
 

 

Image Informatics for Studying Signal Transduction in Cells 
Interacting with 3D Matrices 

Dimitrios S. Tzeranis*a, Jin Guob, Chengpin Chenb, Ioannis V. Yannasa,c, Xunbin Weib, Peter T.C. 
Soa,c 

aDepartment of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts 
Avenue, Cambridge, MA 02139, USA; bInstitutes of Biomedical Sciences, Fudan University, 138 Yi 
Xue Yuan Road, Shanghai 200032, China;  cDepartment of Biological Engineering, Massachusetts 

Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA 

ABSTRACT  

Cells sense and respond to chemical stimuli on their environment via signal transduction pathways, complex networks of 
proteins whose interactions transmit chemical information. This work describes an implementation of image informatics, 
imaging-based methodologies for studying signal transduction networks. The methodology developed focuses on 
studying signal transduction networks in cells that interact with 3D matrices. It utilizes shRNA-based knock down of 
network components, 3D high-content imaging of cells inside the matrix by spectral multi-photon microscopy, and 
single-cell quantification using features that describe both cell morphology and cell-matrix adhesion pattern. The 
methodology is applied in a pilot study of TGFβ signaling via the SMAD pathway in fibroblasts cultured inside porous 
collagen-GAG scaffolds, biomaterials similar to the ones used clinically to induce skin regeneration. Preliminary results 
suggest that knocking down all rSMAD components affects fibroblast response to TGFβ1 and TGFβ3 isoforms in 
different ways, and suggest a potential role for SMAD1 and SMAD5 in regulating TGFβ isoform response. These 
preliminary results need to be verified with proteomic results that can provide solid evidence about the particular role of 
individual components of the SMAD pathway. 
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1. INTRODUCTION  
Cells sense and respond to their environment via signal transduction pathways, cascades of proteins and small molecules 
that transmit information (in the form of molecule concentration and modification) inside the cell [1-3]. Existing 
knowledge about signal transduction pathways is based on many years of experiments using established biochemical and 
genetic methods. However as signal transduction studies adopt system-wide approaches and reach larger scales, and 
require information-rich datasets, there is increasing need for novel high-throughput genomic and proteomic [4-7], or 
imaging-based methods. 

One imaging-based method for studying cell signaling is image informatics. Image informatics refers to methodologies 
that combine cell perturbation (e.g. via genetic manipulation), large scale imaging, image processing and statistics to 
study complex signal transduction pathways. So far, image informatics has been applied in studies of cells cultured on 
standard culture dishes [8-12]. Unfortunately, the 2D surface of a culture dish presents to cells an environment that is 
very different compared to the microenvironments felt inside tissues. Since the insoluble microenvironment of cells 
affects critically their phenotypes [13], it is important to develop imaging-based studies that can study cells inside more 
physiologically relevant 3D matrix models. 

This study presents an implementation of image informatics that can be used to study signal transduction pathways in 
cells that interact with a 3D matrix. A key feature compared to previous image informatics approaches is that the output 
of the cell-matrix system is quantified not just based on morphometric features of the cells, but also on morphometric 
features that describe the cell-matrix adhesion pattern. This study provides preliminary data from a pilot study of TGFβ 
isoform signaling via the SMAD pathway, a mechanism that has been implicated in regulating wound contraction and 
myofibroblast differentiation, both of which are critical phenotypes of cancer pathology and wound healing [14-16]. 
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2. MATERIALS AND METHODS 
2.1 The Concept of Image Informatics 

Image informatics refers to single-cell imaging-based approaches that infer information about the components of a signal 
transduction pathway. The pathway of interest is modeled as a graph that consists of interacting proteins (nodes) that 
interact with each other in some particular topology (edges). The system is triggered by extracellular stimuli (e.g. growth 
factors, cytokines, hormones), and transmits signals through the nodes (usually via phosphorylation post-translational 
modification) towards either the cell nucleus where it guides gene expression or other cytosolic processes (e.g. 
cytoskeletal remodeling, apoptosis) [1]. In some cases the topology between the pathway proteins is only party known. 
In other cases, there is a good a-priori knowledge about the elementary interactions between the proteins of the pathway 
(based on the vast literature of biochemistry, protein binding assays, and genetics), however the relative importance of 
the nodes and edges can be cell-specific or it may be altered due to pathology or drug effects (e.g. a healthy cell and a 
cancer cell may use different edges of the graph to transmit signals induced by the same stimuli). In image informatics, 
the pathway of interest is modeled as a system whose outputs are single-cell assays (features) that are quantified based 
on images. Image informatics infers the roles of individual pathway components by examining how the input-output 
response of the system is altered when one or more components of the system are knocked down. 

 
Figure 1. Overview of the image informatics approach. The role of individual components of a signal transduction pathway 
is inferred by quantifying how the response (evaluated by optical-based assays called features) of the system to particular 
stimuli changes when one or more components of the pathway are knocked down. 

2.2 Implementing Image Informatics for Signal Transduction Studies in Cells Interacting with 3D matrices 

The proposed image informatics pathway consists of five steps, see Figure 2. 
- System perturbation: knock down (or least significantly down-regulate) one or more components of the pathway of 

interest in a cell line of interest. This can be achieved by RNAi or by using small molecules (e.g. drugs, kinase 
inhibitors). In this study, stable knock-down of one SMAD pathway component in primary human fibroblasts is 
implemented by lentiviral-based stable expression of shRNA that targets the target protein mRNA. Four rSMAD 
isoforms (SMAD1,2,3,5) were targeted using commercial shRNA vectors (Sigma Aldrich). 

- System stimulation: Wild type (WT) cells or cells whose component X is knocked down (X-) are seeded inside the 
3D matrix of interest. After cell adhesion on the matrix, cells are stimulated by molecules known to excite the 
pathway of interest. In this study, fibroblasts (WT, or shRNA-treated) are stimulated by TGFβ1 or TGFβ3, growth 
factors known to excite the SMAD pathway [17]. The porous collagen-GAG scaffolds used are similar to 
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biomaterial grafts used clinically to induce skin regeneration [14]. After stimulation, cells are incubated for 
appropriate duration (in this study 5 days) before quantification. 

- Quantification: The cell-matrix system is imaged by a 3D imaging microscopy modality in order to quantify the 
system response using single-cell imaging-based assays. In this study, fibroblasts were fixed, immuno-labeled with 
mouse anti-α smooth muscle actin (αSMA) antibody detected by an Alexa Fluor488-conjugated anti-mouse 
antibody, and then counter-stained using the CMTMR cell tracker and the Hoechst33342 nucleic stain. 3D images 
were acquired by a spectral multi-photon microscope equipped with a 16-channel multi-anode PMT and single-
photon counting capability [18]. Alternatively, some cell-matrix samples can be lysed and analyzed by standard 
proteomic assays. 

- Image Processing: The purpose of image processing is to identify single cells in the imaging data, and then calculate 
for each cell a vector of N features. The system response of each treatment condition (TC; corresponds to applying a 
particular stimulation to a particular cell type) is then described by a feature matrix, whose M columns contain the N 
features of the M single cells identified from the images.  This step is quite complex, instrument-dependent, and 
computational intensive. In this study, spectral multi-photon data are initially processed using a probabilistic 
processing pipeline that was developed for processing low-signal high-content spectral images (Tzeranis et al., in 
preparation). The pipeline utilizes spectral unmixing and Bayesian classification to segment the image pixels into 
four classes based on the known types of objects known to be present in each class: the “cytoplasm” class (contains 
CMTMR, Alexa fluor 488), the “nucleus” class (contains CMTMR, Hoechst 33342), the “scaffold” class (contains 
fluorescence and second harmonic emission by collagen), and the “void” class (empty space between cells and 
scaffold). After image segmentation, single cells are identified using published seeding and growing algorithms 
[19,20]. Due to the complexity of this step, the validity of the identified cell objects need to be manually verified by 
a human user. Finally, for each cell, a set of 45 morphometric features are calculated. The features describe the 
shape of the cell (based on the CMTMR emission), the shape of the nucleus (based on Hoechst33342 emission), the 
shape of cell-matrix adhesion pattern (this is approximated based on “cytoplasm” pixels that neighbor “scaffold” 
pixels), and the expression of contractile phenotypes by cells (based on the Alexa Fluor 488 emission). 

- Statistical Processing: Statistical processing consists of two steps. Low-level statistical analysis quantifies the 
degree of “difference” (using some sort of “distance” metric) between the feature arrays of different TC. High-level 
statistical analysis combines the “differences” between the responses of different TC with a-priori knowledge on the 
biology of the signal transduction pathway of interest in order to infer conclusions about the role of pathway 
components. This study implements only low-level statistical processing and follows the procedure proposed by 
[12]: the feature matrix of each TC is initially normalized and its dimension is reduced by principal component 
analysis. The “difference” between the responses of two TC is calculated using the Mahalanobis distance metric.  

 
Figure 2. Schematic of the steps of the proposed image informatics methodology as applied in a pilot study of TGFβ isoform 
signaling via the SMAD pathway in primary fibroblasts inside porous collagen scaffolds. 

3. RESULTS 
Figure 3 shows representative images of the outcome of the various steps of the image processing pipeline that converts 
raw spectral multi-photon microscopy data into single cell objects that are ready for quantification. Figure 3a shows an 
intensity image obtained by summing the photon counts of the 16 channels of the spectral image. The staining protocol 
has been optimized so that the mean fluorescent emission from “cytoplasm” pixels and “nucleus” are at most one order 
of magnitude larger compared to the intrinsic fluorescent emission from scaffold strut pixels. Figure 3b shows the 
outcome of spectral unmixing. Results show that Hoechst33342 emission is localized in cell nuclei, CMTMR emission 
in the whole volume of cells (cytoplasm and nucleus), collagen emission is present in the scaffold, and Alexa Fluor 488 
emission (label for expression of contractile αSMA fibers) is indeed present in the cytoplasm of some cells. Figure 3c 
shows the outcome of the image segmentation algorithm. Images of fibroblasts inside collagen scaffolds reveal that in 
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general fibroblasts and myofibroblasts (cells that express significant αSMA) interact extensively with their surrounding 
matrix and much less with each other. Although a few clusters of cells of moderate size are present (for example the one 
located in the bottom left part of Figure 3c), neither in WT cells nor in any one of the SMADx- cells there was observed 
a tendency for cells to form cell niches. Figure 3d highlights the selected single-cell objects that will be quantified. 
Usually a small percent of the cells (less than 30%) present in each field satisfies the necessary conditions and is selected 
for further processing. The remaining cells are not selected either because they lack a nucleus (it is located in a plane not 
present in the data) or because they are part of a big cell cluster that makes cell seeding/splitting calculations hard. 

 
Figure 3. Representative images of the various steps in the image processing pipeline of the image informatics study. a: 
intensity data (sum of the signal from all 16 channels of the MA-PMT detector). Data are normalized between 0 and 100 
photons per pixel and processed by gamma correction (set to 0.5 in order to enhance visualization), b: Outcome of spectral 
unmixing. Images show the emission of collagen (0-4 photons/pixel), alexa fluor 488 (0-80 photons/pixel), hoechst33342 
(0-20 photons/pixel), and CMTMR (0-20 photons/pixel). c: outcome of the image segmentation algorithm. Black: void, 
Dark gray: nuclei, Light gray: cytoplasm, White: scaffold. d: Selected cell objects to be quantified. The field of view of each 
image is approximately 400×400 μm. 

Figure 4 shows the Mahalanobis distance between different treatment conditions (TC) as calculated based on the 45 
single-cell features after normalization and dimension reduction. Figure 4a displays the effect of knocking down a single 
rSMAD component on the response of cells to the two TGFβ isoforms (compared to WT cells). It reveals that in the 
absence of stimulation (No TGFβ), the Mahalanobis distance between WT fibroblasts and SMADx- fibroblasts is small. 
This result suggests that knocking down a rSMAD component does not affect the cell state significantly. Figure 4a 
reveals that knocking down SMADs affects cell response to both TGFβ isoforms. The response to TGFβ1 is mostly 
affected by SMAD3 and SMAD1. The response to TGFβ3 is less affected by SMAD knock-down, mostly SMAD1 and 
SMAD5. Figure 4b shows the effect of different TGFβ isoforms to different kinds of cells. It shows that in WT 
fibroblasts, the response of cells to TGFβ1 or TGFβ3 is much more different compared to the response when there is no 
TGFβ compared to SMADx- fibroblasts. Figure 4b also suggests that SMAD5- fibroblasts are much less responsive to 
TGFβ isoforms, SMAD1- and SMAD2- fibroblasts are less responsive to both TGFβ isoforms, while SMAD3- fibroblasts 
are much more responsive to TGFβ1 and less to TGFβ3. 
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Figure 4. Mahalanobis distance between treatment conditions reveals how knocking down SMAD components affect cell 
response to TGFβ isoforms. a: Mahalanobis distance between WT fibroblasts and SMADx- fibroblasts for the three kinds of 
stimulation considered in this study. b: Mahalanobis distance between different stimulations for the five kinds of cells (WT 
fibroblasts and SMADx- fibroblasts) considered in this study. 

4. DISCUSSION 
This study describes an implementation of the image informatics methodology for studying signal transduction pathways 
in cells that interact with 3D matrices. This is an advancement compared to published implementations that study cells 
cultured on flat plastic surfaces that lack a physiologically relevant ECM. Due to the complexity and the 3D nature of the 
cell-matrix system, imaging features need to be calculated based on images acquired by 3D imaging modalities. 
Specifically, this study utilizes spectral multi-photon microscopy in order to increase the information content of the 
acquired images and therefore reduce the number of necessary experiments (spectral imaging enables to use the same 
image in order to quantify both cell morphology features and cell-matrix adhesion features). Due to the presence of the 
matrix, the signal transduction pathway is considered to be a part of an integrated cell-matrix system, whose state is 
described using imaging-based features that describe both cells (morphology, αSMA expression), and cell-matrix 
interactions (extent, topology). In contrast, previous image informatics implementations use only features that describe 
cell morphology. 

The developed methodology has been applied in a pilot study of TGFβ isoform signaling via the SMAD pathway in 
fibroblasts cultured inside porous collagen scaffolds. This pilot study is of significant biological relevance because TGFβ 
isoforms are known to be involved in several processes (particularly wound contraction) that affect wound healing, and 
because the porous collagen-GAG scaffolds used in this study are similar to biomaterial grafts used clinically to induce 
skin regeneration [14]. Preliminary results based on simple statistical analysis reveal that knocking down different 
rSMAD components affect how fibroblasts respond to TGFβ1 and TGFβ3 isoforms. Interestingly, while it is believed 
that the “canonical” SMAD2 and SMAD3 transmit TGFβ isoform signaling while SMAD1 and SMAD5 transmit  BMP 
signaling, preliminary data show that SMAD1 and SMAD5 are involved in TGFβ isoform signaling and in particular in 
different ways for each isoform. These observations need to be further verified by some kind of proteomic analysis. 

Image informatics can provide powerful tools for studying signal transduction in cells, however they suffer from several 
limitations. In particular, they quantify the response of the pathway indirectly (through cell morphology) and therefore 
the provide evidence and not solid proof (unlike some methods of genetics and biochemistry). They also require careful 
fluorescent staining (in order to get consistent events) and challenging image processing. Finally, the sensitivity of 
immunofluorescence detection is not great, limiting the use of phosphorylation-specific antibodies that can provide 
direct quantification of downstream network activation. These weaknesses can be compensated by combining image 
informatics with proteomic approaches that provide large number of sensitive measurements of protein activation at 
various nodes of the signaling network [6]. In this case, image informatics can contribute data of high spatial and 
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temporal resolution, in situ measurements inside a physiologically relevant 3D matrix, and structural information. 
Nevertheless, there is still a long way to go in order to integrate the experimental and analytical tools of imaging-based 
and proteomic-based signal transduction analysis. 
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