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Abstract

Many physical systems are comprised of several discrete elements, the equations
of motion of each element being known. If the system has a large number of degrees
of freedom, it may be possible to treat it as a continuous system. In this event, one
might wish to derive the equations of motion of the continuous (macroscopic) system
by taking a suitable limit of the equations governing the discrete (microscopic) system.
The classical example of this involves a row of particles with each particle connected
to its nearest neighbor by a linear spring, its continuum counterpart being a linearly
elastic bar; see Figure 1.

In a typical undergraduate engineering subject on, say Dynamics, the transition
from a discrete system to a continuous system is usually carried out through a formal
Taylor expansion of the terms of the discrete model about some reference configura-
tion. The aim of this paper is to draw attention to the fact that a macroscopic model
derived in this way should be examined critically in order to confirm that it provides a
faithful representation of the underlying microscopic model. We use a specific (strik-
ing) example to make this point. In this example, a simple solution of the discrete
model can be stable or unstable depending on the state of the system. However the
corresponding solution of the continuous system is always unstable! We go on to show
how the dispersion relations of the two models can be used to identify the source of
the discrepancy and to suggest how one might modify the continuous model.

Key words: discrete models, continuous models, dispersion relations, stability

1 Introduction

There are numerous examples of physical systems that are modeled as the continuum
limit of a system with a large number of discrete elements. For example (Figure 1),
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Figure 1: An elastic bar as a model for a row of masses connected by springs.

the partial differential equation

∂

∂x

(
E
∂u

∂x

)
= ρ

∂2u

∂t2
(a)

governing the longitudinal motion of an elastic bar (elastic modulus E, mass density
ρ) can be derived from the system of coupled ordinary differential equations

κ(un+1 − un)− κ(un − un−1) = mün (b)

describing the motion of a row of mass points (mass m) connected by linear springs
(stiffness κ), e.g. see Section 12.1 of Goldstein [3]. A relatively more complex discrete
system is one consisting of a row of rigid blocks, each with both translational and
rotational inertia, connected to each other by both bending and shearing springs. This
discrete model can be used to derive the Timoshenko theory of beams, e.g. see Example
7.3 of Crandall et al. [1]. A somewhat different physical setting comes from materials
science and concerns the motion of a dislocation in a lattice. The appropriate continuum
model can be established by studying the motion of a row of particles moving in a
periodic energy potential, e.g. see Rosenau [8]. Typically, the continuous model involves
partial differential equations while the discrete system is described by a set of coupled
ordinary differential equations.

There are two ways in which to view discrete and continuous models. In one, the
continuous model is taken to be “exact”, and the discrete model might, for example,
be a discretization of it for purposes of numerical solution. The alternative is where
the discrete model is “exact”, such as for example in an atomistic model of materials,
and the continuous model is a suitable approximation. In the example studied in this
paper we take the latter point of view.

The growing interest in physical phenomena at small length scales has led to a
corresponding increase in the need for continuum models that are accurate at such
length scales. The additional terms arising in such macroscopic models typically involve
a length scale related to the small scale behavior that the model seeks to capture. For
example, if additional terms are retained in the derivation of (a) from (b), one might
be led to an enhanced continuum model for longitudinal motions of an elastic bar such
as

∂

∂x

(
E
∂u

∂x
+M

∂3u

∂x3

)
= ρ

∂2u

∂t2
, (c)

where the new term captures the effects of strain gradients and M is another material
parameter. Dimensional considerations imply that

√
M/E has the dimension of length.
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Does (c) properly describe the behavior of the discrete model (b)? Is this always true,
or only true under certain conditions? If so what conditions? How does one look into
such questions? Observe that if we set E = 0, equation (c) looks like the dynamic
(Bernoulli-Euler) beam equation except that M would be negative. What does this
say about the stability of solutions to (c)?

In an undergraduate engineering subject on, say Dynamics, the transition from a
discrete system to a continuous system is typically carried out by identifying a small
parameter, using it to scale the problem, and Taylor expanding the terms of the discrete
model about some reference configuration. The rigorous proofs needed to show that
the results of such formal calculations are meaningful (or not) are mathematically
highly technical, and beyond the preparation of the typical engineering undergraduate
student, e.g. see Giannoulis and Mielke [2]. This does not however mean that the
student should therefore accept the model at face value, without some thought into
whether the continuous model provides a reasonable representation of the underlying
microscopic model.

In order to have some indication that a particular continous model is a faithful
counterpart of a given discrete model, one can study various initial-boundary value
problems using both models and compare their responses. Of course it is not possible
to study all initial-boundary value problems, and so one needs to approach this indi-
rectly. As noted by Whitham in Section 11.1 of [10], there is a direct correspondence
between a linear partial differential equation and the corresponding dispersion relation
– the dispersion relation completely characterizes the dynamical behavior of a linear
mathematical model. Thus we can compare two linearized models by comparing their
dispersion relations1.

In this paper we use a particular example to illustrate this point. The example
comes from the mathematical modeling of traffic flow as will be explained in the next
section. For now it is sufficient to say that in the discrete model we have two sequences
{v0(t), v1(t), . . . , vN (t)} and {λ1(t), λ2(t), . . . , λN (t)} that obey the system of coupled
ordinary differential equations

λ̇n = vn−1 − vn,

v̇n =
V (λn)− vn

τ
,

 n = 1, 2, . . . N, t ≥ 0.

The constant τ and smooth function V characterize the system being modeled. Its
continuum counterpart involves fields v(x, t) and λ(x, t) that obey the pair of partial
differential equations

∂λ

∂t
=

∂v

∂x
,

∂v

∂t
=

V (λ)− v
τ

,

 0 ≤ x ≤ L, t ≥ 0.

1This is of course only a necessary check and does not guarantee that the continuous model is
always valid. For example very high frequency vibrations of the particles in the model related to (b)
are captured as heat at the continuum model, not by (a).
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We will study the stability of steady uniform solutions of both models by linearizing
the preceding equations about these special solutions, and asking if the perturbations
grow or decay. According to the discrete model we find that this solution can be stable
or unstable depending on the state of the system, but it is always unstable according to
the continuous model! In order to understand (and remedy) the cause of this variance,
we will examine the dispersion relation of the discrete model more closely. By studying
its behavior in the limit of waves with long wavelengths (which should describe the
continuos model) we can identify the source of the deficiency and obtain some guidance
on how one might modify the continuous model.

This paper is organized as follows: in Section 2 we describe the discrete model
and derive its continuum counterpart. Steady uniform motions of each model are
considered in Section 3, and their stability is examined in Section 4. In Section 5 we
inquire into the source of the deficiency in the continuous model, and use that insight to
derive a second continuous model. Steady uniform motions according to this modified
macroscopic model are found to be stable under the precise conditions for stability of
the discrete model. We close with some concluding remarks in Section 6.

2 Mathematical model.

Perhaps it is worth mentioning at the outset that this is not a paper about the dynamics
of traffic flow. We will simply be using an example from that field to discuss the relation
between discrete and continuous models.

2.1 A discrete model.

Figure 2: Row of vehicles on a one-lane highway. Current location yn(t), headway
λn(t).

Consider N + 1 identical vehicles moving along a one-lane highway – the x-axis.
The position of (say, the front bumper) of vehicle n at time t is yn(t); its velocity is
vn(t) = ẏn(t). The vehicles are numbered n = 0, 1, 2, . . . N such that n increases in the
direction of decreasing x; see Figure 2.

The distance between vehicles is of greater interest than the location of each vehicle
and so we let

λn(t) = yn−1(t)− yn(t)
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denote the headway, i.e. the distance between the nth and (n− 1)th vehicles at time t.
The λ’s and v’s are the quantities of most interest and so the theory will be formulated
in terms of them. Observe that they are related by the compatibility requirement

λ̇n(t) = vn−1(t)− vn(t), (1)

where the superior dot denotes the time derivative.

A typical model of traffic flow consists of equation (1), complemented by a second
equation that also involves the λ’s and v’s. The classical such model is due to Lighthill,
Whitham [5] and Richards [7] – the LWR model. The LWR model is a continous model
whose discrete counterpart consists of equation (1) together with

vn(t) = V
(
λn(t)

)
. (2)

The empirical function V characterizes the roadway, the driving behavior, the vehicles,
etc., an example of which is

V (λ) = vmax

(
1− e−β(λ−λmin)

)
for λ ≥ λmin;

here β, λmin and vmax are positive parameters. In this example, the value of V (the
speed) increases monotonically from zero to the maximum speed vmax as the headway
increases from its minimum value λmin to infinity; see Figure 3. The results in this
paper will not rely on any particular choice of V .

Figure 3: Typical equilibrium velocity function V (λ) versus headway λ.

Perhaps the most obvious drawback of the LWR model is that, because equation
(2) gives the velocity at time t as a function of the headway at the same instant t,
any change in the headway is accompanied by an instantaneous change in the velocity,
without any timelag between them.

In more realistic models of traffic flow, the algebraic equation (2) is replaced by an
evolution equation such as, for example,

v̇n(t) =
V
(
λn(t))− vn(t)

τ
. (3)
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Observe that if at some instant the current velocity vn is smaller than the value V (λn)
the vehicle will accelerate2 and vn will increase towards V (λn); if vn is larger than V (λn)
the vehicle will decelerate and vn will decrease towards V (λn). Moreover, in a steady
motion where all the v̇n’s vanish, (3) specializes to (2). For these reasons the function V
is referred to as the “equilibrium velocity function”. Next, suppose that instead of (3),
we use the following alternative generalization of (2): vn(t+ τ) = V (λn(t)). This says
that the driver responds with a time lag τ , i.e. the velocity at time t+ τ is determined
by the headway at a slightly earlier time t. Thus the parameter τ here represents the
driver’s reaction time. Quick reaction corresponds to small values of τ , and vice versa.
For small τ , one might Taylor expand the left hand side of vn(t + τ) = V (λn(t)) and
write vn(t) + τ v̇n(t) = V (λn(t)). This is identical to (3). This suggests that we can
view the parameter τ in (3) also as the driver’s reaction time.

The discrete dynamical model that we consider in this paper comprises of (1) and
(3). It involves the equilibrium velocity function V (λ) and the reaction time τ .

2.2 A continous model.

We now turn to a continuous model of traffic flow. Since we shall work throughout
within a Lagrangian framework, we identify each vehicle by its position xn in a reference
configuration. The vehicles need not occupy the reference configuration during the
motion. It is simply a conveniently chosen configuration that they could occupy. If the
N + 1 vehicles occupy a total length L of the roadway in the reference configuration,
and they are uniformly spaced, then

xn = −n`, (4)

where ` = L/N and we have taken x0 = 0 with no loss of generality. In this section we
seek to replace the discrete model (1), (3) by a continuous model when N is large (i.e.
`/L is small) at fixed L.

In order to develop the continuous model, let λ(x, t) and v(x, t) be smooth functions
of the continuous variables 0 ≤ x ≤ L, t ≥ 0 such that

λn(t) = λ

(
xn−1 + xn

2
, t

)
, vn(t) = v(xn, t).

Thus λ(x, t) and v(x, t) are, respectively, the headway and velocity at time t of the
vehicle that is at x in the reference configuration. Formal Taylor expansions give

vn−1(t)− vn(t) = v(xn−1, t)− v(xn, t) = v(xn + `, t)− v(xn, t) = `vx + . . . ,

λn(t) = λ
(
xn−1+xn

2 , t
)

= λ(xn + `/2, t) = λ+ . . . ,
(5)

where we have noted from (4) that xn−1 = xn + `. Subscripts x and t denote partial
differentiation with respect to those subscripts. Thus we have

λn(t) ∼ λ(x, t), vn(t) ∼ v(x, t), λ̇n(t) ∼ λt, vn−1(t)− vn(t) ∼ `vx(x, t),

2This assumes that τ > 0.
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and so we may replace the system of equations (1), (3) of the discrete model by the
pair of partial differential equations

λt = `vx, vt =
V (λ)− v

τ
. (6)

The presence of the parameter ` here is simply a reflection of the fact that we have
adopted a Lagrangian formulation; ` is a characteristic of the reference configuration.
Whenever it appears, it does so in the form ` ∂

∂x .

3 Steady uniform motion.

3.1 Steady uniform motion in discrete model.

Now consider a steady uniform motion of the row of vehicles in which each vehicle
travels at a velocity v∗ and the spacing between each pair of adjacent vehicles is λ∗. In
such a motion yn(t) = −nλ∗ + v∗t whence

λn(t) = λ∗, vn(t) = v∗, (7)

for all n. The compatibility equation (1) is satisfied automatically whereas the equation
of motion (3) yields

v∗ = V (λ∗). (8)

Thus the λ’s and v’s in a steady uniform motion are not independent. They are related
through the equilibrium velocity function V .

3.2 Steady uniform motion in continuous model.

In the continuous model, a steady uniform motion where each vehicle travels at a
velocity v∗ and the headway between each pair of vehicles is λ∗ is characterized by

λ(x, t) = λ∗, v(x, t) = v∗. (9)

This satisfies the compatibility equation (6)1 automatically, and the equation of motion
(6)2 requires that (8) hold, just as in the discrete model.

4 Stability of a steady uniform motion.

4.1 Stability of a steady uniform motion in discrete model

In order to examine the stability of a steady uniform motion, we now consider the
behavior of a perturbed motion close to it. Thus we now consider a motion

yn(t) = −nλ∗ + v∗t+ un(t), v∗ = V (λ∗),
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where un represents the departure from the steady uniform motion. It is ssumed to be
suitably small. The headway λn = yn−1− yn and velocity vn = ẏn associated with this
neighboring motion are

λn(t) = λ∗ + un−1(t)− un(t), vn = v∗ + u̇n(t). (10)

The compatibility equation (1) is satisfied automatically. Substituting (10) into (3),
linearizing and using (8) leads to the system of linear equations

ün = a1(un−1 − un) − a2u̇n (11)

where we have set
a1 = V ′(λ∗)/τ, a2 = 1/τ ; (12)

a1 and a2 are constants.

Consider solutions of (11) in the form

un(t) = ei(−kn`+ωt). (13)

Here k is real and ω may be complex. This can be viewed as one term in a Fourier
expansion of a more general motion; k is the wave number of the motion (the wave
length is ∼ 1/k`), the real part of ω is the frequency of oscillation, and its imaginary
part is the growth/decay rate of the amplitude. For stability, the imaginary part of ω
must be positive for all wave numbers so that the amplitude of oscillation then decays
with time.

Substituting (13) into (11) leads to the following dispersion relation, a (quadratic)
equation for ω in terms of k:

ω2 + (2b1 + i2b2)ω + (d1 + id2) = 0 (14)

where we have set

2b1 = 0, 2b2 = −a2, d1 = −2a1 sin2 k`/2, d2 = 2a1 sin k`/2 cos k`/2. (15)

From Appendix 2 we know that both roots ω of this quadratic equation have positive
imaginary parts if and only if b2 < 0 and 4b1b2d2 − 4d1b

2
2 > d22. These two inequalities

specialize, on using (15), to

a2 > 0, sin2 k`

2
+

a22
2a1
− 1 > 0.

The latter inequality must hold for all wave numbers k and for this it is necessary and
sufficient that

a22
2a1

> 1.

Note from this that a1 necessarily has to be positive. On using this, the preceding
inequality can be written as a22 > 2a1 > 0.
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Thus in summary, a steady uniform motion (7) of the discete model (1), (3) is stable
if and only if a22 > 2a1 > 0, a2 > 0, which can be written equivalently, in terms of the
equilibrium velocity function and reaction time by using (12), as

1

2τ
> V ′(λ∗) > 0. (16)

Thus stability requires the slope of the equilibrium velocity function at the relevant
headway and the reaction time, to both be positive: V ′(λ∗) > 0, τ > 0. Equation (16)
then states that for a given headway λ∗, the steady uniform motion is stable if the
driver has a fast response, i.e. if τ is sufficiently small, specifically if τ < 1/[2V ′(λ∗)].
Instability occurs if the driver’s response is too slow, i.e. if τ > 1/[2V ′(λ∗)].

4.2 Stability of steady uniform motion in continuous model

In order to study the stability of the steady uniform motion (9) according to the
continuous model (6) we again consider the response of a perturbed motion that is
close to it. Thus, consider a motion λ(x, t) = λ∗+ f(x, t), v(x, t) = v∗+ g(x, t) where f
and g are suitably small. Substituting this into (6)1 yields ft = `gx. It can be readily
verified by substitution that, for any smooth function u(x, t), f = `ux(x, t), g = ut(x, t)
is a solution of this partial differential equation ft = `gx. In fact, this can be shown
to be its general solution3. Thus in the continuous model, a perturbed motion can be
expressed as

λ(x, t) = λ∗ + `ux(x, t), v(x, t) = v∗ + ut(x, t), (17)

where u(x, t) denotes the departure from the steady uniform motion.

Equation (17) automatically satisfies the compatibility equation (6)1. Substituting
(17) into (6)2, linearizing, and using (8) leads to

utt = a1`ux − a2ut (18)

where the constants a1 and a2 are given by (12).

We again seek solutions in the form

u = ei(kx+ωt) (19)

which when substituted into (18) leads to the dispersion relation ω2 + (2b1 + i2b2)ω +
(d1 + id2) = 0 where now we have set

2b1 = 0, 2b2 = −a2, d1 = 0, d2 = k` a1. (20)

For stability, both roots ω of this quadratic equation must have positive imaginary
parts. From Appendix 2 we know that the requirement for this is that b2 < 0 and
4b1b2d2 − 4d1b

2
2 > d22. These two inequalities specialize on using (20) to

a2 > 0, 0 > a21.

3This requires the domain of the x, t-plane on which the various fields are defined to be simply
connected which it is.

9



The latter inequality cannot hold and so we conclude that at least one root ω of the
dispersion relation must have a negative imaginary part, implying that in general,
perturbations will grow. Thus the steady uniform motion according to this continuous
model is always unstable.

5 A second continuous model

In order to understand why the discrete and continuous models led to such different
conclusions, it is illuminating to look at the long wavelength limit of the discrete prob-
lem since this should correspond to the continuous problem. The wavelength of the
motion (13) is ∼ 1/(k`) and so we are interested in small k`. For small k` (15) yields

d1 = −a1k2`2/2 +O((k`)4), d2 = a1k`+O((k`)3). (21)

It should be pointed out that, though d1 and d2 in (21) have different orders of magni-
tude (quadratic and linear respectively in k`), it can be readily verified that when they
are substituted into the stability inequality 4b1b2d2−4d1b

2
2 > d22 they contribute equally

to it. On comparing (21) with the corresponding expressions (20)3,4 of the continuous
model, we see that the expression for d1 in (20) is deficient. The deficiency involves
a k2 term. When the exponential solution (19) is substituted into a linear differential
equation, each derivative ∂/∂x leads to a term ik in the dispersion relation. Therefore
the deficiency in a k2 term suggests that the linearized equation (18) is missing a uxx
term. This in turn suggests that the nonlinear equation (6)2 is missing a λx term.

Motivated by this we now return to the analysis in Section 2.2 and retain a higher
order term in the Taylor expansion of λ(xn + `/2, t) in (5)2. Thus we now write

λn(t) = λ

(
xn−1 + xn

2
, t

)
= λ(xn + `/2, t) = λ+

1

2
`λx + . . .

and

V (λn) = V (λ+ `λx/2 + . . .) = V (λ) + V ′(λ)
1

2
`λx + . . . .

Using this approximation for V (λn) in (3) leads to

vt =
V (λ)− v

τ
+

`

2τ
V ′(λ)λx. (22)

The modified continuous model is therefore comprised of (22) and (6)1. Note the
presence of the λx term above which will lead to a uxx term in the linearized equation
and therefore an additional k2 term in the dispersion relation.

5.1 Stability of steady uniform motion in second continuous model

The stability of a steady uniform motion based on the modified continuous model (6)1,
(22) can be examined as before. For the reasons described at the beginning of Section
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4.2, the perturbed motion can be expressed as

λ(x, t) = λ∗ + `ux(x, t), v(x, t) = v∗ + ut(x, t).

This automatically satisfies the compatibility equation (6)1. Substituting this into the
equation of motion (22) and linearizing leads to

utt = a1 `ux +
1

2
a1 `

2uxx − a2ut

where a1 and a2 are again given by (12). On seeking exponential solutions in the form
(19) we are led to the dispersion relation ω2 + (2b1 + i2b2)ω+ (d1 + id2) = 0 where now

2b1 = 0, 2b2 = −a2, d1 = −1

2
k2`2 a1, d2 = k` a1.

Both roots ω of the dispersion relation have positive imaginary parts provided b2 < 0
and 4b1b2d2 − 4d1b

2
2 > d22, which specialize to a2 > 0, a22 > 2a1 > 0. These can be

written in terms of the equilibrium velocity function and reaction time by using (12)
as

1

2τ
> V ′(λ∗) > 0.

This is identical to the requirements for stability according to the discrete model.

Thus again, stability requires the equilibrium velocity function to be monotonically
increasing, as well as the reaction time to be positive. These are both quite reasonable
requirements. However they is not sufficient for stability. For a given headway λ∗,
the steady uniform motion will be unstable if the driver has a slow response, i.e. if
τ > 1/[2V ′(λ∗)]. Otherwise it is stable.

6 Concluding remark.

In summary, in this paper we have used an explicit example to illustrate how a contin-
uum model can behave differently to a discrete model even if the former was nominally
“derived” from the latter. The steps involved in the typical derivations can be quite
subtle and so it is important to not blindly accept the resulting macroscopic model.
Similar investigations can of course be carried out on various other examples including
the one mentioned in the Introduction: the relation between the microscopic model (b)
and the macroscopic model (c).
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7 APPENDIX 1: Comments on traffic flow

This is not of course a paper about the dynamics of traffic flow. However, since this
field is not particularly familiar to mechanical engineers, it may be interesting to the
reader to connect some aspects of this paper to the literature on traffic flow.

(i) In the mathematical modeling of traffic, discrete models of the type discussed
in Section 2.1 are referred to as Car Following Models. The particular discrete
model (1), (3) is referred to as the Optimum Velocity Model.

(ii) Despite its simplicity, the LWR model – the continuous version of (1), (2) – is
remarkably successful in describing many (but not all) phenomena observed in
traffic flow, e.g. see Chapter 8 of Treiber and Kesting [9].

(iii) The modified macroscopic equation of motion (22) is precisely (the Lagrangian
version of) the Payne-Whitham model, see Payne [6] and Whitham, Section 3.1
of [10].

(iv) Many models of traffic flow correspond to various generalizations of (3) of the
form

v̇n = a(λ̇n, λn, vn).

(v) As noted at the end of Section 5.1, there is a critical time τc = 1/[2V ′(λ∗)] such
that the steady uniform motion is stable only if the driver’s reaction time is
smaller than this critical value. Note that if V is a concave function, then V ′′ < 0
and V ′ decreases monotonically. Thus the larger the headway λ∗, the larger is
the value of the critical time τc, and so the driver has more time to react in.

(vi) Much of the literature on traffic flow is formulated in an Eulerian framework. In
such a formulation, it is more convenient to work with the traffic density ρ rather
than the headway λ. They are related by ρ = 1/λ. All of the fields in the Eulerian
formulation are expressed as functions of the current location of a vehicle y, and
time t. The theory is then formulated in terms of ρ(y, t) and v(y, t).

8 APPENDIX 2: An elementary result in algebra.

In control theory, one frequently has to examine the (complex) zeros of a polynomial
with real coefficients. The stability or not of the underlying system usually depends
on the signs of the real parts of these zeros. Many special methods for examining
these signs, without having to explicitly find the zeros, have been developed in that
literature. However those special methods appear to be limited to polynomials with real
coefficients. In this paper we repeatedly encounter a quadratic equation with complex
coefficients whose roots must have a certain sign for stability. Even though this is
an elementary problem, and the result is easily derivable, there does not seem to be
a standard reference for the result. Thus in this appendix, we derive necessary and
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sufficient conditions for both roots of a quadratic equation with complex coefficients to
have the same sign.

Following Hardy [4], consider the quadratic equation

z2 + 2bz + d = 0 (23)

where the coefficients b and c are complex:

b = b1 + ib2, d = d1 + id2. (24)

First observe that since the sum of the two roots of the quadratic equation (23) equals
−2b, if both roots have negative imaginary parts then necessarily b2 > 0 while if both
roots have positive imaginary parts then necessarily b2 < 0.

It is convenient to write (23) as

(z + b)2 = b2 − d, (25)

and to set
z + b = α+ iβ, b2 − d = h+ ik. (26)

The quadratic equation can now be written as

(α+ iβ)2 = h+ ik, (27)

leading to the pair of equations

α2 − β2 = h, 2αβ = k, (28)

that only involve real valued quantities. Solving (28) gives

α = ±

√√
h2 + k2 + h

2
, β = ±

√√
h2 + k2 − h

2
. (29)

Since 2αβ = k, if k > 0 we take the same sign for both square roots (i.e. both plus
and both minus); if k < 0 we take opposite signs (i.e. one plus, the other minus, and
the converse).

Since z = α + iβ − b = α + iβ − b1 − ib2 = α − b1 + i(β − b2) both roots z have
negative imaginary part if β < b2, i.e.

−b2 <

√√
h2 + k2 − h

2
< b2, (recall that b2 > 0 in this case). (30)

Both roots have positive imaginary parts if β > b2, i.e.

b2 <

√√
h2 + k2 − h

2
< −b2, (recall that b2 < 0 in this case). (31)
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On substituting for h and k from (26)2 and (24) and simplifying leads to the following
explicit conditions: Both roots have negative imaginary parts if and only if

b2 > 0, 4b1b2d2 − 4d1b
2
2 > d22. (32)

Both roots have positive imaginary parts if and only if

b2 < 0, 4b1b2d2 − 4d1b
2
2 > d22. (33)
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