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Do Firms Underinvest in Long-Term Research?
Evidence from Cancer Clinical Trials/

By Eric BupisH, BENJAMIN N. RoIN, AND HEIDI WILLIAMS

We investigate whether private research investments are distorted
away from long-term projects. Our theoretical model highlights two
potential sources of this distortion: short-termism and the fixed pat-
ent term. Our empirical context is cancer research, where clinical
trials—and hence, project durations—are shorter for late-stage can-
cer treatments relative to early-stage treatments or cancer preven-
tion. Using newly constructed data, we document several sources
of evidence that together show private research investments are dis-
torted away from long-term projects. The value of life-years at stake
appears large. We analyze three potential policy responses: surro-
gate (non-mortality) clinical-trial endpoints, targeted R&D subsi-
dies, and patent design. (JEL D92, G31, 111, L65, 031, 034)

Over the last five years, eight new drugs have been approved to treat lung cancer,
the leading cause of US cancer deaths." All eight drugs targeted patients with the
most advanced form of lung cancer, and were approved on the basis of evidence that
the drugs generated incremental improvements in survival. A well-known example
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is Genentech’s drug Avastin, which was estimated to extend the life of late-stage
lung cancer patients from 10.3 months to 12.3 months.? In contrast, no drug has ever
been approved to prevent lung cancer, and only six drugs have ever been approved to
prevent any type of cancer. While this pattern could solely reflect market demand or
scientific challenges, in this paper we investigate an alternative hypothesis: private
firms may invest more in late-stage cancer drugs—and too little in early-stage can-
cer and cancer prevention drugs—because late-stage cancer drugs can be brought to
market comparatively quickly, whereas drugs to treat early-stage cancer and to pre-
vent cancer require a much longer time to bring to market. More broadly stated, we
investigate whether private firms differentially underinvest in long-term research, by
which we mean technologies with long time lags between the initial spark of an idea
and the availability of a commercially viable product. We document evidence that
such underinvestment is quantitatively significant in an important context—treat-
ments for cancer—and analyze potential policy responses.

The idea that companies may be excessively focused on behaviors with short-run
payoffs is an old one. A large policy- and practitioner-oriented literature has con-
jectured that managers may maximize short-term rather than long-term firm value
(Porter 1992a,b; National Academy of Engineering 1992). In the academic litera-
ture, Stein (1989) and others have argued that firms may be more impatient than neo-
classical models would predict due to frictions such as agency problems within the
firm. While such corporate short-termism has been widely discussed, little empirical
evidence exists to either support or refute this view (see Stein 2003 for a survey and
Asker, Farre-Mensa, and Ljungqvist 2015 for a more recent contribution).

We propose an additional reason why private firms may be particularly likely
to focus on the short term in the context of research and development (R&D): the
structure of the patent system.” Patents award innovators a fixed period of market
exclusivity (e.g., 20 years in the United States). Yet, since in many industries firms
file patents at the time of discovery (“invention”) rather than first sale (“commer-
cialization”), effective patent terms vary: inventions that commercialize at the time
of invention receive a full patent term, whereas inventions that have a long time
lag between invention and commercialization receive substantially reduced—or in
extreme cases, zero—effective patent terms. This means that the patent system pro-
vides, perhaps inadvertently, very little incentive for private firms to engage in long-
term research.” Our theoretical model clarifies that, in fact, there is a sense in which

2Specifically, Avastin was approved for “unresectable, locally advanced, recurrent or metastatic non-squa-
mous NSCLC [non-small cell lung cancer]” patients and the clinical trial effectiveness estimate is posted on the
Genentech website: http://www.gene.com/media/product-information/avastin-lung. As noted on the website, this is
the first drug to extend median survival time for this patient population beyond 1 year.

3While the importance of patents has been debated in many industries, given our empirical focus on the phar-
maceutical industry it is worth noting that a variety of evidence suggests that patents play a key role in motivating
innovation in the pharmaceutical industry, including industry interviews (Mansfield, Schwartz, and Wagner 1981;
Mansfield 1986; Levin et al. 1987; Cohen, Nelson, and Walsh 2000), the cost structure of new drug development
relative to the generic production (DiMasi, Hansen, and Grabowski 2003; Adams and Brantner 2006; Wroblewski
et al. 2009), and the fact that standard investment models used by pharmaceutical firms pay close attention to effec-
tive patent length (Mayer Brown 2009). Informal interviews we conducted with venture capitalists for this paper
also support this view, in the sense that these interviews highlighted the fixed term structure of the patent system as
something that has important effects on research investments (see online Appendix C).

41t has long been recognized that heterogeneity across inventions—such as variation in risk-adjusted costs
of development—implies that any given fixed patent term will award “too much” market exclusivity to some
inventions, and will be insufficient to motivate the development of others; on optimal patent length and optimal
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corporate short-termism and fixed patent terms reinforce each other in distorting
private research dollars away from long-term investments. The fixed patent term
reduces the number of calendar years for which private firms enjoy monopoly pro-
tection on investments, and excess discounting reduces the weight the private firm
places on each of those years relative to the societal weight.

The idea that firms may underinvest in long-term research, while intuitive, is dif-
ficult to test empirically. The key prediction is that there is “missing” private R&D
on scientifically feasible projects that would be developed but for their long com-
mercialization lags. In practice, we do not observe the commercialization lags of
projects that are never developed, and “missing” private R&D is hard to distinguish
from alternative explanations such as a lack of market demand or a lack of scientific
opportunities.

Two features of cancer markets allow us to make progress on quantifying this
missing R&D. First, the treatment of cancer patients is organized around the organ
(e.g., lung) and stage (e.g., metastatic) of disease, which provides a natural catego-
rization of both observed and potential R&D activity. Second, for each such group
of cancer patients we observe a good predictor of how long it would take to com-
mercialize drugs for those patients: survival time. Survival time predicts commer-
cialization lags because a firm commercializing a new cancer drug must complete
FDA -required clinical trials showing evidence that the drug is safe and effective; and,
for cancer clinical trials, “effective” is usually interpreted as improving survival.’

To illustrate, consider two examples of clinical trials for prostate cancer treat-
ments, both published in the New England Journal of Medicine in 2011. A first
study, de Bono et al. (2011), analyzed a treatment for metastatic prostate cancer
(an advanced stage of prostate cancer with a five-year survival rate on the order of
20 percent). The study tracked patient survival for a median time of 12.8 months, and
estimated statistically significant improvements in survival (a gain of 3.9 months of
life). A second study, Jones et al. (2011), analyzed a treatment for localized prostate
cancer (an early stage of prostate cancer with a five-year survival rate on the order
of 80 percent). The study tracked patient survival for a median time of 9.1 years,
estimating statistically significant improvements in survival. As expected, this stark
difference in patient follow-up times translates into a large difference in clinical
trial length: 3 years for the metastatic patient trial versus 18 years for the local-
ized patient trial. Consistent with the idea that commercialization lags differentially
reduce private R&D incentives, the study of metastatic cancer patients was funded
by a private firm (Cougar Biotechnology) whereas the study of localized cancer
patients was funded by the National Cancer Institute.

We construct data on all clinical trials for cancer treatments over the period
1973-2011, which we match to data on patient survival times over the same period.
Our survival data is drawn from patient-level cancer registry data, which we aggre-
gate to cancer-stage-level patient groups. Our measure of cancer treatment R&D
is newly constructed from a clinical trial registry that has cataloged cancer clinical

patent breadth see, e.g., Machlup (1958); Nordhaus (1969, 1972); Scherer (1972); Kaplow (1984); Gilbert and
Shapiro (1990); Klemperer (1990); and Scotchmer (1991). Relative to this literature, the patent analysis in our
model highlights a simple—and, we think, important—specific form of heterogeneity in patent-provided incentives
arising from commercialization lags that has potentially important consequences for welfare.

SThere are exceptions to this general statement, which our empirical work will take advantage of.
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FIGURE 1. SURVIVAL TIME AND R&D INVESTMENTS: STAGE-LEVEL DATA

Notes: This figure plots measures of clinical trial activity for each stage of cancer from 1973 to 2011. Panel A plots
two measures of clinical trial activity for each stage of cancer from 1973 to 2011 against five-year survival rate
among patients diagnosed with each stage between 1973-2004 (the cohorts for which five-year survival is uncen-
sored). The left-hand-side axis plots the number of clinical trials enrolling patients of each stage from 1973 to
2011. The right-hand-side axis plots the number of clinical trials enrolling patients of each stage from 1973 to 2011
divided by number of life-years lost—measured as age-gender-year specific life expectancy (in the absence of can-
cer) in the year of diagnosis, less observed survival time in years, averaged over patients diagnosed with that can-
cer-stage between 1973-1983 (to minimize censoring) multiplied by market size. Panel B is a bar chart plotting the
same data for localized, regional, and metastatic cancers, but also including the number of trials for preventive tech-
nologies as well as in situ and recurrent cancers. For details on the sample, see the text and online Data Appendix.

trials since the 1970s. The key feature of these R&D data which enables our analy-
sis is that for each clinical trial, the registry lists each of the specific patient groups
eligible to enroll in the trial—thus allowing a link between our measures of expected
commercialization lag (survival time) and R&D activity (clinical trial investments)
across cancer types and stages of disease.

Using this data, we document that, consistent with our conjectured distortion,
patient groups with longer commercialization lags (as proxied by higher survival
rates) tend to have lower levels of R&D investment. Panel A of gives a sense
of this basic pattern using stage-level data. On average, metastatic cancer patients
have a five-year survival rate of approximately 10 percent, and have nearly 12,000
clinical trials in our data. In contrast, localized cancer patients have a five-year sur-
vival rate of approximately 70 percent, and have just over 6,000 clinical trials in our
data. This pattern is even more stark if we contrast recurrent cancers (advanced can-
cers with very poor survival prospects) and cancer prevention: fewer than 500 trials
in our data aim to prevent cancer, whereas recurrent cancers have more than 17,000
trials. A rough adjustment for market size—looking at the number of clinical trials
per life-year lost from cancer—does little to change this basic pattern.

This new fact—a negative correlation between commercialization lags and R&D
investments—is consistent with our conjectured distortion. However, by itself this
fact is difficult to interpret for two reasons. First, this correlation need not reflect
a causal relationship between commercialization lags and R&D investments. For
example, if scientific opportunities are comparatively scarce for early-stage cancers,
then a policy that shortened commercialization lags may have no effect on R&D
investments. Second, even if this fact did reflect a causal effect of commercialization
lags on R&D investments, on its own this fact need not be evidence of a distortion.
As clarified by our theoretical model, the social planner is also more likely to pursue
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research projects that can be completed more quickly. To address these two con-
cerns, we document evidence from two complementary empirical tests.

First, we document causal evidence that shortening commercialization lags
increases R&D investments. The key idea behind this test is to take advantage of
the fact that some types of cancers are allowed to use surrogate endpoints (that is,
non-mortality based clinical trial endpoints), which break the link between patient
survival rates and clinical trial length. We document that there is not a negative
relationship between survival time and R&D in the sample of cancers allowed to
use surrogate endpoints. This suggests that our cross-sectional fact is unlikely to
be explained by factors such as the pattern of available scientific opportunities.
However, this test leaves open the possibility that the social planner and private
firms symmetrically respond to commercialization lags, and thus does not provide
direct evidence of a distortion.

Second, we contrast public and private R&D investments. Consistent with our
model, we document that commercialization lags reduce both public and private
R&D investments. But also consistent with our model—and consistent with the con-
jectured distortion—we document that the commercialization lag-R&D correlation
is quantitatively and statistically significantly more negative for privately financed
trials than for publicly financed trials.

As a complement to these empirical analyses, we also provide case study evi-
dence documenting that all six FDA-approved cancer prevention technologies—
technologies that should have long commercialization lags, and hence should be
affected by the conjectured distortion—either relied on the use of surrogate end-
points or were approved on the basis of publicly financed clinical trials. That is, with
the exception of a few instances where surrogate endpoints were able to be utilized,
there have been zero privately developed chemoprevention drugs. Taken together,
this body of evidence provides support for the idea that commercialization lags dis-
tort private R&D investments.

Our theoretical model describes two potential mechanisms for our empirical
results—corporate short-termism and the patent distortion—but our results do not
speak to which mechanism is quantitatively more important. The existing literature
also provides little insight into the expected magnitudes of either mechanism. On
one hand, the corporate finance literature has struggled to devise tests for the pres-
ence of short-termism bias, in part because the key theoretical implications often
focus on behaviors that by construction are undertaken by managers but unobserved
by the market. Perhaps most closely related is Bernstein (forthcoming), who docu-
ments that public firms pursue lower “quality” R&D than privately held firms, but
he lacks a direct measure of commercialization lags. On the other hand, the innova-
tion literature has provided remarkably little evidence that stronger patent protec-
tion induces more R&D investments. For example, Lerner (2002) and Sakakibara
and Branstetter (2001) find little evidence that stronger intellectual property rights
induce more R&D.

SWhile the prior innovation literature has primarily focused on how patents affect the level of R&D, note that
our model suggests a mechanism through which the structure of the patent system may also have important effects
on the direction of R&D. This idea has been discussed by several legal scholars (Eisenberg 2005; Abramowicz
2007; Roin 2010), but to the best of our knowledge has not previously been formally investigated either theoreti-
cally or empirically.
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We use our theoretical model to analyze the innovation and social welfare con-
sequences of three policy levers that could address this distortion: allowing firms to
rely on surrogate endpoints in clinical trials, a patent design change that would start
the patent clock at commercialization, and R&D subsidies targeting projects with
long commercialization lags. Two aspects of this analysis are important to high-
light. First, surrogate endpoints have benefits beyond just eliminating the distortion,
because the social planner also values completing projects more quickly. Second,
patent reforms would address only the distortion generated by patents, and would
not address the distortion generated by corporate short-termism. Given that our
empirical work does not quantify the relative importance of corporate short-termism
and patents, our analysis of patent reforms as a policy lever should be considered
suggestive rather than conclusive.

Our empirical focus on cancer treatments is of substantive interest because of
cancer’s tremendous morbidity and mortality burden. In 2009, cancer was the sec-
ond leading cause of death in the United States (after heart disease), accounting
for almost 25 percent of all deaths. Using an economic framework which values
improvements in health based on individuals’ willingness to pay, Murphy and Topel
(2006) estimate that a permanent 1 percent reduction in cancer mortality has a pres-
ent value to current and future generations of Americans of nearly $500 billion,
and that a cure (if feasible) would be worth about $50 trillion. Taking advantage
of our surrogate endpoint variation, we estimate counterfactual R&D allocations
and induced improvements in cancer survival rates that would have been observed
if commercialization lags were reduced. Based on these counterfactuals, we esti-
mate that among one cohort of patients—US cancer patients diagnosed in 2003—
longer commercialization lags generated around 890,000 lost life-years; valued at
$100,000 per life-year lost (Cutler 2004), the estimated value of these lost life-years
is on the order of $89 billion.

The paper proceeds as follows. Section I presents the model. Section II describes
our data. Section IIT documents the negative correlation between survival time and
R&D investments, and Section IV interprets this relationship. Section V derives a
back-of-the-envelope estimate of the life-years lost due to longer commercialization
lags. Section VI concludes.

I. Theory

We conceptualize R&D as consisting of two stages: invention and commercial-
ization. By invention we mean developing the basic idea for a product to the point
where it is patentable: producing a new chemical compound, building a prototype,
etc. By commercialization we mean all that is involved in bringing an invented prod-
uct to market: getting FDA approval for the new chemical compound, producing
the prototyped good at efficient scale, etc. The commercialization lag of an R&D
project is the amount of time between invention and commercialization.

Our purposefully simple model shows why private-sector R&D may be distorted
away from inventions with long commercialization lags. Note importantly that
both private and social R&D incentives decline with commercialization lag—all
else equal, both firms and society prefer inventions to come to market quickly. But,
due to either excessive discounting or the fixed patent term, private incentives will
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decline more rapidly than social incentives, which is what gives rise to the distor-
tion. Our model also analyzes three potential policy interventions which can be used
to address this distortion.

Reflecting our empirical setting we focus the model on the pharmaceutical indus-
try, though our analysis applies more broadly.

A. Preliminaries

A representative firm conducts undirected R&D which stochastically yields
inventions. Whenever the firm’s undirected R&D yields an invention, it then must
decide whether to invest directed R&D toward the goal of commercializing the spe-
cific invention. An invention is characterized by the following parameters:

Timing Parameters.—The year in which the invention is realized by the firm’s
undirected R&D is f,,,,,;, which we normalize to zero. The number of years that the
commercialization effort will take is t.,,,,, which we call commercialization lag.
In the context of the pharmaceutical industry, commercialization lags arise both in
research and in clinical development; to fix ideas, think of ., as the number of
years that it will take to conduct US Food and Drug Administration (FDA)-required
clinical trials. We treat t.,,,,, and several other parameters below as deterministic for
simplicity; in practice many of the parameters would be stochastic.

Cost of Commercialization.—If the firm elects to commercialize the invention
it incurs commercialization costs of c. For simplicity, we treat commercialization
costs as a one-time cost incurred at time f,,,,,,.” Conceptually, we think of the firm as
deciding at time t,,,,,, whether to allocate capital to the project, e.g., in pharmaceu-
ticals, the firm decides at time f,,,,,, Whether to invest in conducting clinical trials.

Likelihood of Successful Commercialization.—The commercialization effort
yields a commercially viable product with probability p. The success parameter p
can be interpreted as the likelihood that FDA clinical trials are successful.

Obsolescence Risk.—If the product is successfully commercialized, then it is
useful until superseded. We model obsolescence risk in a simple way, assuming that
obsolescence occurs with probability 1 — ~ per year in each year following £, .-
Obsolescence risk would more appropriately be modeled as an endogenous parame-
ter (for example, a function of R&D investments); for simplicity we follow much of

7 An alternative approach would be to interpret ¢ as the net present value of costs that are incurred over £,
years, but this raises the issue of which discount factor to use for the purpose of computing this net present value—
the neoclassical discount factor & or the short-termism discount factor nd. Treating costs as incurred at time f,,,,,
circumvents this issue, and captures the idea that clinical trials require similar financial resources whether they are
funded by a private firm or the government. Our approach also abstracts from staged investment and the associated
real-option considerations which, while important, are not directly related to the goals of our model: see, e.g.,
Gompers (1995) and Neher (1999) for analyses of staged financing.

8 An alternative would be to incorporate obsolescence that occurs before £,,,, into the probability of commer-
cialization success p, and only use the term obsolescence to describe cases where the product is superseded after
successful commercialization at £,,,,,. This is economically equivalent, but less convenient mathematically; see
especially formula (1) below.
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the previous patent theory literature in taking obsolescence risk as exogenous (e.g.,
Grossman and Lai 2004).”

Monopoly Profits and Social Value—If the product is successfully commercial-
ized, non-obsolete, and protected by patent, it yields profits of  per year to the invent-
ing firm, and social value of v""% per year.'° If the product were priced by a social
planner instead of a monopolist, it would yield social value of v > v"" per year.

Imitability.—If the product is successfully commercialized, non-obsolete, and
not protected by patent, generic entrants may imitate the commercialized product.'’
Imitation reduces the inventing firm’s profits from 7 to (1 — v)w, where v € [0, 1]
denotes the imitability of the product (that is, vulnerability to generic competition).
The case v = 1 corresponds to perfect imitability, which drives the inventing firm’s
profits to zero. We focus on v = 1 for most of the analysis, but note that even in
pharmaceuticals generic entry sometimes does not drive profits all the way to zero
(see Bronnenberg et al. 2013).

Discounting and Excess Impatience—The project’s neoclassical risk-adjusted
discount rate is r. Following Stein (2003), corporate short-termism can be modeled
as an excessive private-sector discount rate. For mathematical convenience we work
with discount factors instead of discount rates, so corporate short-termism is reflected
as a lower discount factor. Specifically, society applies the obsolescence-risk-weighted
discount factor 6 = ~/(1 + r), whereas private firms apply the discount factor n3,
with 1 < 1. The n term reflects excess impatience due to corporate short-termism.

Patent Term and Timing of Patent Filing.—In a fixed-term patent system, patents
for new inventions last 7,,,, years from the filing date,'2 So long as an invention
is protected by patent, imitation is illegal. Firms may choose whether to file for
patent protection at the time of invention f,,,, or at the time of commercialization
t.omm- If they file at the time of invention they receive patent protection with prob-
ability 1. If they wait until commercialization to file they receive patent protection
with probability ¢ < 1, reflecting the risk of disclosure, losing an R&D race, etc.
Pharmaceutical firms face very strong incentives to file patents at the time of inven-
tion (Wegner and Maebius 2001; Galli and Faller 2003; Schreiner and Doody 2006):

9 Across industries, many inventions become obsolete long before their patents expire (Schankerman and
Pakes 1986). However, this is generally not the case in the pharmaceutical industry, as many drugs are still in use
long after their initial FDA approval date and generate significant sales revenues near the end of their patent term
(Grabowski and Kyle 2007).

10 A natural alternative assumption would be to model profits as endogenous to entry, since more competition
could result in lower profits. We do not focus on this possibility here given that in our context, this would cut against
our distortion: projects with short commercialization lags should have more entry, and be lower profit, which would
in turn lower incentives for subsequent entry. Given that our data suggest that this dynamic is not sufficiently strong
to offset our main finding—that projects with short commercialization lags have more entry—we focus on an exog-
enous profit parameter for simplicity.

"1 the pharmaceutical industry, generic manufacturers are usually poised to enter the market as soon as patents
expire (Grabowski and Kyle 2007; Hemphill and Sampat 2012). Such formal analyses are consistent with anecdotal
evidence that industry analysts, and, e.g., the Wall Street Journal, closely track patent expirations in the pharmaceuti-
cal industry, and these patent expirations tend to result in sharp changes in the profitability of branded drugs.

2We here abstract away from the provisions of the 1984 Hatch-Waxman Act, which awards some qualifying
pharmaceutical firms extended patent terms; we discuss such policy levers in Section IE.
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delaying risks a competitor patenting first, or subsequent disclosures undermining
the drug’s novelty or non-obviousness for purposes of patentability (Thomas 2007;
Patrick 2005; Zanders 2011)."'3 In practice, firms almost always have possession of
the core patents over their drugs before entering clinical trials (Mossinghoff 1999;
Patrick 2005; Thomas 2007).!¥ For this reason we focus on the case of ¢ = 0 for
most of the analysis.

B. Effective Monopoly Life and Effective Total Life

We define an invention’s Effective Monopoly Life (EML) as the expected num-
ber of years, in present value terms as discounted by the private firm, that the firm
can expect to earn monopoly profits from the commercialized product. This is the
expected amount of time that the invention is commercially viable, protected by
patent, and not yet superseded. We focus our analysis on the case of inventions that
are imitable if not protected by patent (. = 1) and where firms must file for patent
protection at invention in order to receive patent protection (¢ = 0). This is the
most relevant case for the pharmaceutical industry; below we discuss other cases.

If tyutens > Leomm then EML can be written as

1,

‘patent”

1
(T]é) tl‘()rl’nl J— (n6) Illa[e”r
— r__

(1) EML = p D (W) = p =

1,

‘comm

The key thing to notice about equation (1) is the role of the timing parameters:
at best, the period of monopoly is from 7, tO #,4.,- This best case occurs if the
invention is successfully commercialized (which occurs with probability p) and not
superseded as of time #,,,,, (obsolescence risk is incorporated into ). As soon as
time reaches 7, the invention will be imitated and the monopoly position lost.
Note as well that if 7,46, < Zppmm» then EML = 0: by the time the invention is
commercialized, patent protection has expired.

Next, we define an invention’s Effective Total Life (ETL) as the expected number
of years, in present value terms as discounted by society, that the invention will be
commercialized and non-obsolete,

e t('(”n/ﬂ
2) ETL = p) 8 = p16_ 3

Teomm

There are two differences between EML and ETL. First, monopoly life runs at best
until 7,4, whereas total life runs indefinitely until the invention becomes obsolete.

13Zanders (2011, pp. 322-23), for example, argues: “A question that is often raised during my courses is ‘why
don’t companies wait as long as possible before patenting?” This is tempting, but given the fluid nature of employ-
ment in the industry and the general leakiness of information, this would be tantamount to commercial suicide.”

14 Although the law is not settled, FDA clinical trials most likely constitute a public disclosure of the drug; see
SmithKline Beecham Corp. v. Apotex Corp., 365 F.3d 1306, 1318 (Fed. Cir. 2004), opinion vacated and superseded,
403 F.3d 1331 (Fed. Cir. 2005). The SmithKline decision held that a drug’s use in clinical trials puts it in the public
domain, but since that opinion was vacated and the court decided the case on other grounds, the state of the law here
is unclear. Once an invention is in the public domain, the inventing firm must file for patent protection within one
year of public disclosure else they lose the right to patent (35 USC. 102).
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Second, monopoly life is measured according to the private-sector discount factor
10 whereas total life is measured according to the social discount factor 9.

If the invention is not perfectly imitable (. < 1) then the formula for EML would
need to be modified to account for the fact that profits do not fall all the way to zero
at tpa,em.15 In the extreme case of zero imitability (v = 0) and zero short-termism
(n = 1), EML and ETL coincide. If the invention has ¢ that is not only strictly
positive but sufficiently large, then the formula for EML would need to be modified
to account for the fact that firms may choose to file for patent protection at t.,,,
rather than #,,,,,,.'¢ In this case, the period of monopoly protection runs from ..,
tO Zopmm + Tparens> DUt the firm enjoys a successful, patent-protected invention with
probability of just pq rather than p.

C. Private and Social Incentives to Invest

A profit-maximizing firm attempts to commercialize an invention if and only if
the expected profits exceed the costs,

(3) Private Investment Occurs < EML - © > c.

In words, the firm can expect to enjoy monopoly profits of w for EML years. If
EML - w exceeds the costs of commercialization c, it is optimal to commercialize.

Suppose instead that society owned the firm. If commercialization is successful,
the social planner will price at marginal cost, and hence create social welfare of v per
year. Hence the social planner attempts to commercialize the invention if and only
if expected social welfare, if the good is priced at marginal cost, exceeds the costs
of commercialization,

(4) Investment is Socially Optimal < ETL - v > c.

Notice that ETL > EML and v > 7 by definition. By construction, this ignores
issues such as business stealing and R&D races which, although important, are not
the focus of our analysis.'” Thus, in our framework, anytime a private firm would
choose to commercialize an invention, so too would the social planner. The projects
that the private firm does not pursue, but that society would pursue if it owned the
firm, are those where

(5)  Private and Social Investment Differ < % <1< %

In words, private and social investment decisions differ when the social return is
positive but the private return is negative. The private market can under-provide
R&D if either EML/ETL < lorm/v < I.

!5The modified formula becomes EML = p( :”’7’,’71 (nd)" + (1 — L)Z:jw(né)t )
16The specific condition to check to see whether firms prefer to patent at £, OF £, is Which is larger of

,,,,,,,,,,

maceuticals) and the latter is larger for sufficiently large g.
7Bloom, Schankerman, and Van Reenen (2013) provide a recent analysis estimating the magnitude of business
stealing.

rrrrrrrrr
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D. Distortions in the Level and Composition of R&D

Our model yields distortions, relative to the social optimum, in both the level and
composition of commercialization activity. By distortion in level, we mean simply
that fewer inventions are commercialized by private firms than would be the case if
the social planner made commercialization decisions. This is a standard result. By
distortion in composition, we mean that the private market may choose to commer-
cialize A but not B, while a social planner would prefer to commercialize B over A.
That is, the private sector not only pursues too little R&D relative to the social opti-
mum, but also chooses the wrong projects relative to what the social planner would
choose. We state this formally as follows:'®

PROPOSITION 1: The private firm’s commercialization activity differs from the
social optimum in both the level and the composition:

(i) (Distortion in levels) Commercialization activity is strictly lower than socially
optimal, unless (i) patent terms are infinite (i.e., t,4p, = 00); (ii) firms are
not excessively impatient (i.e., 1 = 1); and (iii) monopolists capture full
social surplus (i.e., ® = v).

(i) (Distortion in composition) For two inventions, A and B, it is possible that
the expected social return (ETL - v/c) to pursuing invention A exceeds that
of invention B, yet invention A is not pursued while invention B is. For this to
be the case, at least one of the following must hold:"®

(a) mg/vg > T4/ v4, i.e., monopolists capture more profit as a proportion of
potential social value from invention B than from invention A.

(b) EMLy/ETLy > EML,/ETLy,, i.e., the ratio of monopoly life to total use-
ful life is larger for invention B than for invention A.

As noted above, Part 1 of Proposition 1 is a standard result, which indicates that
the private sector pursues too little inventive activity relative to the first best. Part 2
of Proposition 1 indicates that distortions in composition can arise from differences
across inventions in either ©/v or EML/ETL.

An invention’s profitability to social value ratio 7/v depends on the monop-
olist’s ability to capture the value its invention creates.”} One extreme case is
if the monopolist can perfectly price discriminate, in which case w/v = 1.
The other extreme case is inventions that are non-excludable, in which case
/v = 0. An example of the latter is a study on a non-excludable form of disease

18 Proofs are presented in online Appendix A.

19We use subscripts A and B to denote the project-specific parameters associated with these specific inventions
(e.g., ™4 is the monopoly profits associated with successful commercialization of invention A).

20Past authors have estimated that on the whole, pharmaceutical firms appropriate only a small share of the
social value of their innovations—generally between 2-20 percent (Philipson and Jena 2006; Lakdawalla et al.
2010; Lindgren and Jonsson 2012). Nordhaus (2004) estimates that this general conclusion holds outside of the
pharmaceutical industry as well, arguing that only a minuscule fraction of the social returns from technological
advances over the 1948-2001 period was captured by producers.
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prevention: e.g., a profit-maximizing firm would never conduct an expensive clinical
trial to test whether a particular pattern of cardiovascular exercise reduces the risk of
heart disease, because knowledge that a specific pattern of exercise reduces the risk
of heart disease is non-excludable.

An invention’s monopoly-life to total-life ratio, EML/ETL, describes the propor-
tion of the invention’s total useful life in which the private firm enjoys monopoly
profits. Our central point is that an invention’s EML/ETL ratio declines with com-
mercialization lag £.,,,,,, due to both short-termism and the fixed patent term. To see
this, write out the expression for EML/ETL assuming that 7., < t

> Ipatent+

(08) — ()
(6) EML:p 1 —nd _ 1—6(
ETL S =

eomm __ rrltpmem 6tpatem_tc'omm)

Notice, first, that if n = 1 and #,4,,, = oo (there is no short-termism and pat-
ent length is infinite), then EML/ETL = 1 for all t,,,,,.>'| Commercialization lag
reduces incentives to invest, but it reduces both private and social incentives to invest
at exactly the same rate.

Notice, too, that if n = 1 and #,4n = Lomm + k, that is, the patent term is
finite but with the patent clock modified to start at commercialization, not invention
(recall that we have normalized f;,,,,, = 0), then EML/ETL again doesn’t vary with
tomm- EML is strictly less than ETL under this patent design, but, just as with infinite
patents, commercialization lag reduces private and social incentives at exactly the
same rate.

However, if either 1 < 1 or the patent term is finite and starts at invention, then
EML/ETL declines with t.,,,,. The decline in private incentives is more rapid than
the decline in social incentives.

PROPOSITION 2: Comparative statics of an invention’s proportion of monopoly
life to total life, EML/ETL, on its commercialization lag, t,,,,-

(i) If there is no short-termism (v = 1) and the patent term is either
infinite (tygene = 00) or is finite but the clock starts at commercialization
(toatent = lteomm + k for finite k), then the ratio of monopoly life to total life,
EML/ETL, is constant in t,.,,,,, : 0(EML/ETL)/0t.,pm = O.

(ii) If firms are excessively impatient (v < 1) or the patent term is finite and
starts at invention, EML/ETL is decreasing in t,,,,,,.

(@) If toomm <tpasens the decline is strict: O(EML/ETL)/ Ot ppy < O.
(B) If teomm = toasens then EML = 0. Hence EML/ETL = 0.

21 Recall that while our analysis focuses on the case of perfect imitability (. = 1), an economically equivalent
condition to #,4,,, = oo isift = 0. We discuss imperfect imitability in Section IE.
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This result, in combination with Proposition 1, shows that private-sector R&D is
particularly distorted away from R&D projects with long commercialization lags,
relative to projects with shorter commercialization lags. Moreover, there is a sense
in which the effect of excess impatience on O(EML/ETL)/ 1.y, and the effect of
the fixed patent term on O(EML/ETL)/ Ot reinforce each other. The fixed patent
term means that increasing ¢, by one year reduces the number of calendar years
of monopoly life by one year. Excess discounting means that the private firm places
too little weight on each of these years of monopoly life relative to their societal
value. To see thits def:lomposition formally, define an invention’s effective patent life
as EPL = p) /""" 8" = p(8%om — §'wm) /(1 — §); EPL is EML but using the
social discount factor 8. We can decompose EML/ETL into an excessive discount-
ing term and a fixed patent term as

(7) EML _ EML . EPL
ETL EPL ETL

excess discounting  fixed patents

It is easy to see that both terms in this decomposition are strictly declining with
commercialization lag:

PROPOSITION 3: Decomposition of O(EML/ETL)/ Ot into the effect of excess
discounting and the effect of the fixed patent term:

(i) If there is excess discounting, < 1, then O(EML/EPL)/Ot.ppm < O for

tcnmm < tpalent'

(ii) If there is a fixed patent term—a finite patent clock that starts at invention—
then 8(EPL/ETL)/al‘COmm < OfOV leomm < tpatent'

Two hypothetical examples can illustrate this distortion in the composition of
R&D. A vaccine administered to men at age 20 which prevented prostate cancer
(which tends to affect men in their fifties or later) would have a high social value v
(given the high morbidity and mortality burden of prostate cancer), but would have
a low (or zero) EML/ETL ratio because of the long required clinical trials. In con-
trast, a drug administered to late-stage prostate cancer patients which extended life
from, say, six months to eight months, would have a lower social value v, but a high
EML/ETL ratio because of the short required clinical trials. Note that in the case of
these examples, our distortion of interest—generated by the difference in EML/ETL
ratios—would be reinforced by differences in 7/ v.

E. Policy Responses

Our empirical work will provide support for the idea that private-sector R&D
activity is distorted away from projects with long commercialization lags. Given
that evidence, in this subsection we discuss the innovation and social welfare con-
sequences of three policy interventions that could be used to address this distortion:
a policy change that would allow firms to rely on surrogate (non-mortality) end-
points in clinical trials; a patent design change that would start the patent clock at
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commercialization; and targeted R&D subsidies. Some readers may prefer to skip
this section on a first reading, returning to our analysis of policy responses after
reading the empirical analysis.

Policy Lever: Surrogate Endpoints.—A major factor determining the duration of
a clinical trial is the amount of time needed to observe statistically significant dif-
ferences in treatment outcomes among enrolled patients, known as the “follow-up
period.” The length of the follow-up period largely depends on two factors: the nat-
ural progression of the disease, and the clinical trial endpoints required by govern-
ment regulators.

Prior to marketing a new drug, firms must submit clinical trial results to the US
Food and Drug Administration (FDA) documenting that their product meets a set of
safety and efficacy standards. Over time, the FDA’s interpretation of which clinical
trial endpoints can be used to support claims that a drug is effective have varied (see,
e.g., Johnson, Williams, and Pazdur 2003). Conventionally, clinical trials evaluate
whether a candidate product provides a clinical benefit to mortality—be it overall
survival or a closely related measure such as “disease free survival,” which measures
time until cancer recurrence. However, in recent years there has been increased
interest in using surrogate endpoints as a substitute for the standard clinical end-
points in a drug trial. In the case of hypertension, for example, lower blood pres-
sure is accepted as a surrogate for the clinical endpoint of preventing cardiovascular
complications (Lee et al. 2006). As we discuss in Section IVA, blood cell counts and
related measures have been accepted surrogate endpoints for hematologic malignan-
cies (leukemias and lymphomas).

Surrogate endpoints have the potential to dramatically reduce the length of clini-
cal trials necessary to test whether a drug is effective. However, surrogate endpoints
have also been extremely controversial. As described by Fleming (2005), although
treatment effects on surrogate endpoints clearly establish some form of biological
activity, changes in surrogate endpoints may not correlate with changes in the clini-
cal endpoint of interest. As an example, he discusses prostate specific antigen (PSA)
levels: although PSA levels are correlated with the extent of prostate cancer, the
PSA level itself is not a mechanism through which prostate cancer progresses, and
thus it is unknown whether a treatment that reduced PSA levels in prostate cancer
patients would generate improvements in survival.”” Reflecting this type of concern,
most cancers use surrogate endpoints only on a limited, somewhat ad hoc basis.*

22 A non-cancer example of the controversy around surrogate endpoints arose recently in the context of treat-
ments for early-stage Alzheimer’s disease. In a 2013 editorial in the New England Journal of Medicine, two FDA
officials discussed the possibility of accepting new types of surrogate endpoints in clinical trials of treatments for
early-stage Alzheimer’s disease (Kozauer and Katz 2013)—a proposal that was sharply criticized by the editorial
board of the New York Times (“Drugs for Early-Stage Alzheimer’s,” March 18, 2013), among others.

23 As discussed by US Food and Drug Administration (2007) and Johnson, Williams, and Pazdur (2003), since
1992 the FDA’s accelerated approval regulations have allowed for the following: for diseases that are serious or
life-threatening, a drug can be FDA approved based on a surrogate endpoint that is reasonably likely to predict
clinical benefit but is not established at a level that would support regular approval, under the condition that the
applicant is required to perform a post-marketing study to demonstrate that treatment with the drug is indeed sup-
ported with clinical benefit. If the subsequent trials fail to demonstrate clinical benefit, or if the applicant does not
conduct the required studies, the FDA can act quickly to remove the drug from the market. A recent President’s
Council of Advisors on Science and Technology (2012) report argued that the FDA should expand this accelerated
approval program.
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In the context of our model, surrogate endpoints can be conceptualized as strictly
reducing commercialization lag t.,,,,: firms can always choose to use survival as
an endpoint, and we assume that the surrogate endpoint can be observed strictly
earlier than the survival outcome. For simplicity, we analyze the effect of an “ideal”
surrogate endpoint—one that perfectly correlates with the true clinical outcome of
interest. This assumption allows us to make the following simple point.

PROPOSITION 4: Allowing surrogate endpoints:

(i) Strictly increases commercialization activity: some inventions that would not
otherwise have been commercialized now are, and all inventions that would
be commercialized even without surrogate endpoints still are.

(ii) Strictly increases firm profits and social welfare.

(iii) Let 1,4y, denote commercialization lag, in the absence of a surrogate end-
point, based on the time required to show an effect on patient mortality. Let
Lomm < leomm denote the commercialization lag if surrogate endpoints are
allowed. If .,y is independent of 1., that is, if the time required to show
impacts on the surrogate endpoint is independent of the time required to
show impacts on mortality, then allowing surrogate endpoints eliminates the
distortion in composition associated with commercialization lag absent the
surrogate endpoint: 8E<%|?wmm = x) /ox = 0.

Clearly this proposition is based on a strong assumption of the existence of an
ideal surrogate endpoint. Our objective here is simply to show that there would
be social welfare benefits from the scientific discovery, validation, and allowance
of valid surrogate endpoints.”} Note that surrogate endpoints are valuable both
because they eliminate the distortion in composition of R&D and because, even in
the absence of a distortion, it is socially valuable to complete R&D projects sooner.

Patent Design.—In this section we discuss modifications to the fixed term patent
design that address the distortion away from long-term R&D projects. Note, impor-
tantly, that the patent design policy response differs from our other policy responses
in that it addresses only the fixed patent term as a source of distortion, and not exces-
sive discounting. As we will discuss below, if patents are unimportant for motivating
R&D (formally, imitability o is zero), the patent design policy response will not be
effective at addressing the distortion of interest, but in our simple framework this
policy reform would also not be harmful.*

24The use of invalid surrogate endpoints could increase R&D investments but not generate any corresponding
gains in survival. In the specific empirical context we analyze in Section IVA, we will document evidence that sur-
rogate endpoints for hematologic cancers appear to have increased R&D investments, and that this increase in R&D
investments appears to have translated into real improvements in patient health.

25 0ur model focuses on a Nordhaus (1969)-style trade-off between the incentives for developing a new innova-
tion and the deadweight loss of higher prices during the life of the patent. By construction, this type of framework
abstracts away from other ways in which patent reforms could impact social welfare, including business stealing,
the effects of patents on follow-on innovation, litigation, or the benefits of the disclosure function of the patent
system.
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We begin with a simple result, analogous to part (i) of Proposition 2, that shows
that starting the patent clock at commercialization, rather than invention, eliminates
the distortion in composition arising from the patent system.

PROPOSITION 5: If the patent clock starts at commercialization, i.e., t,uen

= loomm + X for fixed and finite x, then EPL/ETL is independent of commercializa-
tion lag, t.opm

If we make some admittedly stylized assumptions on the distribution of invention
possibilities, we can make a stronger claim, which is that starting the patent clock at
commercialization strictly increases social welfare. In fact, the result says we should
go further: social welfare is maximized by awarding more post-commercialization
patent life to inventions with longer commercialization lag than inventions with
shorter commercialization lag, in contrast to the current system which awards inven-
tions with longer commercialization lag less post-commercialization patent life than
inventions with shorter lag.

PROPOSITION 6: Make the following assumptions about the distribution of inven-
tion parameters: 8 < 1 and n < 1 are constant across inventions, so that EML
varies only with commercialization lag 1.q,,, patent life t,,,,;, and success prob-
ability p; the social-to-private value ratios v/m and v""? /T are constant across
inventions, the density of inventions on the extensive margin, i.e., the expected num-
ber of new inventions elicited by a marginal increase in t,qey, is uniform; and, the
expectation of costs, c, conditional on an invention being at the margin, is weakly
increasing in t.,,,,. Suppose that private firms make commercialization decisions
according to equation (3). Suppose that the length of the patent award can be con-
ditioned on t.,,,, but not on the other invention parameters. Then socially optimal
patent policy requires that the number of years of post-commercialization patent
protection increases monotonically with t.,,,,,, whereas under the fixed-term patent
system the number of years of post-commercialization patent protection decreases
monotonically with 1.,

The intuition for this result, which was conjectured informally in Roin (2010), is
as follows. Fix a level of .,,,,, and consider an increase in post-commercialization
patent life for inventions with this commercialization lag. This increase in patent
protection has benefits and costs. The benefit is that more inventions with com-
mercialization lag #.,,,, will be commercialized at the margin; technically, we have
increased EML and hence made it more likely that equation (3) obtains. The cost is
that, for inframarginal inventions that would have been pursued absent the increase
in patent protection, there is more deadweight loss, for the standard reason that
social value under monopoly is smaller than social value under perfect competition
from generic entrants. The proof makes two key observations. First, the deadweight
loss costs on the intensive margin are strictly decreasing with ¢.,,,,, both because
the costs are pushed out further into the future and because the set of invention
parameters for which private firms choose to commercialize is shrinking. Second,
the benefits at the extensive margin are actually increasing with z.,,,,: for a private
firm to be willing to commercialize an invention with higher ¢.,,,,, the invention
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must be higher quality in the sense of higher private value m—especially if the firm
is excessively impatient—which in turn implies higher social value v"***? and v.?S
Intuitively, when t.,,,, is large, the inventions at the margin are especially worth
encouraging, and the cost of doing so is comparatively low. Hence, the larger is
t.omm» the larger should be post-commercialization patent life.

We wish to make four further remarks concerning this result. First, conditioning
the length of patent award on ., should be feasible in practice, at least in the case of
pharmaceuticals, since completion of FDA trials is intrinsically an observable event.
Second, while we acknowledge that our assumption of constant social-to-private
value ratios v""*"? /7 and v/ is stylized, we note that the types of inventions that
take longer to reach the market (e.g., treatments of early-stage disease and disease
prevention) seem likely to have especially high such ratios. If these ratios increase
with t.,.., then this increases the rate at which benefits at the extensive margin
increase with £.,,,,, strengthening the result. Third, the 1984 Hatch-Waxman Act?’
contains a provision granting some qualifying firms a partial extension of patent life
based on the time that the drug spent in clinical trials. Specifically, the act awards
qualifying firms an additional half-year of patent life for every year spent in clinical
trials, up to a maximum of 5 years not exceeding 14 total years. Our result says that
the Hatch-Waxman extension is directionally correct, but that optimal policy would
go further. Finally, we are here abstracting away from strategic responses that could
be “unintended consequences” from such a change in patent policy.”® In practice,
awarding FDA-granted exclusivity periods that run from the date of FDA approval
would likely accomplish the same goal, be administratively simpler to implement,
and avoid unintended problems that could arise with revising the patent system.>

Our next result considers a more limited set of patent-design instruments than is
allowed for by Proposition 6 and shows that there is still scope for improvement.

PROPOSITION 7: Suppose that the length of the patent term must be fixed, but that
the patent clock can start either at invention or commercialization. Make the same
assumptions regarding the distribution of invention parameters as in Proposition 6.
Given any patent term that runs from the date of invention, there exists a patent term
that runs from the date of commercialization that strictly increases social welfare.
In particular, the optimal patent term that runs from the date of commercialization
is superior to the optimal patent term running from the date of invention.

261t is not necessary for the result that benefits at the extensive margin are weakly increasing with £.,,,,, only
that they do not decrease too quickly (i.e., faster than do the deadweight loss costs on the intensive margin). For
this reason, several of the assumptions in the proposition can be slightly relaxed. We have a numerical example, in
which the density of the extensive margin is bimodal with a large decline between the two modes, which illustrates
that the conclusion of the proposition is false if the density falls off too quickly. Intuitively, in the region in which
the density on the extensive margins is very low, it is not sufficiently socially valuable to elicit inventions on the
extensive margin to justify the deadweight loss costs for inventions on the intensive margin.

27Ppublic Law 98-417 (1984)

28More generally, we here restrict our attention to policy mechanisms that work within the existing patent
system. More sophisticated policy mechanisms—for instance, in conjunction with the ideas in Kremer (1998) and
Weyl and Tirole (2012)—could also be used.

29FDA exclusivity periods are currently granted to new drug applications (three years for new indications; five
years for new molecular entities); to orphan drugs (seven years); and to pediatric approvals (six months).
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Proposition 7 is useful for informing patent policy if it is possible to start the
patent clock at commercialization, but difficult to condition the length of the patent
award on the precise amount of time between invention and commercialization.
As with the optimal policy considered above in Proposition 6, this more circum-
scribed policy proposal could be implemented via FDA-granted exclusivity periods
as opposed to a restructuring of the patent system. A recent policy in the spirit of this
result is a provision of the 2010 Patient Protection and Affordable Care Act,*” which
grants some qualifying drugs (specifically, biologic drugs) a 12-year exclusivity
period running from the date of FDA approval, which runs concurrently with any
remaining patent terms. Proposition 7 supports extending this type of post-approval
exclusivity period to all drug approvals (but note that our analysis does not specify
the optimal length of such an exclusivity period).

A caveat to the results in this section is that they presume that patents are an
important way to incentivize research and development activity.?! If patents do not
increase research investments, the policy responses analyzed in this section would
be ineffective. Formally, consider an industry in which imitability v = 0, so patents
are not necessary to protect monopoly profits from projects. In such an industry, the
modifications to patent design outlined in Propositions 5-7 will have no effect on
R&D activity, although it is worth noting that in our simple framework these pol-
icy responses would not be harmful, only ineffective. By contrast, our other policy
responses would be effective in such an industry provided that corporate short-ter-
mism is relevant (n < 1).

Policy Lever: Targeted R&D Subsidies.—The logic that targeted R&D subsidies
can improve social welfare is simple and standard. Take a particular invention that is
not pursued by the private sector, but that would be pursued in the first-best world, i.e.,

(8) EML-w < ¢ < ETL - v.

Suppose that the deadweight loss of taxation is T per dollar spent. Then, so long
as the magnitude of the potential social gain is large enough relative to the magni-
tude of the private loss—that is, the magnitude of the first inequality in (8) is small
relative to the magnitude of the second inequality in (8)—there is a potential for
welfare-increasing intervention.

Recall that we defined an invention’s effective patent life as EPL = pZ?'m’fl &
i.e., EPL is just like EML except that it uses the social discount factor § rather than
the private discount factor 3. The condition for the existence of a socially beneficial

R&D subsidy is:

>

(9) EML -+ 7 < ¢ and ¢ + 7 (¢ — EML + ©) < EPL - v""" + (ETL — EPL) - v.

In words, the conditions are that, first, the private firm would not commercialize
on its own, and, second, that the social value from commercialization exceeds the

30Public Law 111-148 (2010).
31 As discussed in footnote 3, while patents have been controversial in many industries, a variety of sources of
evidence suggest that patents are likely to be important in the pharmaceutical industry.
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social costs—both the direct cost of commercializing, ¢, and the deadweight loss
cost of the required subsidy. Notice that the private firm’s commercialization deci-
sion (first without and then with the subsidy) depends on EML, whereas the value
society gets from the commercialized invention during the period it is under patent
protection depends on EPL.

While condition (9) can obtain for inventions with any commercialization lag, it
is especially likely to obtain for inventions with large commercialization lags. This
is because such inventions spend a larger proportion of their useful life off-patent, so
it is more likely that on-patent life is not sufficient to incentivize private investment,
while at the same time off-patent life is of sufficient importance that the value of
public investment overcomes the deadweight loss of taxation. We can formalize this
logic as follows.

PROPOSITION 8: Make the same assumptions regarding the distribution of inven-
tion parameters as in Proposition 6. Suppose that private firms make commercial-
ization decisions according to whether or not EML - © 4+ s > ¢, where s is an
amount of government subsidy. Suppose that government R&D subsidies can be
conditioned on t,,,,, but not on the other invention parameters. Then, for any target
level of total subsidy expenditures, socially optimal subsidy policy requires that sub-
sidies are strictly increasing in t.,,,m

The intuition for the proof of this result is similar to that for Proposition 6 on
optimal patent length: the higher is t,,,,,, the higher is the quality of the marginally
commercialized invention, and the smaller is the cost from needlessly subsidizing
inframarginal inventions. As a policy matter, the most practical way to condition
subsidies on t.,,,, might be to target subsidies at R&D that relates to treatment of
early-stage disease and to disease prevention.

II. Data

Our empirical work focuses on cancer R&D for three reasons. First, unlike for
many diseases, high-quality clinical data exists for cancer patients which accurately
tracks patient-level characteristics such as survival time—a key variable needed for
our analysis.?? Second, the existence of a standardized classification system for can-
cer—namely, standardized cancer organs of origin (such as breast and lung) and
stages of cancers at the time of diagnosis (such as localized and metastatic)—facil-
itates a relatively clean match between aggregated patient-level clinical data and
information on clinical trial investments relevant to different groups of patients.
Such a match is possible in large part because cancer drug development tends to
be specific to the organ and stage of the primary tumor: for example, Genentech’s
drug Bevacizumab was approved by the FDA in 2004 for the treatment of patients

32The prostate cancer clinical trials discussed in the introduction illustrate why we would expect commercial-
ization lags to be longer for clinical trials enrolling patients with longer expected survival times: because clinical
trials must generally show evidence that treatments improve mortality-related outcomes, trials tend to be longer
when enrolling patients with longer survival times. In online Appendix A, we outline a power calculation of the type
used to guide the design of clinical trials in order to fix ideas on this point.
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with metastatic carcinoma of the colon and rectum.?? Cancer registry data records
the organ and stage of the primary tumor at the time of diagnosis, thus allowing us
to estimate the characteristics of patients (such as survival times) relevant to each
cancer-stage. This mapping is of course imperfect: for example, the cancer
registry data lacks the granularity required to precisely distinguish between
hormone-receptor positive and hormone-receptor negative breast cancer patients.
However, the level of clinical detail available in cancer registry data is remarkably
complete relative to data available for other diseases. Finally, as discussed in the
introduction, cancer is of interest from a substantive perspective given its high mor-
bidity and mortality burden.

Sections IIA, 1IB, and IIC describe our datasets, and Section IID presents some
basic summary statistics. Online Appendix B describes our data construction in
more detail.

A. SEER Cancer Registry Data

The clinical data we use is a standard patient-level research database called
the Surveillance, Epidemiology, and End Results (SEER) data, compiled by the
National Cancer Institute (NCI) and available for the years 1973-2009 (SEER
2012). SEER is considered the authoritative source of information on cancer inci-
dence and survival in the United States. The key variables we use for our analysis
are the following:

Cancer and Stage of Patients.—Physicians diagnose cancer by the organ of ori-
gin and by stages that correspond to the extent of the disease’s spread at the time of
initial diagnosis. We base our data construction on the standard SEER cancer classi-
fication system (including 80 cancer types) and the stage classification system that
is most consistently available in the SEER data: localized, regional, and metastatic
(listed in order of increasing extent of disease).> In addition to constructing cancer-
stage-specific survival times, we also use information on the cancer and stage of
diagnosis to construct a count of the number of patients diagnosed as a proxy for
market size.

Survival Time.—SEER is administratively linked to follow-up mortality data from
the National Center for Health Statistics (NCHS)—in our data, as of December 31,
2009. Our primary measure of survival time is five-year survival, defined over all
uncensored patient cohorts (1973-2004). We also use an early cohort of patients

33This overly simplified description glosses over several important issues, including off-label use of cancer
drugs, which we discuss more in online Appendix B.

34For more details, see the SEER training website: http://training.seer.cancer.gov/ss2k/staging/review.html. We
exclude in situ cancers from our analysis given that this category is relevant for only a few cancers (breast, cervical,
and melanoma), but our results are similar if these cancers are included. Two other cancer categories are important
but not monitored in the patient-level cancer registry data: remission and recurrence. A cancer is said to recur if it
returns after being undetectable for a period of time, and the time during which the cancer is undetectable is referred
to as remission. In general, recurrence is associated with poor survival prospects, but given that the cancer registry
data do not monitor remission or recurrence, it is not possible to empirically assign a survival time to these groups
of patients. Reflecting this data limitation, we do not examine trials enrolling only remission or recurrence cases in
our analysis. As shown in panel B of Figure 1, in situ and recurrent cancers fit our model well: with excellent (poor)
survival prospects corresponding to few (many) clinical trials, respectively.
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(1973-1983) with minimal censoring in our construction of the life lost measure
described below.

Basic Patient Demographics at the Time of Diagnosis.—We use the year of diag-
nosis together with information on patient sex and age at diagnosis to merge on
year-age-gender specific life expectancy data from the NCHS. We combine this data
on average life expectancy (in the absence of cancer) with our measure of observed
survival time for the 1973-1983 cohort in order to estimate the life lost due to cancer
for each patient.

B. National Cancer Institute Clinical Trials Registry

To measure R&D investments in cancer treatments, we construct a new clinical
trials dataset drawing on data from the US National Cancer Institute’s Physician
Data Query Cancer Clinical Trials Registry.>® The NCI registry was established in
1971, and claims to be the most comprehensive cancer clinical trials registry. The
intended purpose of the registry is to allow cancer patients and physicians to search
for clinical trials currently accepting participants, and to allow them to access infor-
mation and results from closed trials.

The NCI registry was not developed as a research database and—to the best of our
knowledge—has not previously been used as a data source by other researchers. The
key advantage of the NCI registry for our analysis—relative to other clinical trials
databases such as the NDA Pipeline data or the Pharmaprojects data—is the fact that
the NCl registry explicitly lists which groups of patients (as defined by cancer type and
stage at diagnosis) are eligible to participate in each clinical trial. This feature enables
us to construct a measure of the number of clinical trials in which different groups of
patients (as defined by cancer type and stage) are eligible to enroll, providing a metric
of firms’ willingness to investigate candidate drugs on different groups of patients.

The NCI registry includes a handful of clinical trials with dates prior to 1973;
we focus on trials from 1973 forward for consistency with the SEER registry data
(which starts in 1973) and have data on trials through 201 1. For a subset of clinical
trials in our data, we observe whether the clinical trial was publicly sponsored or
privately sponsored.

C. FDA Drug Approvals Data

While our main analysis focuses on the NCI clinical trials data, we also examine
a dataset of the 71 FDA approved oncology drugs from 1990-2002 from Johnson,
Williams, and Pazdur (2003). For 39 of these 71 drug approvals, we were able to
hand-collect data on whether a surrogate endpoint was used, as well as the cancer
and stage for which the drug was approved, from the Drugs @FDA database.’®

35 Clinical trials are also used as a measure of R&D investments in Finkelstein (2004).

36 Thirty-two of the approvals in the Johnson, Williams, and Pazdur (2003) list had no information available in
the Drugs @FDA database on the indication for which the drug was approved, and we are not aware of an alternative
source for this data. Given the coarse stage information that is included in the indication descriptions, we code stage
for the drug approval data as “early,” “late,” or “not specified” (rather than localized, regional, and distant). In our
sample of 39 approvals, 4 are coded as early stage, 25 are coded as late stage, and 10 are coded as not specified.
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TABLE 1—SUMMARY STATISTICS: CANCER-STAGE DATA

Standard
Mean Median deviation ~Minimum Maximum
Number of clinical trials, 1973-2011 945 556 1,015 221 7,385
Number of drug approvals, 1990-2002 0.507 0 1.221 0 7
Five-year survival rate, cases diagnosed 0.377 0.383 0.249 0.006 0.945
1973-2004
Number of diagnoses (1,000s), 12.423 3.159 29.429 0.010 252.593
1973-2009
Estimated years of life lost (1,000s), 114.433 35.663 233.576 0.583 1,658.804
1973-1983
Share of trials privately 0.258 0.265 0.062 0.122 0.507
financed

Notes: This table shows summary statistics for our cancer-stage level data. The level of observation is the
cancer-stage. The clinical trials data is available from 1973-2011. The drug approvals data is available from 1990-
2002. The SEER data starts in 1973 and ends in 2009, which is why the number of diagnoses variable is measured
over that time period. The five-year survival rate is calculated over patients diagnosed between 1973-2004, the
cohorts for which five-year survival is uncensored as of 2009. The life years lost measure is calculated on cohorts
diagnosed from 1973—-1983 to minimize censoring, as explained in the text. As explained in the text, we suspect that
sponsorship data is more likely to be reported for publicly funded trials relative to privately financed trials. All vari-
ables have 201 observations except for the life lost measure which has 192, because 9 cancer-stages had no patients
diagnosed between 1973-1983. For details on the sample, see the text and online Data Appendix.

D. Summary Statistics for Cancer-Stage Level Data

We aggregate the patient-level cancer registry data and cancer clinical trials
data into cancer-stage level observations. Our sample is constructed based on the
80 cancer types underlying the SEER site recodes, and the three non-in situ stages
underlying the SEER historic stage A variable: localized, regional, and metastatic.
After accounting for the details of how staging varies across cancers, our bench-
mark cancer-stage sample includes 201 observations: 60 cancers appear for all
3 stages (localized, regional, distant; 180 observations); prostate cancer is coded by
SEER into 2 stages (localized /regional, distant; 2 observations); and 19 cancers are
unstaged by SEER and hence only appear as 1 observation (19 observations).

[Table 1|presents some basic summary statistics on our cancer-stage level data.
Between 1973-2011, an average cancer-stage had roughly 1,000 clinical trials,
but this average masks tremendous variation—ranging from a minimum of around
200 to a maximum of over 7,000. Between 1990-2002, the median cancer-stage
had no drugs approved, ranging to a maximum of 7. Using the number of patients
diagnosed with a given cancer-stage as a rough measure of market size, on aver-
age a cancer-stage has around 12,000 diagnoses in SEER catchment areas between
1973-2009, ranging from 100 to over 250,000. On average, the five-year survival
rate (defined for cohorts diagnosed between 1973-2004, all uncensored cohorts)
is 38 percent, but ranges from almost O to 94 percent. Finally, among trials report-
ing sponsorship data, around 75 percent report being publicly financed. Given that
sponsorship data is missing for approximately one-half of our sample, it is difficult
to know whether this is an accurate picture, or whether sponsorship is more likely
to be reported for publicly funded trials relative to privately financed trials. While
such systematic under-reporting of private sponsorship data could bias measure-
ment of the level or share of trials that are privately financed, we do not expect such
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under-reporting to vary systematically with our survival time measure: in which
case, our empirical tests using sponsorship measures should still be valid.

III. Descriptive Analysis
A. Analysis by Stage

Panel A of Figure 1 plots two measures of clinical trial activity for each stage of
cancer from 1973 to 2011 against the five-year survival rate of patients diagnosed
with that cancer-stage from 1973 to 2004. Whereas metastatic cancer patients have
a five-year survival rate of around 10 percent, the five-year survival rate for regional
patients is around 50 percent, and for localized patients is about 70 percent. The
left-hand-side axis plots the corresponding number of clinical trials enrolling patients
of each stage: metastatic cancer patients were the focus of nearly 12,000 clinical tri-
als in our data, whereas regional cancer patients were the focus of around 10,000,
and localized patients around 6,000.

Dating back at least to Schmookler (1966), economists have hypothesized that
market size would be an important determinant of the level of R&D investments.
Several recent papers have provided evidence for this idea in the context of the
pharmaceutical industry (Acemoglu and Linn 2004; Finkelstein 2004; Trusheim and
Berndt 2012; Dubois et al. forthcoming). In our setting, a rough proxy for market
size is the number of life-years lost from cancer. The right-hand-side axis plots the
number of clinical trials enrolling patients of each stage, divided by the number of
life-years lost from that stage as a rough adjustment for market size.?’ This adjust-
ment does little to change the basic pattern.

Panel B of Figure 1 adds clinical trial counts for three other categories of dis-
ease for which the five-year survival rate is difficult to define: prevention trials,
in situ cancers, and recurrent cancers. The bars are roughly positioned in order of
increasing survival rates, for comparability with panel A of Figure 1. Very few clin-
ical trials aim to prevent cancer (less than 500) or to treat in situ cancers (less than
200). In contrast, recurrent cancers have more trials than any other stage of disease
(over 17,000).

B. Analysis by Cancer-Stage: Full Sample

illustrates the relationship between our two key variables of interest
in the full sample of cancer-stage observations: the five-year survival rate, and the
number of clinical trials enrolling patients of that cancer-stage.”® For cancer-stages

37 As described in Section II, life-years lost is measured as age-gender-year specific life expectancy (in the
absence of cancer) in the year of diagnosis, less observed survival time in years, averaged over patients diagnosed
with that cancer-stage between 1973-1983 (to minimize censoring) multiplied times market size.

38To give a visual sense of the data for a few major cancers, online Appendix Figure D.1 plots the relationship
between the five-year survival rate and clinical trial activity for the “big four” cancers: breast, colon, lung, and pros-
tate. Online Appendix Figure D.1(a) plots the number of clinical trials enrolling patients of each cancer-stage, which
decline with increases in the five-year survival rates. The points are labeled with the relevant cancer and stage, which
enables a visual analysis of this relationship either within cancers (e.g., metastatic versus localized breast cancer) or
within stages (e.g., localized lung cancer versus localized colon cancers). Online Appendix Figure D.1(b) adjusts
the clinical trial count by the number of patients diagnosed as a rough adjustment for market size. Here, the down-
ward-sloping relationship between the survival rate and R&D investments is much more clearly visible.
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FIGURE 2. SURVIVAL TIME AND R&D INVESTMENTS: CANCER-STAGE DATA

Notes: This figure shows the relationship between the five-year survival rate among patients diagnosed with each
cancer-stage between 1973-2004 (the cohorts for which five-year survival is uncensored), and the number of clin-
ical trials enrolling patients of each cancer-stage from 1973-2011. Note that because we here count the number
of clinical trials patients of each cancer-stage are eligible to enroll in, a higher count of trials appears here than
in Figure 1 because many trials enroll patients of more than one cancer-stage type. The level of observation is the
cancer-stage. For details on the sample, see the text and online Data Appendix.

with low survival rates, there is tremendous variation in the number of clinical
trials, with some cancer-stages having a very high number of trials. In contrast, for
cancer-stages with high survival rates, the distribution of clinical trial counts tends
to be more compressed, and smaller in magnitude. The combination of these two
patterns generates the downward-sloping relationship between the survival rate and
R&D investments.

formalizes this relationship between clinical trial activity and the
five-year survival rate in a regression framework. For cancer-stage observation cs,
we estimate the following:

(10) YCS = Q + BSCS + >\,XCS + 8(,‘5"

The number of clinical trials Y for the cancer-stage is the outcome variable, and
the coefficient on the survival rate variable S is the main estimate of interest. We
investigate the robustness of this relationship by conditioning on various covari-
ates X, described below. Reflecting the count nature of the clinical trials outcome,
we show estimates from quasi-maximum likelihood Poisson models.?” We report
heteroskedasticity-robust standard errors clustered at the cancer level.

39Estimates from ordinary least squares models using the log of the number of clinical trials as the dependent
variable are essentially identical (estimates not reported).
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TABLE 2—SURVIVAL TIME AND R&D INVESTMENTS: CANCER-STAGE DATA

Number of clinical trials (mean = 945)

(1) ) ®3)

Five-year survival rate —0.868%** —1.113%** —0.930%**
(0.319) (0.286) (0.286)
log(Market size) — 0.243%#% —
(0.055)
log(Life-years lost) — — 0.2827%*
(0.068)

Notes: This table shows the relationship between the five-year survival rate among patients
diagnosed with each cancer-stage between 1973-2004 (the cohorts for which five-year sur-
vival is uncensored), and the number of clinical trials enrolling patients of that cancer-stage
from 1973-2011. The level of observation is the cancer-stage. Estimates are from quasi-
maximum likelihood Poisson models. Standard errors are clustered at the cancer level. “Market
size” denotes the number of patients diagnosed with that cancer-stage between 1973-2009.
“Life-years lost” denotes age-gender-year specific life expectancy (in the absence of cancer)
in the year of diagnosis, less observed survival time in years, averaged over patients diag-
nosed with that cancer-stage between 1973-1983 (to minimize censoring) multiplied by mar-
ket size. The number of observations is 201 in columns 1 and 2, and 192 in column 3, because
9 cancer-stages had no patients diagnosed between 1973—1983. For details on the sample, see
the text and online Data Appendix.
##*Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.

Column 1 of Table 2 reports the raw correlation between the five-year survival
rate and the number of clinical trials. The estimated coefficient implies that a 10 per-
centage point increase in the five-year survival rate is associated with a 8.7 percent
decrease in R&D investments. Column 2 adds a rough market size control (measur-
ing the log of the number of patients diagnosed with that cancer-stage), which does
not substantively change the estimate of interest. This market size variable is clearly
an imperfect measure of demand. As one attempt to refine this measure, we construct
a measure of life lost at the individual level—measured as age-gender-year specific
life expectancy (in the absence of cancer) in the year of diagnosis, less observed sur-
vival time in years. At the individual level, this measure attempts to proxy for willing-
ness to pay, and summed across all individuals diagnosed with a given cancer-stage
it may provide a more accurate measure of market size. Column 3 shows that the
survival time-R&D correlation is similar if we condition on this alternative measure
of market size. In Section IVA, we investigate the concern of unobserved heterogene-
ity in demand more directly. presents the visual analog of these regression
specifications, residualizing the survival rate using our two measures of market size.

In an online Appendix, we present a number of additional robustness checks on
this correlation. First, we ask whether the survival time-R&D correlation is similar
when estimated within cancers (cancer fixed effects) and within stages (stage fixed
effects). Online Appendix Table D.1 shows that the magnitude of the survival time-
R&D correlation is quite similar after conditioning on cancer fixed effects, stage
fixed effects, or both.*Y Second, we ask whether the survival time-R&D correlation

40For comparability, we omit the 19 unstaged cancers from the sample in this table since these observations
do not identify the relationship of interest once we include cancer fixed effects and by definition unstaged can-
cers do not correspond to localized, regional, or metastatic stage definitions. Online Appendix Figure D.2 shows
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FIGURE 3. SURVIVAL TIME AND R&D INVESTMENTS: RESIDUALIZED CANCER-STAGE DATA

Notes: This figure shows the relationship between residualized versions of the five-year survival rate among patients
diagnosed with that cancer-stage between 1973-2004 (the cohorts for which five-year survival is uncensored), and
the number of clinical trials enrolling patients of each cancer-stage from 1973-2011. The level of observation is the
cancer-stage. Panel A residualizes market size; panel B residualizes life-years lost. Market size denotes the inclu-
sion of a covariate measuring the number of patients diagnosed with that cancer-stage between 1973-2009. Life-
years lost is measured as age-gender-year specific life expectancy (in the absence of cancer) in the year of diagnosis,
less observed survival time in years, averaged over patients diagnosed with that cancer-stage between 1973-1983
(to minimize censoring) multiplied by market size. For details on the sample, see the text and online Data Appendix.

is robust to alternative measures of patient survival time. Online Appendix Table D.2
shows that the estimated magnitude is quite similar using the one-year survival rate,
as well as several parameterizations of a “pre-period” survival rate (1973 survival
in years, the 1973 one-year survival rate, and the 1973 five-year survival rate). We
focus on the five-year survival rate measured over a longer time period because we
expect the survival rate to be more accurately measured on a larger sample, but the
estimated magnitudes are not statistically distinguishable. Third, we investigate the
robustness of the survival time-R&D correlation in various subsamples of the data
in online Appendix Table D.3. The estimated correlation is quite similar, for exam-
ple, if metastatic cancers are excluded—suggesting that the observed correlation
does not only reflect a high level of research on end-of-life patients. Finally, online
Appendix Table D.4 confirms that the survival time-R&D correlation also holds in
our sample of approved drugs.

IV. Interpreting the Correlation between Survival Time and R&D Investments

Section III documents what is, to the best of our knowledge, a new fact: R&D
investments on cancer treatments are strongly negatively correlated with com-
mercialization lags, as proxied by survival rates. This fact is consistent with the
idea that private firms may underinvest in long-term research, because we observe
lower levels of R&D investment on inventions that require longer commercializa-
tion lags. However, by itself this fact is difficult to interpret for two reasons. First,
other factors—such as heterogeneity in demand and heterogeneity in the costs of

residualized scatterplots corresponding to the regression specifications presented in online Appendix Table D.1 on
this same sample.
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R&D—could generate the same qualitative pattern. On demand, while our regres-
sion analysis conditioned on indirect demand measures—such as market size and
life-years lost—these variables may not capture the complex ways in which the
survival rate may correlate with demand (see, e.g., Hammitt and Haninger 2010;
Philipson et al. 2010). On costs, it could be, for example, that the science of treating
cancer-stages with long commercialization lags is more difficult, and that observed
low R&D investments reflect a paucity of scientific opportunities. Second, even
if this correlation does reflect a causal effect of commercialization lags on R&D
investments, it need not be evidence of a distortion, because the social planner is
also more likely to pursue research projects that can be completed more quickly.

To address these concerns, in this section we document estimates from two addi-
tional empirical tests. First, in Section IVA we document causal evidence that short-
ening commercialization lags increases R&D investments. This evidence suggests,
for example, that heterogeneity in demand is unlikely to explain the cross-sectional
relationship between survival time and R&D. However, this test leaves open the pos-
sibility that the social planner and private firms symmetrically respond to commer-
cialization lags, and thus does not provide direct evidence of a distortion. Our second
empirical test in Section I'VB fills this gap by directly contrasting public and private
R&D investments. Section IVC documents supporting qualitative evidence from
historical case studies of FDA-approved chemoprevention drugs, which suggest that
surrogate endpoints and public subsidies have played a key role in the development
of chemoprevention drugs. Taken together, this body of evidence provides support
for the idea that commercialization lags distort private R&D investments.

A. Investigating Surrogate Endpoints

If heterogeneity in demand for treatments or a paucity of scientific opportunities
were driving the survival time-R&D correlation, the observed correlation should be
independent of whether surrogate endpoints are used. In contrast, our model pre-
dicts that surrogate endpoints should make the survival time-R&D correlation less
negative (Proposition 4). In this section, we document that there is not a negative
survival time-R&D correlation in the sample of cancers allowed to use surrogate
endpoints.*’

As discussed by the US Food and Drug Administration (2007) and Johnson,
Williams, and Pazdur (2003), the most clearly established non-mortality related
endpoint is “complete response” for leukemias. A historical example is helpful in
illustrating why this surrogate endpoint has been useful. Mukherjee (2010) chroni-
cles Sidney Farber’s 1948 discovery of chemotherapy, which was made in the con-
text of leukemia (Farber et al. 1948). While investigating folic acid deficiencies,
Farber hypothesized that folic acid antagonists could be of value in treating can-
cer patients—paving the way for the development of modern chemotherapy drugs.
Mukherjee’s (2010) account of Farber’s discovery argues that Farber was naturally
inclined to test folic acid antagonists in the context of leukemia because white blood
cell count monitoring offered an accepted method for testing whether the drug was

41 As highlighted above, surrogate endpoints enable shorter trials, so this test does not provide direct evidence
of a distortion; we address this issue in a separate test in Section [VB.
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effective in pushing the disease into remission. While monitoring technologies have
clearly progressed since Farber’s time, remission criteria in leukemias are still based
on the same idea of blood cell counts and related bone marrow measures—outcomes
which are generally agreed to closely correlate with improved survival. In addition
to being used for monitoring, such measures have also been accepted by the FDA as
the basis for approval of drug treatments for hematologic malignancies (leukemias
and lymphomas; see Pazdur 2000 and Johnson, Williams, and Pazdur 2003).*>

To investigate the effects of surrogate endpoints on R&D activity, we use both our
clinical trials data and our drug approvals data.* In the sample of approved drugs,
we can confirm that hematological malignancies are more likely to be approved on
the basis of surrogate endpoints: in our data, 92 percent of drugs approved by the
FDA for hematological malignancies were approved on the basis of surrogate end-
points, relative to 53 percent of non-hematological malignancies.

We use these data to test three predictions of our model that relate to commer-
cialization activity. First, part (i) of Proposition 4 predicts that the use of surro-
gate endpoints should increase commercialization activity. To test this prediction,
we ask whether—conditional on the five-year survival rate—hematological malig-
nancies have a larger number of clinical trials. The estimated coefficient in col-
umn 1 of panel A in[Table 3|suggests yes: interpreting the coefficient on this binary
independent variable (3 = 0.753) suggests a 112 percent increase in clinical tri-
als for hematological malignancies relative to non-hematological malignancies
((e S —1)-100 ~ 112 percent). This pattern is robust to the inclusion of con-
trols for market size (columns 2 and 3). This result is consistent with the analysis of
Trusheim and Berndt (2012), who observe that hematological malignancies have a
larger number of clinical trials than would be expected based on their market size.

Second, Part 3 of Proposition 4 predicts that, if survival time is independent of
the time required to show impacts on the surrogate endpoint, then the use of sur-
rogate endpoints should reduce the negative relationship between survival time
and R&D investments. Third, in cases where surrogate endpoints do not decrease
commercialization lag, our model implies that surrogate endpoints should not
change R&D incentives. That is, for cancers that have a short commercialization
lag even in the absence of using a surrogate endpoint, the option to use a surrogate
endpoint should not change R&D incentives. Empirically, this means that we expect
hematologic and non-hematologic cancers to have similar levels of R&D for the
set of cancers that have short commercialization lags even in the absence of using
surrogate endpoints (that is, for low survival time cancers).

42Based on our reading of these FDA writings, our understanding is that both scientists and regulators have
viewed the surrogate endpoints used for hematologic cancers as valid and uncontroversial. Although far from defin-
itive, our empirical evidence in Section V is consistent with this view, suggesting that the additional R&D invest-
ments induced by the use of these surrogate endpoints have translated into improved survival gains.

“3We use this drug approvals data in part to address a measurement error concern that could arise with our
clinical trials data. Namely, the automated coding of our clinical trials data into cancer types (as detailed in online
Appendix B) could be less reliable for hematologic malignancies relative to other forms of cancer if text searches
for organ names (“breast,” “prostate,” etc.) are more accurate than our text searches for different forms of leukemias
and lymphomas (the names of which tend to be more complex). While we aimed for the highest possible accuracy
in cleaning the clinical trials data, because of the large sample size our cleaning of that data must be automated. In
contrast, because there are a small number of drug approvals, we can hand-code the cancer types relevant to each
drug approval, reducing concerns about measurement error.
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TABLE 3—SURROGATE ENDPOINTS, SURVIVAL TIME, AND R&D INVESTMENTS

(1) (2) 3)
Panel A. Level of R&D, dependent variable: number of clinical trials (mean = 945)
Five-year survival rate —0.865%** —1.108%** —0.933%#*
(0.310) (0.284) (0.283)
(0/1: hematologic) 0.753%*%* 0.578%** 0.466%*
(0.185) (0.176) (0.201)
log(Market size) — 0.231 %% —
(0.057)
log(Life-years lost) — — 0.261%%*
(0.073)
Panel B. Composition of R&D, dependent variable: number of clinical trials (mean = 945)
(Five-year survival rate) x (0/1: hematologic) 2.266%** 2.140%%* 1.963%%**
(0.408) (0.541) (0.613)
Five-year survival rate —1.122%%* —1.309%** —1.133%%*
(0.343) (0.297) (0.303)
(0/1: hematologic) -0.077 -0.216 —0.261
(0.189) (0.228) (0.252)
log(Market size) — 0.226%* —
(0.056)
log(Life-years lost) — — 0.253%#%
(0.073)

Notes: This table shows two analyses of how cancer R&D differs on hematologic malignancies relative to other
cancers, as a way of shedding light on how surrogate endpoints—which are more commonly used for hemato-
logic malignancies—affect R&D investments. Panel A regresses the number of clinical trials enrolling patients of
that cancer-stage from 1973-2011 on the five-year survival rate among patients diagnosed with each cancer-stage
between 1973-2004 (the cohorts for which five-year survival is uncensored) and an indicator for hematological
malignancies. Panel B regresses the number of clinical trials enrolling patients of that cancer-stage from 1973-2011
on the five-year survival rate among patients diagnosed with each cancer-stage between 1973-2004, an indicator
for hematological malignancies, and an interaction between these two variables. The level of observation is the
cancer-stage. Estimates are from quasi-maximum likelihood Poisson models. Standard errors are clustered at the
cancer level. “Market size” denotes the number of patients diagnosed with that cancer-stage between 1973-20009.
“Life-years lost” denotes age-gender-year specific life expectancy (in the absence of cancer) in the year of diagno-
sis, less observed survival time in years, averaged over patients diagnosed with that cancer-stage between 1973—
1983 (to minimize censoring) multiplied times market size. The number of observations is 201 in columns 1 and
2, and 192 in column 3, because 9 cancer-stages had no patients diagnosed between 1973—1983. For details on the
sample, see the text and Data Appendix.
*##%Significant at the 1 percent level.
*#*Significant at the 5 percent level.
*Significant at the 10 percent level.

To test these second and third predictions we estimate the following specification,
where H, is an indicator for hematological malignancies

(11) Yo =+ BSCS “H.+~H. + 6Scs + >\,Xcs + &g

Panel B in Table 3 presents these estimates. In contrast to the negative cor-
relation between the five-year survival rate and the number of clinical trials for
non-hematological malignancies (3), we estimate a positive coefficient on the inter-
action term (3)—consistent with the second prediction of our model,*! This estimate

“nterpreting the interaction term in this nonlinear model requires transforming the coefficient; the interac-
tion coefficient of 2.266 in the first row of panel B implies that an increase in the five-year survival rate of 10
percentage points predicts an increase in the number of trials for hematologic cancers that is greater than that of
non-hematologic cancers by 300 trials (about 30 percent relative to the mean), and applying the delta method to
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FIGURE 4. SURROGATE ENDPOINTS, SURVIVAL TIME, AND R&D INVESTMENTS

Notes: This figure shows the relationship between five-year survival rate among patients diagnosed with each can-
cer-stage between 1973-2004 (the cohorts for which five-year survival is uncensored), and number of clinical trials
enrolling patients of each cancer-stage from 1973-2011, separately for hematologic and non-hematologic cancers.
The level of observation is the cancer-stage. For details on the sample, see the text and online Data Appendix.

is robust to the inclusion of controls for market size (columns 2 and 3). This contrast
in survival time-R&D correlations across hematologic and non-hematologic cancers
is presented graphically in[Figure 43

With respect to the third prediction of our model, we find that the estimated coef-
ficient on the indicator variable for hematologic cancers is, statistically speaking,
zero, and also relatively small in magnitude. In addition to being consistent with
our model, this result is also important as a test of a key assumption underlying
this counterfactual exercise: namely, that hematologic cancers and non-hematologic
cancers would have similar R&D investments but for the more frequent use of surro-
gate endpoints for hematologic cancers. A priori, hematologic and non-hematologic
cancers are very different for many reasons—for example, the science of treating
hematologic cancers might be simpler for some reason. However, to the extent that
such differences are common across all hematologic cancers, hematologic cancers
with low five-year survival rates should have higher levels of R&D investments than
do non-hematologic cancers with low five-year survival rates. But that is not what
we see in the data: rather, hematologic and non-hematologic cancers have similar
levels of R&D investments for the patient groups where surrogate endpoints should
not change R&D incentives. This evidence is consistent with the “all else equal”
assumption behind this hematologic /non-hematologic comparison.

obtain a standard error for this interaction term provides a ¢-statistic of 5.99. Figure 4 gives an alternative sense of
the magnitude of the coefficients obtained from a linear model.
45 Online Appendix Table D.5 shows that this pattern of results also holds in the drug approvals data.
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What can we learn from this counterfactual exercise? We draw two conclusions.
First, from the perspective of testing the model, our estimates are consistent with
the idea that neither unobserved heterogeneity in demand nor a paucity of scientific
opportunities is driving the observed negative survival time-R&D correlation in the
full sample. Second, from a policy perspective our estimates support the idea (ana-
lyzed in Proposition 4) that valid surrogate endpoints may increase R&D invest-
ments, particularly on long-horizon R&D investments. The key caveat to interpreting
this evidence as a test of our theoretical model is that because surrogate endpoints
change the length of clinical trials, both the social planner and private firms should
choose to increase research investments. Hence, this test does not provide direct
evidence of a distortion; our second empirical test in Section IVB fills this gap by
directly contrasting public and private R&D investments.

In online Appendix A, we use this hematologic/non-hematologic compari-
son to provide a rough back-of-the-envelope estimate of the semi-elasticity of
R&D investment with respect to a one-year change in commercialization lag:
O(R&D investment)/d(commercialization lag).*S Our main estimates of this
semi-elasticity range between 7-23 percent.*” It is worth noting that this elasticity
is itself of policy relevance, as an input into how firms would be expected to respond
to decreases in commercialization lags as provided by mechanisms such as FDA
priority review vouchers (Ridley, Grabowski, and Moe 2006).

B. Investigating Publicly Financed Clinical Trials

Our second empirical test directly contrasts public and private R&D investments.
Consistent with our theoretical model, we document that commercialization lags
reduce both public and private R&D investments. But also consistent with our
model—and consistent with the conjectured distortion—we will see that the com-
mercialization lag-R&D correlation is quantitatively and statistically significantly
more negative for privately financed trials relative to publicly financed trials.

As a first analysis of our trial sponsorship data, panel A of presents the
cumulative distribution functions (CDF) of clinical trial lengths in the trial-level
data, separately for privately financed and publicly financed trials. The privately
financed CDF lies above the publicly financed CDF at almost every clinical trial
length. The vertical line at 20 years denotes the length of the fixed patent term:
consistent with the idea that the patent system should offer zero incentive to develop
drug compounds that take longer than 20 years to develop, very few trials in our
data have a reported length of 20 years or longer. Of the approximately 120 clinical
trials longer than 20 years that have non-missing data on sponsorship, essentially
100 percent are publicly funded.

46 As described in online Appendix A, obtaining this semi-elasticity estimate requires scaling our estimate
of how R&D investment changes in response to a change in the five-year survival rate (O(R&D investment) /
O(5-year survival rate)) by an estimate of how a change in the five-year survival rate translates into a change in
commercialization lag ((commercialization lag)/d(5-year survival rate)).

7We are not aware of any existing estimates against which this estimate can be compared.

“8The longest privately financed trial in our data lasts 18.66 years, with the exception of six trials that are
reported to last longer than 60 years. We suspect that these six trials have typographical errors in their start dates,
but have not yet heard back from the sponsor (Bristol-Myers Squibb) in an inquiry on this point. If these six trials
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FIGURE 5. SURVIVAL TIME AND FINANCING OF CLINICAL TRIALS

Notes: This figure shows two analyses of how public and private financing of clinical trials differ. Panel A plots the
cumulative distribution function of clinical trial length in years, omitting the handful of observations with length
greater than 30 years for improved readability. The level of observation is the clinical trial. The vertical line at
20 years denotes the length of the fixed patent term. Panel B plots the relationship between the five-year survival
rate among patients diagnosed with each cancer-stage between 1973-2004 (the cohorts for which five-year survival
is uncensored), and the share of clinical trials enrolling patients of that cancer-stage from 1973-2011 that were
privately financed. The level of observation is the cancer-stage. For details on the sample, see the text and online
Data Appendix.

Panel B of Figure 5 provides a second analysis of this sponsorship data, plotting
the relationship between the five-year survival rate and the share of clinical trials
enrolling patients of that cancer-stage which are privately financed.*” The down-
ward-sloping relationship is quantified in panel A of : a 10 percentage point
increase in the five-year survival rate is associated with a 1.2 percent decrease in the
share of clinical trials that are privately financed. The magnitude of this coefficient
is quite similar conditional on our market size controls (columns 2 and 3).

Panel B of Table 4 presents estimates from a second test of how public and private
R&D investments differ. Estimating equation (10) separately on the sample of pub-
licly financed trials and on the sample of privately financed trials, we would like to
compare the estimated (3 coefficients to see whether the correlation between survival
time and clinical trial activity is smaller in the sample of publicly financed trials
relative to the sample of privately financed trials. Formally equivalent to estimating
these two regressions separately is estimating a stacked regression where the unit
of observation is a cancer-stage-type cst (where type is either privately financed or
publicly financed)

(12) Yeg = o+ 0S¢ - T+ 3T, + S + >\/Xcs T+ ecq-
Our 7, variable is defined as an indicator which equals 1 for observations count-

ing privately financed trials, and equals O for observations counting publicly
financed trials. The coefficient of interest 3 measures the difference in the survival

have typographical errors as we expect, then 100 percent of the trials with non-missing data on sponsorship that are
longer than 20 years are publicly funded.

“1n interpreting the scale of the graph, recall that as noted in Section ITD we suspect that sponsorship data is
more likely to be reported for publicly funded trials relative to privately financed trials.
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TABLE 4—SURVIVAL TIME AND FINANCING OF CLINICAL TRIALS

(1) ) ®)
Panel A. Share of clinical trials that are privately financed (mean = 0.258)
Five-year survival rate —0.122%%* —0.134%%* —0.119%**
(0.016) (0.017) (0.014)
log(Market size) — 0.009 ##* —
(0.003)
log(Life-years lost) — — 0.008%#*
(0.003)
Panel B. Number of clinical trials (mean = 244)
(Five-year survival rate) x (0/1: private) —0.436% —0.500% —0.470%*
(0.166) (0.171) (0.195)
Five-year survival rate —0.866%** —1.097%** —0.932%**
(0.314) (0.287) (0.285)
(0/1: private) —0.68 1%+ —0.723%k% (0,833
(0.062) (0.054) (0.081)
log(Market size) — 0.230 ok —
(0.063)
log(Market size) x (0/1: private) — 0.003 *** —
(0.002)
log(Life-years lost) — — 0.257%%*
(0.076)
log(Life-years lost) x (0/1: private) — — 0.001 %%
(0.000)

Notes: This table shows two analyses of how public and private financing of clinical trials varies with patient sur-
vival time. Panel A shows the relationship between the five-year survival rate among patients diagnosed with each
cancer-stage between 1973-2004 (the cohorts for which five-year survival is uncensored), and the share of clinical
trials enrolling patients of that cancer-stage from 1973-2011 that were privately financed; the level of observation
is the cancer-stage, and estimates are from ordinary least squares (OLS) models. Panel B shows the relationship
between the five-year survival rate and the number of publicly/privately financed clinical trials enrolling patients
of that cancer-stage from 1973-2011; the level of observation is the cancer-stage-sponsor (where sponsor is either
public or private), and estimates are from quasi-maximum likelihood Poisson models. Standard errors are clustered
at the cancer level. “Market size” denotes the number of patients diagnosed with that cancer-stage between 1973—
2009. “Life-years lost” denotes age-gender-year specific life expectancy (in the absence of cancer) in the year of
diagnosis, less observed survival time in years, averaged over patients diagnosed with that cancer-stage between
1973-1983 (to minimize censoring) multiplied by market size. The number of observations is 201 in columns 1 and
2 of panel A, 402 (= 201 x 2 sponsor types) in columns 1 and 2 of panel B, 192 in column 3 of panel A, and 384
(= 192 x 2 sponsor types) in column 3 of panel B, because 9 cancer-stages had no patients diagnosed between
1973-1983. For details on the sample, see the text and online Data Appendix.
*#%Significant at the 1 percent level.
*#*Significant at the 5 percent level.
*Significant at the 10 percent level.

time-clinical trial activity correlation observed for privately financed trials relative
to that observed for publicly financed trials.

These estimates are presented in panel B of Table 4. The negative (3 estimate
implies that the relationship between the five-year survival rate and R&D invest-
ments is more negative for privately financed trials relative to publicly financed
trials—consistent with what we expected based on the analyses in panel B of
Figure 5. Interpreting the point estimate in column 1 suggests that a 10 percent-
age point increase in the five-year survival rate results in an additional 4.4 percent
decrease in privately financed clinical trials, in addition to the 8.6 percent decrease
observed for publicly financed clinical trials. These estimates imply that the rela-
tionship between survival time and clinical trial activity is on the order of 35 percent
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larger for privately financed clinical trials relative to publicly financed clinical trials
(4.4/(4.4 + 8.6) ~ 35 percent). The point estimates and their ratio are quite stable
across specifications adding our market size controls (columns 2 and 3).

We wish to make two remarks concerning these estimates. First, this public-private
contrast is consistent with two potential models of public sector decision making:
the public sector could have a different objective function than the private sector
(as in our model), or the public sector could be compensating for underinvestment
by the private sector. Both models are consistent with the existence of a distortion,
and thus have the same qualitative interpretation, but the quantitative interpretation
of the estimates would differ across the two models. Second, to the extent that a
large share of publicly financed clinical trials investigate new uses of existing drugs,
publicly financed trials may be constrained by science to mirror privately financed
R&D investments.

C. Historical Case Studies of FDA-Approved Chemoprevention Drugs

As a complement to our empirical analyses, we also document qualitative (case
study) evidence on what motivated the development of existing chemoprevention
drugs. Because cancer prevention trials typically examine cancer incidence as an
outcome variable, we expect cancer prevention technologies to generally require
long trials and thus to also be subject to our conjectured distortion. We start with
the list of all six FDA approved chemoprevention drugs compiled by Meyskens et
al. (2011). Our qualitative investigation of the history of these FDA drug approvals
suggests that all six of these approvals either relied on the use of surrogate end-
points, or were approved on the basis of publicly financed clinical trials.
documents a summary of our work in online Appendix E, which provides docu-
mentation for this assertion, and we here focus on briefly summarizing two of the
case studies. First, the drug Tamoxifen was FDA approved for several cancer indi-
cations while on-patent; later, a publicly funded clinical trial supported the 1998
FDA approval of Tamoxifen as a chemoprevention agent, preventing breast cancer
incidence in high-risk groups. Second, the recent FDA approval of cervical cancer
vaccines relied on the use of human papillomavirus (HPV) incidence as a surrogate
endpoint for cervical cancer incidence. Hence, the evidence from these case studies
is quite consistent with the conjectured distortion: we expect cancer prevention trials
to have long commercialization lags, and no cancer prevention technologies have
been privately developed without relying on surrogate endpoints.

V. Estimating the Value of Life Lost Due to Commercialization Lags

In this section, we leverage our surrogate endpoint variation from Section IVA
to estimate counterfactual improvements in cancer survival rates that would have
been observed if commercialization lags were reduced.’ Importantly, this exercise
should not be interpreted as quantifying the size of our conjectured distortion,
because as discussed surrogate endpoints generate social value beyond eliminating

SOWhile we would ideally quantify R&D-induced improvements in both morbidity and mortality, given data
constraints we here focus on estimating the extent to which R&D increases patient survival.
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TABLE 5—HisTorICAL CASE STUDIES OF FDA-APPROVED CHEMOPREVENTION DRUGS

Approval Surrogate Primarily publicly

indication endpoint used? funded?
BCG (Bacillus Calmette-Guérin) bladder carcinoma in situ no yes
Diclofenac squamous cell carcinomas yes no
Celecoxib familial adenomatous polyposis yes no

(FAP)-related cancers

Photofrin esophageal carcinoma yes no
Tamoxifen breast cancer no yes
Cervical cancer vaccines cervical cancer yes no

Notes: This table summarizes our qualitative investigation of the history of all six FDA drugs approved as cancer
prevention (chemoprevention) drugs. The key point of this table is to illustrate that all six of these approvals either
relied on the use of surrogate endpoints, or were approved on the basis of publicly financed clinical trials: no chemo-
prevention drugs have been privately developed in the absence of relying on surrogate endpoints. See the descrip-
tions in Section IVC and online Appendix E for more details.

the distortion. As with our back-of-the envelope estimates of the semi-elasticity of
R&D investment with respect to changes in the commercialization lag, this exercise
is directly policy relevant as an input into how firms would be expected to respond
to decreases in commercialization lags as provided by mechanisms such as the
application of valid surrogate endpoints or FDA priority review vouchers (Ridley,
Grabowski, and Moe 2006).

illustrates how we use variation in surrogate endpoints (across hemato-
logic and non-hematologic cancers) to estimate counterfactual survival gains from
1973-2003. Panel A of Figure 6 illustrates our conceptual framework. If there had
been no survival improvements between 1973 and 2003, all cancer-stage observa-
tions would locate along the 45-degree line (“no progress line”); in contrast, if all
cancer-stages had been cured between 1973 and 2003, all cancer-stage observations
would locate along the horizontal line where 2003 survival rates equal 1 (“cure can-
cer line”). As discussed in Section IVA, we expect two patterns to emerge when con-
trasting survival improvements across for hematologic and non-hematologic cancers.
First, survival improvements should be similar for hematologic and non-hematologic
cancers in cases where surrogate endpoints do not shorten commercialization lags
(that is, for cancers with low 1973 five-year survival rates). Second, the difference in
survival improvements between hematologic and non-hematologic cancers should
increase in commercialization lag (that is, increase in the 1973 five-year survival
rate). Reflecting these predictions, the line marked “non-hematologic cancers” coin-
cides with the line marked “hematologic cancers” at O percent survival, and the gap
between the two lines increases as commercialization lag increases.

Panel B plots the observed 2003 five-year survival rates against the 1973 five-
year survival rates. Strikingly, the data matches our illustrative figure in panel A
remarkably well. In particular, the linear fit lines for hematologic cancers and
non-hematologic cancers meet for cancers with a very low 1973 five-year sur-
vival rate; the linear fit for hematologic cancers is close to a parallel shift of the
45-degree line (slightly steeper, as expected based on Figure 4); and the linear fit for
non-hematologic cancers is much more shallow in slope. Note that given the dearth
of quasi-experimental evidence documenting that increases in pharmaceutical R&D
translate into improved survival (see, e.g., Lichtenberg 2012), this evidence that the
additional R&D investments induced by shorter commercialization lags (by relying
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FIGURE 6. SURVIVAL GAINS, 1973-2003

Notes: This figure illustrates how we use variation in surrogate endpoints (across hematologic and non-hematologic
cancers) to estimate counterfactual survival gains from 1973-2003 that would have been observed had commer-
cialization lags for non-hematologic cancers mirrored the shorter commercialization lags realized for hematologic
cancers. Panel A illustrates our conceptual framework. Panel B illustrates the empirical analog of panel A, plotting
the 1973 five-year survival rate against the 2003 five-year survival rate. The level of observation is the cancer-stage.
For details on the sample, see the text and online Data Appendix.

on surrogate endpoints) translated into improved survival gains is itself of substan-
tive interest.”’

The area between the linear fit line for hematologic cancers and the linear fit
line for non-hematologic cancers can be used to quantify the number of life-years
that would have been gained if commercialization lags for non-hematologic can-
cers had been similar to commercialization lags for hematologic cancers. We for-
malize this estimation for the cohort of US cancer patients diagnosed in 2003 as
follows. First, on the sample of hematologic cancers, we predict the 2003 five-year
survival rate as a function of the 1973 five-year survival rate. Second, for the sam-
ple of non-hematologic cancers we use the estimated (3 from the hematologic can-
cers survival regression to predict a counterfactual 2003 five-year survival rate for
non-hematologic cancers had commercialization lags for non-hematologic cancers
been similar to commercialization lags for hematologic cancers. Third, we calculate

SI'Welch, Schwartz, and Woloshin (2000) and others have argued that although five-year survival is a valid
measure for comparing cancer therapies in a randomized trial, changes in five-year survival rates over time may be
biased by changes in diagnosis patterns (known as “lead-time bias™). For example, an expansion in mammography
screening between 1973 and 2003 could have led to breast cancers being diagnosed at an earlier stage, which would
have mechanically increased measured five-year survival rates even if there was no real change in patient health.
In our context, changes in diagnosis would be expected to bias us away from finding that hematologic cancers saw
larger gains in survival between 1973 and 2003 because the cancers that saw increases in screening over this period
(such as breast and prostate cancer) are non-hematologic cancers. Empirically, if we construct an alternative version
of panel B of Figure 6 that plots the preferred outcome variable of Welch et al.—the percent change in mortality
from 1973 to 2003—against the 1973 five-year survival rate, we observe a very similar pattern to that displayed
in panel B: first, hematologic cancers on average had larger percent improvements in mortality from 1973 to 2003
than did non-hematologic cancers; second, as predicted by our model there is no gap between the hematologic and
non-hematologic lines for patient groups with near-zero 1973 five-year survival rates; and third, the gap between
the hematologic and non-hematologic lines increases in magnitude as the 1973 five-year survival rate increases.
Taken together, these results suggest that changes in diagnosis patterns are not generating the differential patterns of
survival changes across hematologic and non-hematologic cancers presented in panel B of Figure 6.
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d., the difference between the counterfactual and actual 2003 five-year survival
rates, for each non-hematologic cancer-stage; on average, ., is 13.2 percentage
points. Fourth, we convert each ., into a number of life-years lost per person based
on the fact that, in our data, a change from O to 1 in the five-year survival rate
corresponds to a gain of 8.1 additional years of life. Applying this conversion, the
average J,, of 13.2 percentage points corresponds to (8.1)(0.132) = 1.07 life-years
per cancer patient. Fifth, we multiply each cancer-stage estimate of per-person life-
years lost by the number of US cancer patients diagnosed in 2003 with that can-
cer-stage. We compute the number of patients in each cancer-stage using the SEER
data, scaling up (dividing by 0.074) to account for the fact that SEER does not cover
the entire US population. In total, this calculation suggests that among this cohort
of patients—US cancer patients diagnosed in 2003—the longer commercialization
lags required for non-hematologic cancers generated around 890,000 lost life-years.

If we value each lost life-year at $100,000 (Cutler 2004 ), the estimated value of
these lost life-years is on the order of $89 billion per annual patient cohort. Applying
a conservative social discount rate of 5 percent and assuming that patient cohorts
grow with population growth of 1 percent, the net present value of the life-years at
stake is $89 billion/(0.05 — 0.01) = $2.2 trillion.”

It is important to note that this life-lost estimate is rough at best. Our point esti-
mate of the value of life lost per annual patient cohort is $89 billion, with a 95 per-
cent confidence interval that ranges from $7 billion to $172 billion; the net present
value point estimate of $2.2 trillion has a 95 percent confidence interval that ranges
from $170 billion to $4.2 trillion.”

VI. Discussion and Conclusion

In this paper, we investigate whether private firms underinvest in long-term
research projects. Our theoretical model clarifies how two factors—corporate
short-termism and the structure of the patent system—may generate incentives that
distort private research investments away from inventions that have both a long use-
ful life and a long commercialization lag. We then investigate this distortion empir-
ically in the context of the pharmaceutical industry, where drugs treating patients
with short life expectancies can move through clinical trials more quickly than can
drugs treating patients with longer life expectancies. Using a newly constructed
dataset on cancer clinical trial investments, we provide several sources of evidence
which together are consistent with commercialization lags distorting private R&D
investments away from drugs to prevent or treat early-stage cancers.

We use our theoretical model to analyze the innovation and social welfare conse-
quences of three policy interventions which could address this distortion: a policy
change that would allow firms to rely on surrogate endpoints in clinical trials, a

52 Note that other authors, such as Murphy and Topel (2006) and Weitzman (1998), have argued that a social
discount rate of 2 percent or lower may be more appropriate; using such lower values would of course increase our
estimate of the net present value of life-years at stake.

33To be conservative, we compute these confidence intervals using HC3 standard errors rather than robust
standard errors, given the expected downward finite sample bias of robust standard errors in this small sample of
hematologic cancers (see, e.g., the discussion in Angrist and Pischke 2009). The analogous 95 percent confidence
interval using robust standard errors is $15 billion to $164 billion (a net present value range from $365 billion to
$4.1 trillion).
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patent design change that would start the patent clock at commercialization, and
R&D subsidies targeting projects with long commercialization lags. While surrogate
endpoints and targeted R&D subsidies would address the distortion regardless of the
source, the patent design change only addresses the fixed patent term distortion.

Empirically, we document evidence, consistent with our theoretical model, that
surrogate endpoints appear to increase R&D investments on innovations that would
otherwise have long commercialization lags. We also use this surrogate endpoint
variation to estimate counterfactual improvements in cancer survival rates that
would have been observed if commercialization lags were reduced. We estimate
that among one cohort of patients—US cancer patients diagnosed in 2003—longer
commercialization lags resulted in around 890,000 lost life-years. Valuing these lost
life-years at $100,000 (Cutler 2004) suggests that the estimated social value of the
life-years lost in this one cohort of patients is on the order of $89 billion per year.
This evidence suggests that, in the case of hematologic cancers, apparently-valid
surrogate endpoints were effective in increasing R&D investments on innovations
that would otherwise have had long commercialization lags, and that the resulting
increases in R&D translated (in this case) into real gains in patient health. While
much attention has been focused on the risks and costs of using surrogate endpoints
that may imperfectly correlate with real improvements in patient health, our anal-
ysis is, to the best of our knowledge, the first attempt to use the historical record to
quantify how the availability and use of a valid surrogate endpoint affected R&D
allocations and patient health outcomes.

The example of the Framingham Heart Study is helpful in illustrating the poten-
tial value of surrogate endpoints. Heart disease is the leading cause of death in the
United States, but since 1968 the age-adjusted rate of deaths from heart disease has
dropped by 50 percent.” Although some of these gains are due to lifestyle changes,
much of the decline in heart disease has been attributed to improved pharmaco-
logical preventives and treatments for cardiovascular disease, including the devel-
opment of beta-blockers, ACE-inhibitors, and statins (Weisfelt and Zieman 2007).
Patients use these drugs to reduce the morbidity and mortality from heart disease, but
very few of these drugs reached the market based on clinical trials using morbidity
or mortality as the endpoint. Rather, almost all were approved based on evidence
that these drugs lowered either blood pressure or LDL (low-density lipoprotein)
cholesterol—outcomes that can be measured much more quickly than morbidity
and mortality (Psaty et al. 1999). These surrogate endpoints were first identified by
the Framingham Heart Study, a large-scale, multi-decade, federally funded observa-
tional study which found that high blood pressure and LDL cholesterol are critical
risk factors in cardiovascular disease. Subsequent clinical trials helped to validate
these prognostic factors, which led the FDA to accept them as surrogate endpoints
in cardiovascular trials (Meyskens et al. 2011). Researchers have argued that with-
out these surrogate endpoints, it is unclear whether drugs such as beta-blockers,
ACE-inhibitors, and statins would have reached the market as treatments for heart
disease (Lathia et al. 2009; Meyskens et al. 2011). Note that public subsidies—such
as federal support for the Framingham study—were likely important in this context,

54See, for example, the discussion in Cutler and Kadiyala (2003).
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because any individual firm’s investment in discovering and validating surrogate
endpoints would generate benefits that largely spill over to other firms. Both our
empirical evidence on the effects of surrogate endpoints for hematologic cancers and
this historical case study for heart disease suggest that research investments aimed
at establishing and validating surrogate endpoints may have a large social return.”
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