the activities of host hydrolases or hydrolases 305 

from other resident mobile elements (25, 45-47).  For CwlT of ICEBs1 and the essential 306 

hydrolases from other mobile elements, it appears that the host hydrolases are not capable of 307 

providing sufficient function to allow any detectable conjugative transfer.  308 

Different effects of muramidase and peptidase mutants of CwlT 309 

CwlT contains two peptidoglycan hydrolytic domains, a muramidase and a peptidase (9). To 310 

determine their respective contributions to ICEBs1 transfer, we made mutations in each of the 311 

two domains of CwlT and assayed for effects on the conjugation efficiency of ICEBs1. Our 312 

findings indicate that the muramadase is essential and the peptidase partly dispensable for the 313 

function of CwlT in conjugation.   314 

Muramidase activity is abolished by a previously characterized cwlT-E87Q mutation that 315 

alters the catalytic site of the muramidase domain (9). We introduced this mutation into cwlT in 316 

ICEBs1. There was no detectable transfer of the ICEBs1 cwlT-E87Q mutant (Table 2, line 4), 317 

indicating that muramidase activity is required for transfer of ICEBs1. Levels of CwlT-E87Q 318 

protein accumulation appear comparable to those of wild type CwlT, as measured by Western 319 
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blots (Fig. 3), indicating that the mutant protein was accumulating to normal levels. The defect in 320 

conjugation was due to the cwlT-E87Q mutation and not to an unexpected effect on downstream 321 

genes because the mutant phenotype was fully complemented by exogenous expression of wild 322 

type cwlT and the upstream ICEBs1 genes (Table 2, line 5). 323 

To investigate the role of the peptidase domain, we constructed a point mutation in cwlT that 324 

changes its putative catalytic cysteine (48, 49), cwlT-C237A. We used two assays to verify that 325 

the mutant protein was defective in enzymatic function: a quantitative kinetic assay to measure 326 

the rate at which CwlT degraded purified peptidoglycan, and a zymography assay to detect 327 

hydrolase activity in purified proteins or cell lysates (41). We purified both wild type and mutant 328 

peptidase fragments of CwlT, separate from the muramidase domain (9). There was no 329 

detectable hydrolytic activity in the C237A mutant peptidase fragment by either kinetic assay or 330 

by zymography (data not shown).  331 

We introduced the cwlT-C237A mutation into ICEBs1 and tested for effects on conjugation. 332 

This mutant had a conjugation efficiency of ~5 x 10-3 % transconjugants per donor (Table 2, line 333 

6), approximately 1,000-fold less than that of wild type. Levels of CwlT-C237A protein 334 

accumulation were comparable to those of wild type CwlT, as measured by Western blots (Fig. 335 

3), again indicating that the mutant fragment was accumulating to normal levels. The defect in 336 

conjugation was due to the cwlT mutation and not an unexpected effect on downstream genes 337 

because the mutant phenotype was fully complemented by exogenous expression of wild type 338 

cwlT and the upstream ICEBs1 genes (Table 2, line 7). 339 

The conjugation efficiency of the cwlT-C237A peptidase mutant (~5 x 10-3 %) was 340 

significantly and reproducibly greater than that of the muramidase mutant (< 5 x 10-5 %). We 341 

were concerned that the cwlT-C237A mutation might not fully eliminate the peptidase activity in 342 
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vivo, and that the detectable conjugation could be a result of residual peptidase activity. To test 343 

this, we constructed an allele that deletes the peptidase domain, cwlT∆(207-329), leaving the 344 

signal sequence and the muramidase domain (Fig. 2). The muramidase and peptidase domains 345 

have been shown to maintain robust enzymatic function when separated and purified as 346 

fragments (9). The deletion of the peptidase domain was introduced into cwlT in ICEBs1. The 347 

conjugation efficiency of ICEBs1 cwlT∆207-329 was ~3.0 x 10-3 % (Table 2, line 8), 348 

approximately 1,000-fold below that of wild type ICEBs1, and similar to that of the cwlT-C237A 349 

mutant (Table 2, line 6). Again, the conjugation defect was fully complemented by expression of 350 

wild type cwlT and the upstream ICEBs1 genes (Table 2, line 9). These results indicate that the 351 

peptidase is partly dispensable for conjugation efficiency.  They further indicate that the cysteine 352 

at amino acid 237 is required for peptidase activity.  Based on comparisons to other peptidases, 353 

C237 is likely in the active site, and histidine at amino acid 290 and the asparagine at amino acid 354 

302 are also likely required for peptidase activity (48, 49). Together, our results indicate that the 355 

muramidase function is absolutely required, and the peptidase function is partially required for 356 

transfer of ICEBs1.  357 

CwlT is similar to other hydrolases from well-characterized conjugative elements in Gram 358 

positive bacteria (Tn916, pIP501, pCW3, pCF10).  The cell wall hydrolases from these elements 359 

have or are predicted to have two catalytic domains, a muramidase and a peptidase. Many other 360 

putative two-domain hydrolases are found in uncharacterized mobile elements from Gram 361 

positive hosts. Hydrolases in Gram negative conjugative elements appear to have only a single 362 

muramidase domain and the peptidase domain appears to be a unique addition to hydrolases 363 

from Gram positive systems. Some phage enzymes from Gram positives share a similar domain 364 

structure, and it has been suggested that the peptidase domains are important in assisting 365 
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digestion of highly-crosslinked Gram positive cell wall (42, 43). Our results with ICEBs1 are 366 

consistent with this suggestion.  In ICEBs1, the muramidase function of CwlT is essential, which 367 

is consistent with the observation that such activity is conserved in conjugative systems in both 368 

Gram negative and Gram positive organisms. The peptidase is partly dispensable, perhaps due to 369 

partial redundancy with host peptidases (see above).   370 

The putative N-terminal signal sequence is, but the putative lipid attachment site is not 371 

needed for CwlT function 372 

Subcellular localization plays an essential role in the regulation of many hydrolases. CwlT 373 

contains a putative N-terminal signal sequence, residues 1-29 (Fig. 2) that may determine its 374 

localization, though predictions of this region’s function are discrepant. Different methods have 375 

predicted it to be either a lipoprotein signal sequence (9, 27), or a stable transmembrane domain 376 

(50, 51). 377 

To determine if the putative signal sequence of CwlT in B. subtilis, is required for 378 

conjugation, we deleted codons 1-29 of cwlT {cwlT∆(1-29)}, removing the putative signal 379 

sequence. There was no detectable transfer of ICEBs1 cwlT∆1-29 (Table 2, line 10), indicating 380 

that this region of CwlT is important for function.  These results are consistent with the notion 381 

that CwlT is a secreted protein.   382 

The cwlT gene product contains an FVLC motif at amino acids 20-23, which was identified 383 

as a putative lipobox, a conserved sequence in lipoproteins (27). The cysteine in this motif is 384 

required for lipid attachment in bona fide lipoproteins. We changed the cysteine at amino acid 23 385 

to alanine (cwlT-C23A) and found that there was no detectable change in conjugation efficiency 386 

(Table 2, line 11). This result indicates that if CwlT is a lipoprotein, then a lipid attachment at 387 
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cysteine 23 is not required for CwlT function. Alternatively, and more likely, CwlT is not a 388 

lipoprotein, although we have not tested this directly.  389 

The amount of each of the mutant proteins was analyzed by Western blot and was 390 

indistinguishable from that of wild type CwlT (Fig. 3).  Together, our results indicate that the 391 

putative signal sequence of CwlT is needed for CwlT function, but that the putative lipid 392 

attachment site is not.  Preliminary results indicate that CwlT accumulates in culture supernatant 393 

(data not shown), and that some of it is found associated with the cell (Fig. 3).   394 

CwlT can hydrolyze B. subtilis but not B. anthracis peptidoglycan in vitro 395 

ICEBs1 is capable of transferring from B. subtilis to B. anthracis (4). However, the cell wall 396 

of B. anthracis is different from that of B. subtilis and we found that CwlT cannot degrade 397 

purified B. anthracis peptidoglycan.  The glycan strands from the cell wall of B. anthracis differ 398 

from those of B. subtilis in two ways: B. anthracis glycan chains are O-acetylated and N-399 

deacetylated. Both of these modifications confer lysozyme resistance to B. anthracis, and might 400 

also cause resistance to the muramidase activity of CwlT. In addition, although the peptides of B. 401 

subtilis and B. anthracis peptidoglycan have the same amino acid sequence, in B. subtilis, the 402 

carboxyl group of meso-diaminopimelic acid (m-DAP) is amidated (52).  This modification is 403 

not found in B. anthracis (11).   404 

We purified CwlT and tested for degradation of cell wall material from B. subtilis and B. 405 

anthracis.  As expected, CwlT was able to degrade cell wall from B. subtilis, but not that from B. 406 

anthracis (Fig. 4).  We mixed 1.5 nmol of CwlT with 5 mg of purified B. subtilis cell wall and 407 

monitored the change in turbidity of the solution with time (Fig. 4).  There was a rapid drop in 408 

turbidity within 5 minutes, indicating that the B. subtilis cell wall was degraded.  In a similar 409 

reaction with the B. anthracis cell wall, there was little or no change in turbidity in 20 minutes 410 
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(Fig. 4), indicating that the B. anthracis cell wall was resistant to degradation by CwlT.  To be 411 

sure that the preparation of peptidoglycan from B. anthracis did not contain an inhibitor of CwlT 412 

activity, we mixed the peptidoglycan from B. anthracis with that from B. subtilis. In this mixed 413 

peptidoglycan, CwlT was able to degrade about half of the material present (Fig. 4), indicating 414 

that CwlT activity is not inhibited by anything in the peptidoglycan preparation from B. 415 

anthracis. We also found that there was no detectable degradation of the B. anthracis cell wall 416 

by CwlT in a polyacrylamide gel using zymography (data not shown), consistent with the results 417 

in solution.   418 

CwlT is required for ICEBs1 mating from B. subtilis into B. anthracis 419 

B. anthracis was a very effective recipient of ICEBs1, even though its cell wall was not 420 

degraded by CwlT.  ICEBs1 was able to transfer from B. subtilis into B. anthracis with an 421 

efficiency of ~3% transconjugants per donor, virtually indistinguishable from that of transfer 422 

from B. subtilis to B. subtilis (Table 3). Like transfer of ICEBs1 from B. subtilis to B. subtilis, 423 

transfer to B. anthracis was also dependent on cwlT.  Both the muramidase mutant and the 424 

peptidase mutant were defective in transfer from B. subtilis to B. anthracis (Table 3). Because 425 

the peptidoglycan of B. anthracis is different from that of B. subtilis and was not digested by 426 

CwlT, these results could indicate that CwlT is needed to act on the cell wall of the donor, in this 427 

case B. subtilis, and not that of the recipient. However, subsequent experiments showed that 428 

CwlT is also needed for ICEBs1 to transfer from B. anthracis donors. 429 

ICEBs1 can transfer out of B. anthracis into B. subtilis and B. anthracis  430 

We found that ICEBs1 could transfer out of B. anthracis into both B. subtilis and B. 431 

anthracis with similar efficiencies (Table 4).  We used the DNA damaging agent mitomycin C to 432 

induce ICEBs1 in B. anthracis.  Mitomycin C induces ICEBs1 in B. subtilis, although less 433 
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efficiently than overproduction of RapI (4).  Addition of mitomycin C to either B. subtilis or B. 434 

anthracis donors caused induction of ICEBs1 and enabled transfer to either B. subtilis or B. 435 

anthracis (Table 4).  These results were somewhat surprising since CwlT appeared incapable of 436 

degrading the B. anthracis cell wall (Fig. 4).   437 

CwlT is required for ICEBs1 mating from B. anthracis into B. subtilis and B. anthracis 438 

It seemed possible that CwlT was not needed for ICEBs1 function in B. anthracis, and that 439 

other factors (perhaps cell wall hydrolases) in the B. anthracis donor strain might bypass the 440 

need for cwlT. For example, mitomycin C treatment induces a DNA damage response and the 441 

induction of many genes, some of which are in phage or prophage elements that contain their 442 

own hydrolytic enzymes that could substitute for CwlT (53).   443 

We found that cwlT was needed for transfer of ICEBs1 from B. anthracis even after 444 

treatment with mitomycin C.  We transferred ICEBs1 cwlT mutants from B. subtilis into B. 445 

anthracis.  This was done by complementing the cwlT mutants with a wild type cwlT in trans in 446 

the B. subtilis donor strains (Materials and methods).  We then used the B. anthracis strains with 447 

the ICEBs1 cwlT mutants as donors in conjugation experiments with either B. subtilis or B. 448 

anthracis as recipients (Table 4).  When ICEBs1 was induced with mitomycin C, no transfer was 449 

detected from either B. subtilis or B. anthracis donors containing the cwlT-E87Q, cwlT-C237A, 450 

or cwlT-E87Q-C237A allele (Table 4).  These results demonstrate that cwlT is needed for transfer 451 

from B. anthracis, that both enzymatic activities are required for transfer, and that the 452 

requirement for cwlT is not bypassed by treatment with mitomycin C.  453 

Exogenous CwlT causes lysis of B. subtilis and B. anthracis  454 

We found it puzzling that cwlT appeared to be required for transfer out of an organism with 455 

cell wall peptidoglycan that was resistant to its activity. We were interested in examining 456 
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whether CwlT might exhibit different activity on growing cell walls in vivo, than what we 457 

observed on purified peptidoglycan in vitro. To test this, we added purified CwlT to B. anthracis 458 

and B. subtilis cells growing in LB medium and measured effects on cell viability.  Despite their 459 

differences in cell wall composition and lysozyme resistance, both species were killed by CwlT.  460 

Addition of 100 µg/ml of CwlT for 20 min caused an approximately 500 - 1,000 fold drop in 461 

colony forming units of both B. anthracis and B. subtilis. These results indicate that CwlT was 462 

able to kill both B. subtilis and B. anthracis, most likely by causing at least minimal degradation 463 

of the cell wall.  The amount of peptidoglycan hydrolysis by CwlT that is needed for cell lysis is 464 

probably much less than that needed for detection of hydrolysis in vitro.  In B. anthracis, cell 465 

wall is first assembled in an unmodified form that resembles that of B. subtilis.  Following the 466 

initial synthesis, N-deacetylases and O-acetylases introduce modifications during peptidoglycan 467 

maturation (10, 11). Our results indicate that CwlT may act on newly-synthesized peptidoglycan 468 

before it is fully modified.  469 

Summary and model for CwlT Activity 470 

We found that the putative signal sequence on CwlT is essential for ICEBs1 conjugation, but 471 

the putative lipid attachment site (cysteine at residue 23) is not.  More importantly, we found that 472 

the peptidase activity of CwlT is important but not essential, whereas the muramidase activity is 473 

essential for conjugation.  Surprisingly, we found that CwlT was needed for ICEBs1 to function 474 

in B. anthracis, whose mature cell wall is resistant to degradation by CwlT.  We interpret these 475 

results to indicate that CwlT can act before full maturation of the cell wall, and this expands the 476 

range of organisms in which ICEBs1 can function.  We suspect that analogous cell wall 477 

hydrolyases from other conjugative elements function similarly.   478 
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Our findings that CwlT is required for conjugation of ICEBs1 are consistent with recent 479 

results on cell wall hydrolases encoded by Gram positive conjugative plasmids (23-25).  CwlT-480 

mediated digestion likely causes local alteration of the peptidoglycan meshwork to allow 481 

assembly of the conjugation machinery. It is unknown what other ICEBs1-encoded proteins 482 

associate with CwlT, though in the Gram positive conjugative plasmid pIP501, the cell wall 483 

hydrolase associates with the coupling protein, a putative ATPase, and a membrane-associated 484 

conjugation protein, indicating that it may be playing a role in recruitment of these proteins, and 485 

in the assembly of the conjugation machinery (19). CwlT may play a similar role, and it would 486 

be interesting to determine if CwlT affects localization or assembly of components of the 487 

ICEBs1 conjugation machinery.  488 

 489 
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Table 1. Bacillus strains used.   656 

 657 

B. subtilis  Relevant Genotypea (reference) 
JH642 trpC2 pheA1 (contains wild type ICEBs1) 
CAL85 ICEBs10 (cured of ICEBs1) str84 (30) 
CAL229 thrC::{mls, ICEBs1 ∆(rapI-phrI)::kan} 
MMB970 ∆(rapI-phrI)342::kan amyE::{(Pxyl-rapI) spc} 
TD19 ∆(rapI-phrI)342::kan ∆cwlT19   amyE::{(Pxyl-rapI) spc} 
TD37 ∆(rapI-phrI)342::kan ∆cwlT19, thrC11::{mls ICEBs1∆(yddI-attR::tet)} 

amyE::{(Pxyl-rapI) spc}  
TD46 ∆(rapI-phrI)342::kan cwlT-E87Q amyE::{(Pxyl-rapI) spc} 
TD48 ∆(rapI-phrI)342::kan cwlT-C237A amyE::{(Pxyl-rapI) spc} 
TD50 ∆(rapI-phrI)342::kan cwlT-E87Q-C237A amyE::{(Pxyl-rapI) spc} 
TD52 ∆(rapI-phrI)342::kan cwlT-C237A amyE::{(Pxyl-rapI) spc} thrC11::{mls ICEBs1 

∆(yddI-attR)::tet} 
TD57 ∆(rapI-phrI)342::kan cwlT-E87Q-C237A amyE::{(Pxyl-rapI) spc} thrC11::{mls 

ICEBs1 ∆(yddI-attR)::tet} 
TD62 ∆(rapI-phrI)342::kan cwlT-E87Q amyE::{(Pxyl-rapI) spc} thrC11::{mls 

ICEBs1∆(yddI-attR)::tet} 
TD123 ∆(rapI-phrI)342::kan cwlT∆(1-29) amyE::{(Pxyl-rapI) spc} 
TD221 ∆(rapI-phrI)342::kan cwlT-C27A amyE::{(Pxyl-rapI) spc} 
TD319 ∆(rapI-phrI)342::kan cwlT∆(207-327) amyE::{(Pxyl-rapI) spc} 
TD321 ∆(rapI-phrI)342::kan cwlT∆(207-327) amyE::{(Pxyl-rapI) spc} thrC11::{mls 

ICEBs1 ∆(yddI-attR)::tet} 
B. anthracis Relevant Genotypeb (reference) 
UM44-1C9 (AG1924) str ind (plasmid-free strain) (4, 36) 
JMA921 str ind nal 
CAL2257 str ind nal pBS42 (CmR) 
TD230 ICEBs1 ∆(rapI-phrI)342::kan str ind nal 
TD322 ICEBs1 ∆(rapI-phrI)342::kan cwlT-E87Q str ind nal 
TD324 ICEBs1 ∆(rapI-phrI)342::kan cwlT-C237A str ind nal 
TD326 ICEBs1 ∆(rapI-phrI)342::kan cwlT-E87Q-C237A str ind nal 
 658 

a All B. subtilis strains are derived from JH642 (54) and contain trpC2 and pheA1 (not 659 

shown). Unless otherwise indicated, all B. subtilis strains contain ICEBs1 integrated at its normal 660 

attachment site in trnS-leu2.   661 
b B. anthracis plasmid free strain UM44-19C (55) is streptomycin resistant (str), requires 662 

indole (ind) or tryptophan for growth, and was the parent for other B. anthracis strains.  B. 663 

anthracis strains do not contain ICEBs1 unless otherwise indicated.   664 

 665 

666 
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Table 2. Effects of cwlT mutations on transfer of ICEBs1 from B. subtilis.  667 

 668 

 Donora (strain number) Mating efficiencyb  

1. WT cwlT  (MMB970) 5.9 x 10-2 ± 1.2 x 10-2 

2. ∆cwlT19  (TD19) <5 x 10-7  

3. ∆cwlT19 thrC11::ICEBs1∆yddI-attR  (TD37) 6.6 x 10-2 ± 6.4 x 10-2 

4. cwlT-E87Q (muramidase mutant)  (TD46) <5 x 10-7 

5. cwlT-E87Q thrC11::ICEBs1∆(yddI-attR)  (TD62) 6.0 x 10-2 ± 1.1 x 10-2 

6. cwlT-C237A  (peptidase mutant)  (TD48) 5.3 x 10-5 ± 3.0 x 10-5 

7. cwlT-C237A thrC11::ICEBs1∆(yddI-attR)  (TD52) 4.4 x 10-2 ± 6.0 x 10-3 

8. cwlT∆(207-329) (deletion of peptidase domain) (TD319) 3.0 x 10-5 ± 7.6 x 10-6 

9. cwlT∆(207-329) thrC11::ICEBs1∆(yddI-attR)  (TD321) 1.8 x 10-2 ± 2.1 x 10-2

10. cwlT∆(1-29) (TD123) <6 x 10-7  

11. cwlT-C23A (TD221) 6.1 x 10-2 ± 2.8 x 10-2 

 669 

aAll donor strains contain ∆(rapI-phrI)::kan in ICEBs1 and Pxyl-rapI (not shown) and the 670 

indicated cwlT allele.   671 

bThe recipient in each conjugation experiment was CAL85 (streptomycin-resistant).  Mating 672 

efficiencies were calculated from the number of kanamycin-resistant, streptomycin-resistant 673 

transconjugants per initial donor (± standard error of the mean).  Cells were grown in LB 674 

medium at 37°C and expression of RapI (Pxyl-rapI) in donors was induced by addition of xylose 675 

for 1 hr. Mating mixtures were incubated at 37°C for 3 hr on filters (Materials and Methods).  676 

 677 

678 
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Table 3. cwlT is required for ICEBs1 transfer from B. subtilis into B. anthracis.   679 

 680 

Donora Recipient;  Mating Efficiencyb 

 B. subtilis (CAL85) B. anthracis (JMA921) 

Wild type (MMB970) 5.5 x 10-2 ± 1.2 x 10-2 3.2 x 10-2 ± 5.9 x 10-3 

cwlT-E87Q (muramidase mutant) (TD46) < 6 x 10-7 < 6 x 10-7 

cwlT-C237A (peptidase mutant) (TD48) 2.9 x 10-5 ± 9.2 x 10-4 4.3 x 10-5 ± 1.0 x 10-5 

 681 

aAll donor strains are B. subtilis and contain ICEBs1 with ∆(rapI-phrI)::kan and Pxyl-rapI 682 

(not shown) and the indicated cwlT allele.   683 

bEfficiencies of transfer of ICEBs1 from the indicated donor strains into either recipient 684 

CAL85 (B. subtilis) or JMA921 (B. anthracis) were calculated from the number of 685 

transconjugants per initial donor.  Mating mixtures were incubated on filters at 37ºC for 3 hr.  686 

 687 

 688 

689 
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Table 4. cwlT is required for mitomycin C-induced transfer of ICEBs1 from B. anthracis.   690 

 691 

Donora Recipient;  Mating Efficiencyb 
 B. subtilis (CAL419) B. anthracis (CAL2257)

B. subtilis;  cwlT+ (IRN342) 1.2 x 10-3 ± 7.1 x 10-4 6.8 x 10-3 ± 1.1 x 10-4

B. anthracis;  cwlT+ (TD230) 7.0 x 10-4 ± 4.2 x 10-4 1.5 x 10-4 ± 8.0 x 10-5

B. anthracis;  cwlT-E87Q (TD322) < 3.6 x 10-7 < 5.0 x 10-7 

B. anthracis;  cwlT-C237A (TD324) < 3.8 x 10-7 < 5.0 x 10-7 

B. anthracis;  cwlT-E87Q-C237A (TD326) < 8.4 x 10-7 < 5.1 x 10-7 

 692 

aAll donor strains contained ICEBs1 with ∆(rapI-phrI)::kan (not shown) and the indicated 693 

cwlT allele. ICEBs1 was induced by addition of mitomycin C for 1 hr.   694 

bMating efficiencies from the indicated donor strains into either CAL419 (B. subtilis) or 695 

CAL2257 (B. anthracis) were calculated from the number of transconjugants per initial donor.  696 

Cells were grown in LB medium at 37ºC and ICEBs1 was induced by addition of mitomycin C 697 

for 1 hr (Materials and Methods). Mating mixtures were incubated on filters at 37ºC for 3 hr.  698 

 699 

700 
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Figure legends 701 

Figure 1. Map of ICEBs1 and derivatives.   702 

A. Linear genetic map of ICEBs1 integrated in the chromosome. Open arrows indicate open 703 

reading frames and direction of transcription. Gene names are indicated above the arrows. The 704 

small rectangles at the ends of the element represent the 60 bp direct repeats that contain the site-705 

specific recombination sites in the left and right attachment sites, attL and attR.  706 

B and C. Various deletions of ICEBs1 used in this study. Thin horizontal lines below the 707 

map of ICEBs1 represent regions that are present, and open spaces represent regions that are 708 

missing. B. ∆(rapI-phrI) contains an insertion of kan (not shown).  C.  This construct is 709 

contained at thrC and was used to complement various cwlT mutations in ICEBs1 in the normal 710 

attachment site.  ∆(yddI-attR) deletes all ICEBs1 genes to the right of cwlT and contains an 711 

insertion of tet (not shown).  Figure adapted from (56). 712 

 713 

 714 

 715 

Figure 2.  Features of CwlT.  CwlT is 328 amino acids.  The putative signal sequence 716 

(amino acids 1 - 29), the  muramidase domain (amino acids 62 - 164), and the peptidase domain 717 

(amino acids 216 - 328) are indicated. The putative lipid attachment residue is a cysteine at 718 

amino acid 23 (not shown.  Figure adapted from (9).   719 

 720 

 721 

722 
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Figure 3. Accumulation of wild type and mutant CwlT proteins.  Western blots of cell 723 

extracts 3 hr after induction of ICEBs1 by overproduction of RapI.  The relevant cwlT allele is 724 

indicated above each lane.  The arrow on the right indicates full length CwlT.  Alleles and 725 

strains:  wt, cwlT+ (MMB970); ∆cwlT (TD19); cwlT-E87Q (TD46);  cwlT-C237A (TD48); cwlT-726 

E87Q-C237A (TD50); cwlT∆(207-329) (TD319);  cwlT∆(1-29) (TD123);  and cwlT-C23A 727 

(TD221).  Blots were probed with anti-CwlT anti-serum (Materials and Methods).   728 

 729 

 730 

Figure 4. CwlT degrades purified cell wall peptidoglycan from B. subtilis but not B. 731 

anthracis.  Cell wall lytic activity of CwlT on peptidoglycan from B. subtilis (triangles), B. 732 

anthracis (diamonds), or a 1:1 mix of both types (circles). CwlT-his (10 µg/ml) was mixed with 733 

approximately 1.0 mg/ml of purified peptidoglycan, and the turbidity of the reaction was 734 

monitored at 540 nm (Materials and Methods).  735 

 736 

 737 

 738 
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