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We study Fermi liquid instabilities in spin-orbit-coupled metals with inversion symmetry. By
introducing a canonical basis for the doubly degenerate Bloch bands in momentum space, we derive
the general form of Landau interaction functions. A variety of time-reversal-invariant, parity-breaking
phases is found, whose Fermi surface is spontaneously deformed and spin split. In terms of symmetry, these
phases possess gyrotropic, ferroelectric, and multipolar orders. The ferroelectric and multipolar phases are
accompanied by structural distortions, from which the electronic orders can be identified. The gyrotropic
phase exhibits a unique nonlinear optical property. We identify correlated electron materials that exhibit
these parity-breaking phases, including LiOsO3 and Cd2Re2O7.
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Novel physics from strong spin-orbit coupling in quan-
tum materials is currently attracting widespread interest
across many disciplines in condensed matter physics. In
particular, there is now an intensive investigation of the
interplay between spin-orbit coupling and electron corre-
lation in d-orbital and f-orbital systems [1–3]. The majority
of studies have been focused on correlated band or Mott
insulators, whereas spin-orbit coupling in correlated metals
has received less attention. It is well known that spin-orbit
coupling in metals without inversion symmetry generates
spin-split energy bands and spin-polarized Fermi surfaces
[4]. This has interesting consequences in the presence of
electron-electron interactions [5–11]. In contrast, in metals
with inversion and time-reversal symmetry, Bloch bands
are doubly degenerate everywhere in momentum space.
The effect of spin-orbit coupling is more subtle: it leads to
spin-orbit-entangled Bloch wave functions, which have
different spin polarizations on different atomic orbitals
[12,13]. For this reason, the importance of spin-orbit
coupling in inversion-symmetric materials can be easily
overlooked.
In this Letter, we explore the consequences of having

both strong spin-orbit coupling and electron interaction in
metals with inversion symmetry. By generalizing Landau’s
Fermi liquid theory to spin-orbit-coupled metals, we
theoretically predict a variety of new ordered phases
resulting from Pomeranchuk-type instabilities in the spin
channel [14], which spontaneously break inversion sym-
metry. These phases can be regarded as new examples of
electronic liquid crystals [15], which preserve the transla-
tional invariance and break the point group symmetry of the
lattice. Importantly, because of the spin-orbit coupling,
these phases exhibit spin-split Fermi surfaces with char-
acteristic spin textures, and the onset of electronic parity-
breaking orders is generally accompanied by structural
changes. We focus on three different parity-breaking phases

having the symmetry of ferroelectric, a multipolar and an
isotropic gyrotropic liquid, respectively, and identify their
realizations in correlated electron materials.
Landau’s Fermi liquid theory of metals starts from Bloch

states on the Fermi surface. In the presence of spin-orbit
coupling, Bloch states are not spin eigenstates, but remain
doubly degenerate at every k in systems with both time-
reversal (T) and inversion (P) symmetry [12]. To develop
Fermi liquid theory of such spin-orbit-coupled systems, we
must first choose a basis fjψk;1i; jψk;2ig for the degenerate
bands over the entire Fermi surface. As observed by Blount
long ago [16], due the absence of spin conservation, the
choice of basis is not unique: an arbitrary Uð2Þ rotation on
the doublet at every k produces a new basis that appears to
be as good as the old one. This leads to significant
complications, as the form of Landau energy functional
is basis dependent.
In this work, we introduce a canonical basis that we call

“manifestly covariant Bloch basis” (MCBB). This basis is
defined universally and uniquely by demanding the Bloch
wave functions at r ¼ 0—a two-component spinor—to be
fully spin polarized along a global spin-quantization axis:

ψk;1ðr ¼ 0Þ ¼ ukj↑i;
ψk;2ðr ¼ 0Þ ¼ vkj↓i; ð1Þ

where uk and vk are “real” and “positive”; ↑;↓ labels
electron’s spin. Importantly, the origin of real space
coordinate r ¼ 0 is chosen to be the center of point group
symmetries of the crystal, and the condition (1) is imposed
on Bloch states on the entire Fermi surface.
The MCBB can be explicitly constructed by starting

from an arbitrary basis fjϕk;1i; jϕk;2ig. Because of
time-reversal (T) and inversion (P) symmetry, the two
members form a Kramers doublet under the combined
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operation PT [12], so that with a proper choice of phase, we
have absorbed a Uð1Þ phase factor by a redefinition.
Therefore, the corresponding spinors defined by Bloch
wave functions at the inversion center form a Kramers
doublet under T: ϕk;2ðr ¼ 0Þ ¼ Tϕ;1ðr ¼ 0Þ and thus are
orthogonal. This orthogonality condition guarantees one
can perform a Uð2Þ transformation on fjϕk;1i; jϕk;2ig to
obtain a new basis satisfying (1), or equivalently MCBB.
The advantage of MCBB lies in its remarkably simple

transformation property under point group symmetries,
which act on both the electron’s spatial coordinate and
spin. For a generic choice of basis, a symmetry action G
will map Bloch states at k into those atGk (or the star of k)
up to a complicated, k-dependent Uð2Þ basis transforma-
tion [16]. In contrast, the defining property (1) guarantees
that G maps the MCBB jψk;αi at k directly to its partner
at Gk,

G∶ jψk;αi → UαβðGÞjψGk;βi ð2Þ

where UðGÞ is the SUð2Þ matrix representation of G.
Furthermore, the MCBB at �k are related by time-reversal
symmetry in the same way as spin eigenstates:

Tjψk;αi ¼ ϵα;βjψ−k;βi: ð3Þ

Equations (2) and (3) show that the two members of the
MCBB α ¼ 1; 2 transform identically as spin up and down
under symmetry operations. Therefore, for the simplicity of
presentation, we refer to the α index of MCBB as spin, with
the understanding that jψk;αi are not spin eigenstates.
MCBB provides the starting point for our Fermi liquid
theory and is expected to have wide applications in
spin-orbit-coupled systems in general.
Fermi liquid theory relates the change of energy δE to

the change in the distribution function of Bloch quasipar-
ticles up to second order. The distribution function is a
2 × 2 Hermitian matrix in spin space, which we write as
nαβðkÞ in MCBB; i.e., nαβðkÞ ¼ hc†k;αck;βi. δE is then a
quadratic functional of nαβðkÞ, where k is near the Fermi
surface. For spin-orbit-coupled systems, we find it con-
venient to decompose nαβðkÞ in terms of the density and
spin distribution function:

nαβðkÞ≡ nðkÞδαβ þ sðkÞ · ~σαβ: ð4Þ

Based on symmetry considerations, we now relate δE to the
change in the density and spin distribution function. First,
note the transformation property of nðkÞ and sðkÞ under
time reversal and inversion,

T∶ nðkÞ → nð−kÞ; sðkÞ → −sð−kÞ
P∶ nðkÞ → nð−kÞ; sðkÞ → sð−kÞ: ð5Þ

It follows that when both symmetries are present, δE
consists of density-density interaction and spin-spin
interaction, taking the form of

δE ¼
X

k

ϵkδnðkÞ þ
X

k;k0
Fnðk;k0ÞδnðkÞδnðk0Þ

þ
X

k;k0
Fs
ijðk;k0ÞsiðkÞsjðk0Þ: ð6Þ

The invariance of δE under crystal symmetry trans-
formations further constrains the momentum dependence
of the interaction functions Fnðk;k0Þ and Fsðk;k0Þ.
Unlike spin-rotationally invariant systems where the spin
interaction is isotropic in spin space (Fs

ij ∝ δij), both
Fsðk;k0Þ and Fs

ijðk;k0Þ in spin-orbit-coupled systems
are constrained by crystal symmetries acting on electron’s
coordinate and spin in combination. It follows from the
symmetry property of MCBB (2) that under a crystal
symmetry operation G, nðkÞ and sðkÞ transform as a
scalar and a vector field, respectively,

G∶ nðkÞ → nðGkÞ
siðkÞ → GijsjðGkÞ; ð7Þ

where Gij is the SOð3Þ matrix representation of G. Hence,
Fnðk;k0Þ and Fs

ijðk;k0Þ transform as a scalar field and a
rank 2 tensor field, respectively:

G∶ Fnðk;k0Þ → FnðGk; Gk0Þ
Fs
ijðk;k0Þ → Gii0Gjj0Fs

i0j0 ðGk; Gk0Þ: ð8Þ

Equations (6) and (8) give the general form of the energy
functional of Fermi liquids in spin-orbit-coupled systems.
The novelty here lies in the spin interaction, which is
anisotropic in spin space and spin-momentum locked.
We now explore consequences of spin interactions in
spin-orbit-coupled Fermi liquids.
To proceed, we write the spin interaction in a separable

form given by products of basis functions of k and
of k0:

δEspin ≡
X

k;k0
Fs
ijðk;k0ÞsiðkÞsjðk0Þ

¼
X

η

X

k;k0
Fηϕηðk; sðkÞÞϕηðk0; sðk0ÞÞ: ð9Þ

Naturally, different basis functions ϕηðkÞ fall into different
representations of crystal symmetry group. As a first step,
it is instructive to start from isotropic spin-orbit-coupled
liquids with the largest symmetry group SOð3Þ, invariant
under any arbitrary rotation of space and spin taken in
combination. Then, the basis functions are labeled by
three quantum numbers η ¼ ðL; J; JzÞ: L is the orbital
angular momentum, J is the total angular momentum
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J ¼ Lþ S with S ¼ 1, and Jz is the z component J.
The 2J þ 1 basis functions with the same ðL; JÞ and
Jz ¼ −J;−J þ 1;…; J form a multiplet. Associated with
each ðL; JÞ multiplet is an interaction parameter Fs

L;J,
which parameterizes the excitation energy of a particular
type of Fermi surface deformation. Different ðL; JÞ

multiplets correspond to “orthogonal” modes of Fermi
surface deformations.
We now explicitly decompose the spin interaction into a

few lowest ðL; JÞ multiplets. Up to L ¼ 1, there are four
multiplets: ðL ¼ 0; J ¼ 1Þ and ðL ¼ 1; J ¼ 0; 1; 2Þ, and
hence, δEspin takes the form

δEspin ¼
X

k;k0
Fs
0sðkÞ · sðk0Þ þ Fs

1ðk̂ · sðkÞÞðk̂0 · sðk0ÞÞ þ Fs
2ðk̂ × sðkÞÞ · ðk̂0 × sðk0ÞÞ þ Fs

3QijðkÞQijðk0Þ; ð10Þ

where Qij ¼ Qji is a second-rank tensor constructed from
k and sðkÞ:

QijðkÞ ¼
1

2
ðk̂isjðkÞ þ k̂jsiðkÞÞ −

1

3
k̂ · sðkÞδij: ð11Þ

Equation (10) is a main result of this work, which shows the
presence of three p-wave (L ¼ 1) spin interaction channels
parameterized by Fs

1, F
s
2, and Fs

3. Similar decompositions
of spin interaction into higher angular-momentum channels
can be carried out by constructing high-rank tensors from
powers of k and sðkÞ.
At this point, it is worth discussing the effect of periodic

crystal potential, which reduces the full rotational sym-
metry to its subgroup, the point group of a crystal. In this
case, Fermi liquid interactions can still be decomposed into
different spin-orbit-coupled channels as in (10). However,
these channels are in one-to-one correspondence with the
irreducible representations of the point group, instead of the
ðL; JÞ multiplets for SOð3Þ group. Despite this difference,
for many crystal structures such as cubic, tetragonal,
trigonal, and hexagonal, the four channels in (10) remain
to be in different point group representations, and hence
orthogonal to each other.
When one or more interaction parameters in the spin

channel become negative and of sufficiently large magni-
tude, Fermi surface instability occurs. A well-known
example is the ferromagnetic instability associated with
Fs
0 in the s-wave spin channel. This work is concerned with

Fermi liquid instabilities in the p-wave (more generally,
odd L) interaction channels in spin-orbit-coupled metals.
The resulting phases are time-reversal invariant and parity
breaking and, as we show, exhibit novel properties arising
from spin-orbit coupling.
First, consider the instability associated with Fs

1 in the
ðL ¼ 1; J ¼ 0Þ channel. According to (10), this instability
generates an Ising order parameter:

η ¼
X

k

k̂ ·sðkÞ: ð12Þ

η is a pseudoscalar because it is invariant under time
reversal and all rotations, but breaks inversion and all
reflections. Therefore, the ordered phase with η ≠ 0 is an
isotropic gyrotropic liquid. This gyrotropic order parameter

splits the original spin-degenerate Fermi surfaces into two
with unequal volumes, with opposite spin polarizations.
Unlike the case of ferromagnetism, here the spin quantiza-
tion axis defined in terms of MCBB is not uniform but
parallel to the momentum: sðkÞ ∝ ηk̂, which leads to a
hedgehog spin texture over the Fermi surface.
Next, consider the instability associated with Fs

2 in
the ðL ¼ 1; J ¼ 1Þ channel. According to Eq. (10), this
instability generates a vector order parameter

P ¼
X

k

k̂×sðkÞ: ð13Þ

We observe that P has the same symmetry as the ferro-
electric polarization: it is odd under inversion and invariant
under time reversal and transforms as a vector under
rotation. Therefore, we identify the ordered phase with
P ≠ 0 as a “ferroelectric” metal that spontaneously devel-
ops a polar axis, despite that its charge polarization is
screened by free carriers [17]. In this phase, Fermi surfaces
are spin split and deformed by a spontaneously generated
spin-orbit field hðkÞ acting on the original Fermi surface.
hðkÞ is k dependent and proportional to the spin polari-
zation field sðkÞ generated by the ferroelectric vector order
parameter: hðkÞ ∝ sðkÞ ∝ P × k̂. This spin-orbit field has
the same form as the Rashba spin splitting due to an
external electric field. In our case, both the Rashba spin
splitting of the Fermi surface and the accompanying
ferroelectric order P are caused by strong electron
interactions.
Finally, consider the instability associated with Fs

3 in the
ðL¼1; J¼2Þ channel. According to (10), the corresponding
order parameter is a traceless symmetric matrix given by

Qij ¼
X

k

QijðkÞ; ð14Þ

whereQijðkÞ is defined in (11). This order parameter has d-
wave symmetry and odd parity and hence is a second-rank
pseudotensor. The multipolar phase with Qij ≠ 0 can be
regarded as an electronic analog of the chiral nematic liquid
crystals [18]. Its Fermi surfaces are spin split and deformed
by the spin-orbit field hiðkÞ ∝ siðkÞ ∝ Qijkj. If the matrix
Qij may have two degenerate eigenvalues, the ordered phase
is uniaxial; otherwise, it is biaxial.
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To summarize, we find new parity-breaking phases
with gyrotropic, ferroelectric, and multipolar orders in
spin-orbit-coupled Fermi liquids, driven by strong p-wave
spin interaction. Because of spin-orbit coupling, these
symmetry-breaking phases exhibit spin-spilt Fermi surfaces.
The magnitude and direction of the spin splitting vary
strongly over the Fermi surface. The characteristic Fermi
surface splitting and spin texture in momentum space are
predicted to be the hallmark of parity-breaking phases in
spin-orbit-coupled metals. These features of parity-breaking
phases can be detected by angle- and spin-resolved
photoemission spectroscopy.
Since the above parity-breaking order parameters are

time-reversal invariant and break rotational symmetry of
the crystal, they couple linearly to lattice distortions that
lowers the point group to the same subgroup without
enlarging the unit cell. As a result, the transition driven
by Fermi liquid instability is generally accompanied by a
structural transition, from which the electronic order can be
inferred. A possible exception is the gyrotropic order (12),
which preserves the full rotational symmetry of the crystal.
Such a high degree of symmetry may not be compatible
with any lattice distortion caused by atomic displacements.
In this case, it will be difficult to detect the electronic
gyrotropic order with conventional methods [19–22].
It is important to emphasize that the presence of spin-

orbit coupling is indispensable to the parity-breaking
phases found in this work. To make this point clear, let
us consider spin-rotationally invariant Fermi liquids, whose
spin interaction in the p-wave channel takes the formP

kk0 ðk̂ · k̂0ÞsðkÞ · sðk0Þ. The corresponding Fermi liquid
instabilities have been studied in detail [23–25]. The
ordered phases were found to simultaneously break two
symmetries, the rotational symmetry of space and of spin.
As a result, the spin textures are free to rotate as a whole,
instead of being rigidly locked to momentum as in our case.
Moreover, these electronic orders cannot couple directly to
lattice distortions (which preserve spin rotational sym-
metry), unlike the ferroelectric and multipolar phases of
spin-orbit-coupled Fermi liquids. We also note that besides
spin-orbit coupling, dipolar interactions in ultracold Fermi
gases, which also lock spin and momentum, can generate
ordered phases with similar features [26,27]. In addition,
parity-breaking phases can occur in spin-orbit-coupled
insulators [28].
Finally, based on recent experiments, we identify several

correlated electron materials that show evidence of the
above parity-breaking orders. First, a recently synthesized
material LiOsO3 was found to undergo a second-order
ferroelectric structural transition at low temperature [29].
The high-temperature structure is D3d, which is inversion
symmetric. A polar axis in c direction appears in the low-
temperature phase, reducing the crystal symmetry to C3v.
Based on the observation of unusually large residual
resistivity and Curie-Weiss behavior of spin susceptibility,

it has been suggested that electron correlation plays an
important role and possibly drives the structural transition
[29]. Therefore, the low-temperature phase of LiOsO3 may
be an electronic-driven ferroelectric metal.
Second, we suggest pyrochlore oxides A2B2O7 as

promising candidates for the multipolar phase. The pyro-
chlore crystal structure has the Oh point group symmetry.
Because of this crystal anisotropy, the five-component
multipolar order parameter Qij defined in (11) splits
into a two-dimensional Eu representation ðQxx −Qyy;
2Qzz −Qxx −QyyÞ and a three-dimensional T2u represen-
tation ðQxy;Qyz; QzxÞ. Recently, the pyrochlore oxide
Cd2Re2O7 was found to undergo a second-order structural
transition from cubic to tetragonal at Tc ¼ 200 K, with an
order parameter of the Eu symmetry [30–33]. Remarkably,
the lattice change across the transition is extremely
small, whereas electrical properties change drastically. In
addition, a large mass enhancement above the transition
temperature was inferred from transport and optical mea-
surements [34–36]. Therefore, the structural transition in
Cd2Re2O7 may be induced by an electronic transition to the
mulitpolar phase.
In the above examples of ferroelectric and multipolar

phases, the appearance of electronic order is inferred, by
symmetry consideration, from the structural distortion it
couples to. It is desirable to directly probe the change in
electronic structure, Fermi surface, and spin texture across
the parity-breaking phase transition via, for example, angle-
and spin-resolved photoemission spectroscopy. Moreover,
it will be interesting to determine whether the driving force
for the transition is structural or electronic. On the other
hand, the isotropic gyrotropic order can be more elusive. In
the case of pyrochlore crystals, the gyrotropic order
belongs to the A1u representation of the Oh point group,
which is incompatible with any phonon mode at the
Brillouin zone center [37]. Therefore, it cannot be gen-
erated by structural distortions and, if found, should have
an electronic origin.
In addition to photoemission, nonlinear optics is a

powerful tool for detecting parity-breaking orders
described in this work. For example, the multipolar phase
in tetragonal Cd2Re2O7 has been successfully detected by
second-harmonic generation (SHG) [38]. Regarding the
gyrotropic order (12), we find it has the same symmetry as
the rank 3 isotropic tensor ϵijk. It then follows from
symmetry that this gyrotropic order should lead to sum-
frequency generation (SFG) [39], in which two incident
fields E1;2 at different frequencies ω1;2 generate an electric
dipole P at the frequency ω ¼ ω1 þ ω2:

PiðωÞ ∝ sgnðηÞϵijkE1;jðω1ÞE2;kðω2Þ: ð15Þ

This nonlinear optical effect gives a direct way of detecting
the much hidden gyrotropic order.
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Our work on spin-orbit coupled metals leaves a number
of open questions for future studies. It is worthwhile to
relate the phenomenological parameters in Fermi liquid
theory to microscopic interactions. It will be extremely
interesting to study superconducting instabilities of spin-
orbit-coupled Fermi liquids, especially those proximate to
the parity-breaking phases.

L. F. thanks Tim Hsieh and Vlad Kozii for interesting
discussions. This work is supported by David and Lucile
Packard Foundation.

Note added.—A recent work shows that optical circular
dichroism can be used to probe the parity-breaking phases
described in this work [40].
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