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Abstract 

Buoyancy-driven natural ventilation in ventilation shafts is investigated with a small scale physical experiment 

within a duct and CFD simulations of an office building. For a fixed exhaust opening, smaller shafts lead to 

higher flow rates in upper floors of a multi-story building with a shared ventilation shaft. These higher flow rates 

are caused by increased vertical momentum within the smaller shafts that induce flow through upper floors, an 

effect referred to as the “ejector effect.” In the small scale duct, a 0.5 m by 0.5 m shaft leads to a slight reverse 

flow of 0.0029 m
3
/s through the upper floor. Holding all other parameters constant and reducing the shaft to 0.25 

m by 0.5 m leads to a positive flow rate of 0.012 m
3
/s through the upper floor. In the CFD simulations of a three 

story office building, this same pattern is observed. A 3 m by 2 m shaft leads to a flow rate of 0.0168 m
3
/s through 

the third floor, while the reduced shaft of 2 m by 2 m leads to a flow rate of 0.766 m
3
/s through the same floor. 

This increased airflow rate from the ejector effect can allow natural ventilation to be used in buildings where it 

may otherwise have been deemed inappropriate. Most airflow network models neglect air momentum and fail to 

account for the ejector effect. To improve these models, an empirical model is incorporated into the airflow 

network model CoolVent in a manner easily transferable to most airflow network models.  
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1. Introduction 

Natural ventilation is increasingly considered as an alternative to mechanical cooling because of its potential for 

significant energy savings. Buoyancy-driven natural ventilation leverages the temperature difference between the 

indoor and outdoor environments to draw outdoor air into buildings. One limitation of buoyancy-driven systems 

is their requirement that each floor must be connected to an exhaust opening generally located on the roof. 

Multiple floors are often connected to a common pathway that leads to the exhaust opening. Large atria can 

provide this pathway as demonstrated in recent research on the Center for Education at the Green Building [1], 

Houghton Hall [2][3], and the Engineering Building at Concordia University [4].  However, atria require large 

amounts of indoor space that could otherwise be occupied. To reduce the required footprint of these air pathways, 

ventilation shafts can be used as demonstrated in recent research on the Hulic Headquarters building [5], the San 

Diego New Children’s Museum [6], the Harm A. Weber Academic Center at Judson College [7], and the School 

of Slavonic and East European Studies at University College London [8]. 

When designing buoyancy-driven natural ventilation systems, engineers and architects use various computational 

tools. Simple analytical models use fundamental equations of heat transfer and fluid dynamics with simplified 

geometries and boundary conditions to obtain a closed-form solution [9]. However, their simplifications limit 

their use in designing full scale systems. Computational fluid dynamics (CFD) is commonly used to aid in the 
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design of buoyancy-driven natural ventilation systems because of its validated accuracy of modeling arbitrary 

geometries [9]. While very useful in the later stages of design when geometries are well defined, CFD models are 

not as useful in the early design stages when geometries are not yet well defined. Furthermore, the computational 

intensity of CFD models limits their use in annual building simulations. Airflow network models divide a building 

into various nodes that are connected to comprise a network. Fundamental equations of heat transfer and fluid 

dynamics are applied to the nodes, which are connected in various configurations based on the building design 

[9]. Airflow rates between zones are typically calculated with a power-law function. Airflow network models can 

provide annual predictions of natural ventilation system performance, especially when coupled with whole 

building simulation tools like Energy Plus, TRNSYS, or ESP-r [10-12]. Their applicability can be limited, though, 

when momentum effects within the space are significant because of their disregard for momentum within each 

node. In many cases, this assumption of negligible momentum is justified because the typical open-plan office or 

atrium is large enough that local velocities are small, thereby resulting in very little momentum. However, the 

smaller cross sectional areas in ventilation shafts lead to moderate velocities, which in turn generate non-trivial 

momentum. Thus, current airflow network models that neglect momentum inaccurately model ventilation shafts 

where momentum effects can be important. 

This study observes and simulates the airflow within ventilation shafts connected to multiple floors to investigate 

if, for a given exhaust area, smaller ventilation shafts lead to higher flow rates through upper floors. This effect is 

referred to as the “ejector effect.” Small scale lab experiments within a custom duct and CFD simulations of an 

office building are used to explore this effect. Additionally, an airflow network model, CoolVent, is enhanced to 

account for the ejector effect with methods easily transferable to most airflow network models [13]. The improved 

CoolVent is used to simulate the same office building modeled with CFD to validate the enhancements. 

2. Methods  

2.1 Small Scale Experiment Investigation 

A small scale model of a ventilation shaft is constructed out of 0.79 mm stainless steel ducts surrounded by 5.1 

cm of extruded polystyrene insulation with a thermal resistance of 1.8 m
2
K/W. One side of the shaft is cut out and 

replaced with transparent 2.4 mm acrylic sheets to provide a view into the shaft. The inside of the shaft is lined 

with 1.6 mm black felt to enhance flow visualization techniques. Two shaft configurations are investigated: a 0.25 

m x 0.5 m shaft and a 0.5 m by 0.5 m shaft, both of which are shown in Fig. 1. Three takeoff ducts are connected 

to a common shaft in each configuration. Each of the takeoff ducts contains a resistance heater measuring 25 cm 

by 15 cm by approximately 2 mm thick used to create a temperature difference between the shaft and ambient 

conditions, which simulates internal heat gains in a building. Although identical heaters are used, their measured 

power output slightly differs and is found to be 150, 146, 144 +/- 2.6 W for the lower, middle, and upper takeoff 

ducts respectively. Using the chimney shaft height as the characteristic length and the measured bulk temperature 

difference of 4.5 °C, the Grashof number for the system is 1.6 X 10
10

, which surpasses the proposed similarity 

threshold provided by Etheridge and Sandberg and used by other small scale natural ventilation studies 

[1][3][14][15]. Although this small scale experiment does not replicate any other geometries considered in this 

study, it provides a physical demonstration of the ejector effect. 
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Figure 1 – Geometry of the ventilation shaft lab experiment. Both (left) a 0.5 m by 0.5 m shaft and (right) a 

0.25 m by 0.5 m shaft are considered. The three horizontal takeoff ducts are open at both ends so that air 

enters each duct, is heated by a rectangular heater, and enters the ventilation shaft. 

 

Volumetric flow rates are measured at each inlet in accordance with ASHRAE Standard 111-2008 using the equal 

area method for the entrance to a rectangular duct [16]. Measurements are made during three tests using a hotwire 

anemometer with a stated accuracy of +/- 3% +/- 0.015 m/s and are taken flush with the inlets [17]. Airflow 

visualization is provided by neutrally buoyant bubbles with diameters between 1.3 to 3.8 mm photographed by a 

digital SLR camera with a shutter speed of 1/4 s to create streaks that correspond to bubble pathlines. The bubble 

generator is described in more detail elsewhere [18][19]. 

 

2.2 CFD Investigation  

A CFD investigation is conducted to explore the impact of the ejector effect in a full scale building. Each floor of 

the three story office building measures 10 m by 10 m by 4 m high, but a 1 m drop ceiling limits the floor-to-

ceiling height to 3 m. The floors are naturally ventilated through a single ventilation shaft that extends 4 m above 

the third floor. A narrow 1 m
2
 opening flush with the ceiling on the façade opposite the shaft allows outdoor air to 

enter the space. Floor-to-ceiling openings from the occupied zone to the shaft allow air to enter the shaft and exit 

through the 2 m by 2 m exhaust opening at the top of the shaft. Internal heat gains from occupants, lighting, and 

plug loads are assumed to equal 30 W/m
2
. All parameters are held constant except the shaft cross sectional area. 

The RNG k-ε turbulence model with enhanced wall function and thermal effects is used based on its 

computational time and accuracy reported in previous studies [20-25]. Grid independence tests indicate mesh 
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sizes between 400,295 and 577,697 are sufficient for grid independence, where larger mesh sizes correspond to 

larger shafts. Mesh density is increased near the narrow opening, floor-to-ceiling opening on each floor, and 

exhaust opening. Heat loads are evenly distributed across the ceiling and floor. Simulations are run under 

transient conditions, but are assumed to reach steady state when the bulk exhaust temperature varies less than 

0.003 °C for 1000 iterations. Radiation is accounted for using the Surface to Surface radiation model with a 

residual convergence criteria of 0.001. Reference and operating temperatures are set to 21.8 °C. 

An adiabatic boundary condition is applied to all exterior surfaces except the narrow openings, exhaust opening at 

the top of the shaft, and the floor and ceiling of the occupied zones. The narrow openings are modeled with a 

“pressure outlet” condition with zero gauge pressure and a specified temperature of 21.8 °C. This condition 

allows the CFD software to calculate the driving pressure and resulting flow rate due to buoyancy effects from the 

internal heat gains rather than specifying a flow rate at each opening. A “porous jump” is modeled just inside the 

narrow opening to account for resistances due to the sudden convergence of the ambient air as it enters the 

opening. The pressure loss over the “porous jump” is calculated with Eq. 1 where ∆𝑃 is the total pressure drop 

through the “porous jump,” ρ is the density of air, 𝑣 is the local bulk velocity of air, and ζ is the pressure loss 

coefficient for which a value of 0.5 is used for converging flow [26].  

∆𝑃 = 1

2
𝜁𝜌𝑣2          (1) 

The exhaust opening at the top of the chimney is also modeled with a “pressure outlet” condition. The same 

“porous jump” condition is applied directly beneath the exhaust opening, but ζ=1 to account for the sudden 

expansion of the air into the environment after it exits the opening. The floor and ceiling are used to evenly 

distribute the total heat generation of 30 W/m
2
 using a constant heat flux boundary condition. 

Five shaft cross-sectional areas are considered: 2 m by 2 m, 2 m by 2.5 m, 2 m by 3 m, 2 m by 3.5 m, and 10 m by 

10 m, the last of which models a large atrium. The total exhaust area is 4 m
2
 in all five simulations and the exact 

geometry remains unchanged in the first four simulations. The large atrium case is exhausted by four 1 m
2
 

openings in the middle of the atrium. In the first four cases, the opening from each floor to the shaft is 6 m
2
, while 

the same opening in the atrium case is 30 m
2
. The exact geometry used for three cases is presented in Fig. 2. 
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Figure 2 – Basic geometry of the three story office building simulated with CFD. (left) The 2 m by 2 m shaft 

is expanded to three other cross sections, only one of which is shown, the 2 m by 3 m case (middle). (right) 

A 10 m by 10 m atrium is also simulated. Every case has the same total exhaust area of 4 m
2
. The blue 

plane indicates where simulated measurements, which are later presented, are made. 

 

 

3. Calculations 

Following the investigations, an airflow network model, CoolVent, is enhanced to capture the impact of the 

ejector effect. CoolVent couples the conservation of energy and momentum through numerical methods [13]. 

Like most airflow network models, CoolVent assumes well-mixed conditions, insignificant flow obstructions, and 

negligible momentum within each zone [13]. The airflow rate between zones one and two, �̇�12, is calculated with 

the orifice equation, 

�̇�12 = 𝐴𝐶𝐷√
2(𝑃1−𝑃2) 

𝜌
      (2) 

where 𝐴 is the area of the opening, 𝑃1 − 𝑃2 is the static pressure difference between zones, and 𝐶𝐷 is the 

dimensionless discharge coefficient. CoolVent shares many prominent features of most airflow network models 

such as a network of nodes, reliance on the Bernoulli equation, and use of a power-law function to calculate flow 

rates [9][13]. In light of these similarities, the improvements to CoolVent can be easily replicated in other airflow 

network models.  

The improvements to CoolVent are made with empirical relationships that calculate pressure loss coefficients 

based on geometry and flow conditions. These relationships come from Idelchik’s book, which defines a pressure 

loss coefficient ζ similar to Eq. 1 that calculates the total pressure loss based on a known bulk velocity [26]. 

However, this form of the pressure loss coefficient is inapplicable to CoolVent, which neglects momentum and 

thus relies only on static pressure to drive the flow [13]. Using the Bernoulli equation and definition of ζ, a ζeff is 

calculated based only on the static pressure difference. 

𝑃1−𝑃2 

𝜌
+

𝑣1
2−𝑣2 

2

2
=

𝜁𝑣1
2

2
      (3) 

Rearranging Eq. 3 in terms of the static pressure difference provides the definition of ζeff 

𝑃1 − 𝑃2 =
𝜌𝑣1

2

2
[𝜁 − (1 − 𝑣2

2

𝑣1
2)] =

𝜌𝑣1
2

2
𝜁𝑒𝑓𝑓       (4) 

where  

𝜁𝑒𝑓𝑓  = [𝜁 − (1 − 𝑣2
2

𝑣1
2)]       (5) 

This 𝜁𝑒𝑓𝑓  is converted to a discharge coefficient used in the orifice equation by equating the static pressure 

difference used to define both 𝜁𝑒𝑓𝑓 and 𝐶𝐷. 
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𝑃1 − 𝑃2 =
1

𝐶𝐷
2

𝜌𝑣2

2
= 𝜁𝑒𝑓𝑓

𝜌𝑣2

2
      (6) 

Canceling similar terms and rearranging Eq. 6 yields the following relationship for  𝐶𝐷 in terms of 𝜁𝑒𝑓𝑓  

𝐶𝐷 =
1

√𝜁𝑒𝑓𝑓
       (7) 

Fig. 3 shows the three story office building with openings used in the CoolVent simulations.  

 

Figure 3 – The same three story office building from CFD simulations is used in CoolVent, the geometry of 

which is shown here with labeled openings.  

 

 

The value of 𝜁𝑒𝑓𝑓 for openings 1a, 2a, and 3a is 0.5, a constant value for the convergence of airflow from a large 

space to a small area [26]. The value of 𝜁𝑒𝑓𝑓 at opening 1b is calculated using Eq. 5 with the value of 𝜁 coming 

from Idelchik’s Diagram 6.6 for a 90
0
 bend, which is summarized in Table 1 [26]. The basic geometry of the bend 

is shown in Fig. 4.  
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Figure 4 – Geometry of a 90
0
 bend used to determine values of 𝜁 from Idelchik’s Diagram 6.6 [26].  

 

Table 1 – Values of 𝜁 obtained from Idelchik’s Diagram 6.6 for a 90
0
 bend shown in Fig. 4 [26].  

 a2/a1 

b1/a1 0.6 1.0 1.4 2.0 

0.25 1.76 1.24 1.09 1.06 

1.0 1.70 1.02 0.95 0.84 

4.0 1.46 0.81 0.76 0.66 

 

 Values of 𝜁𝑒𝑓𝑓 for openings 2b and 3b are calculated using relationships for the side branch of converging wyes 

at 90
0
 and shown in Eq. 8 [26].  Values of 𝜁𝑒𝑓𝑓 for openings 1c and 2c are calculated using relationships for the 

straight passage through converging wyes at 90
0
 and shown in Eq. 9 [26]. These two equations account for the 

momentum effects within the shaft and their impact on the flow through adjacent floors. 

𝜁 = 0.9 ∗ (1 −
�̇�𝑠

�̇�𝑐
) [1 + (

𝑣𝑠

𝑣𝑐
)

2

− 2 (1 −
�̇�𝑠

�̇�𝑐
)

2

] (
𝑣𝑠

𝑣𝑐
)

2

     (8) 

𝜁 =
1−(1−

�̇�𝑠
�̇�𝑐

)
2

−(1.4−
�̇�𝑠
�̇�𝑐

)(
�̇�𝑠
�̇�𝑐

)
2

(1−
�̇�𝑠
�̇�𝑐

)
2      (9) 
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To provide an example of how Eq. 5 is used to calculate 𝜁𝑒𝑓𝑓 using 𝜁 from another relationship, 𝜁𝑒𝑓𝑓 is calculated 

for opening 2c.  

𝜁𝑒𝑓𝑓2𝑐 = [
1−(1−

�̇�3𝑏
�̇�3𝑐

)
2

−(1.4−
�̇�3𝑏
�̇�3𝑐

)(
�̇�3𝑏
�̇�3𝑐

)
2

(1−
�̇�3𝑏
�̇�3𝑐

)
2 ] − (1 −

𝑣3𝑐
2

𝑣2𝑐
2)    (10) 

 

In Eq. 10, 𝑣𝑠 and �̇�𝑠 are the bulk velocity and volumetric flow rate respectively through the opening from the 

adjacent floor; 𝑣𝑐 and �̇�𝑐 are the bulk velocity and volumetric flow rate respectively through the chimney directly 

below the opening.  

The value of 𝜁𝑒𝑓𝑓 for opening 4, the exhaust opening at the top of the chimney, is calculated with Eq. 5 where 𝜁 is 

found using Eq. 11 for a sudden flow restriction [26]. 

𝜁 = [0.707(1 − 𝑓̅)
0.375

+ 1 − 𝑓̅]
2 1

𝑓̅2     (11) 

In Eq. 11, 𝑓 ̅is the ratio of the exhaust area to the shaft cross sectional area. Frictional losses along the shaft are 

found to be negligible in these cases using the Darcy-Weisbach equation where 𝜁𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 is calculated as [27]  

𝜁𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 =
𝑓𝐿

𝐷𝐻
.      (12) 

Where 𝑓 is calculated using an empirical relationship developed by Haaland for the transitionally rough regime 

[27]. 

𝑓 = {1.8𝑙𝑜𝑔 [
6.9

𝑅𝑒𝑑
+ (

𝜀

3.7𝐷𝐻
)

1.11
]}

−2

     (13) 

The largest value of 𝜁𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 is found at the top of the 2 m by 2 m shaft where the largest local velocities exist in 

the smallest cross-sectional area of the shaft. In this region, 𝜁𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 0.0153, which is less than 2% of the 

pressure loss coefficient if friction is neglected. In narrower shafts, the pressure loss due to friction may be 

significant. 

Both the original CoolVent, which represents typical airflow network models that neglect momentum effects, and 

the improved CoolVent, which accounts for momentum effects within the shaft, simulate the same three story 

office building modeled with CFD earlier in this paper. All geometric properties, heat gains, and ambient 

conditions from the CFD modeling are used in both versions of CoolVent to compare them to the CFD model. 

4. Results  

4.1 Results from Small Scale Experiment 
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The measured airflow rates for both 0.5 m by 0.25 m and 0.5 m by 0.5 m cases from the small scale experiments 

are presented in Table 2. The average volumetric flow rate of three trials is presented along with the standard 

deviation. Very little airflow, -0.0029 m
3
/s, occurs through the upper duct in the 0.5 m by 0.5 m case, but when 

the shaft is reduced to 0.25 m by 0.5 m, it increases to 0.012 m
3
/s. Similar airflow rates through the lower duct are 

observed in both cases. The average vertical velocity within the shaft can be found using the conservation of mass 

by dividing the airflow rate through the shaft by its cross sectional area. Directly above the lower duct, the 

average shaft velocity is 0.18 and 0.10 m/s for the 0.25 m by 0.5 m and 0.5 m by 0.5 m cases respectively. 

Directly above the middle, the average shaft velocity is 0.26 and 0.15 m/s for the 0.25 m by 0.5 m and 0.5 m by 

0.50 m cases respectively. The average shaft velocity in the smaller 0.25 m by 0.5 m shaft is nearly twice as large 

as the average shaft velocity in the 0.5 m by 0.5 m shaft.  

Results from the airflow visualization of the small scale experiment are presented in Fig. 5. Neutrally buoyant 

bubbles appear as white streaks against a black background. Some extraneous features of the setup are visible 

such as rectangular magnets, creases in the black felt, and reflections off acrylic paneling. The absence of bubble 

streaks in Fig. 5 3a) shows additional evidence of the slight reverse flow through the upper duct in the 0.5 m by 

0.5 m case. Comparing Fig. 5 1a) with 1b) and 2a) with 2b) illustrates higher vertical shaft velocities in the 

smaller 0.25 m by 0.5 m case with longer vertical bubble streaks, which correspond to larger velocities because 

the same 1/4 s shutter speed is used for each photograph.  

Although these results should not be directly compared to the CFD simulations of a full scale office building, they 

still provide a physical demonstration of the ejector effect by comparing the airflow through two ventilation shafts 

with a common exhaust area.   

 

Table 2 –Averages of measured airflow rates from small scale experiments at each takeoff duct for both the 

0.25 m by 0.5 m and 0.5 m by 0.5 m shafts. All values are reported in units [m
3
/s] and the experimental 

error is  +/- 0.0025 m
3
/s. 

 

Takeoff Duct 0.25 m X 0.5 m Std. Dev. 0.5 m x 0.5 m Std. Dev. 

Upper 0.012 0.00039 -0.0029 0.00027 

Middle 0.0090 0.00063 0.011 0.0013 

Lower 0.023 0.0035 0.026 0.0040 
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Figure 5 – Experimental airflow visualization of entrance from the 1a) lower duct into 0.5 m by 0.5 m shaft 

1b) lower duct into 0.25 m by 0.5 m shaft 2a) middle duct into 0.5 m by 0.5 m shaft 2b) middle duct into 

0.25 m by 0.5 m shaft 3a) upper duct into 0.5 m by 0.5 m shaft 3b) upper duct into 0.25 m by 0.5 m shaft. 

Air enters the shaft through each takeoff duct from the right side of the picture in all cases except 3a), 

where reverse flow occurs through the upper takeoff duct. The bright horizontal line in 3a) is an artifact of 

the joint between two acrylic sheets.  

4.2 Results from CFD Simulations 
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Simulated flow rates through all three floors of the three story office building are presented in Fig. 6. Despite 

different geometries and heat loads, the results from the three story office building present a similar trend to those 

from the small scale duct experiment: higher flow rates through the upper floor are achieved with a smaller shaft. 

Temperature contours taken from the bisecting plane of the four sizes of ventilation shaft are presented in Fig. 7 

and the temperature contour within the atrium is taken from the bisecting plane of the nearest two exhaust 

openings shown in Fig. 8. The locations of these planes are indicated in Fig. 2 for reference. Upper floor 

temperatures for the 2 m by 2 m shaft approach the upper limit of typical indoor temperatures, 27-28 
0
C. 

However, upper floor temperatures exceed comfortable levels in all other cases except the 10 m by 10 m atrium, 

where the same heat loads are distributed across nearly twice the floor area. The bulk temperature difference 

between the outdoor and shaft exhaust temperatures varies between 4.3 to 5.1 
0
C for the four different shaft sizes. 

Velocity fields are taken from the same locations and presented in Figs. 9 and 10 and reveal a similar trend to the 

one observed in the small scale duct experiment: higher shaft velocities are predicted in the smaller shafts. 

Additionally, Fig. 9 shows a bi-directional flow at the opening from the upper floor to the shaft for all cases 

except the 2 m by 2 m case in which unidirectional flow is predicted. Airflow rates from the CoolVent 

simulations are compared to the CFD results for the three story office building in Fig. 11. 

 

 

Figure 6 – CFD predicted flow rates for the three story office building for each of the five shaft cross 

sectional areas.  
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Figure 7 –  CFD predicted temperature contour in 
0
C taken from the bisecting plane of the a) 2 m by 2 m, 

b) 2.5 m by 2 m, c) 3 m by 2 m, and d) 3.5 m by 2 m shafts in the three story office building. 
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Figure 8 – CFD predicted temperature contour in 
0
C of the 10 m by 10 m atrium taken from the bisecting 

plane of the two nearest exhaust openings in the atrium. While the total exhaust area is 4 m
2
 like all other 

CFD simulated buildings, the opening from each floor to the atrium is 30 m
2
 compared to 6 m

2
 for the 

other cases. 
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Figure 9 – CFD predicted velocity field in m/s taken from the bisecting plane of the a) 2 m by 2 m, b) 2.5 m 

by 2 m, c) 3 m by 2 m, and d) 3.5 m by 2 m shafts in the three story office building. 
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Figure 10 – CFD predicted velocity field in m/s of the 10 m by 10 m atrium taken from the bisecting plane 

of the two nearest exhaust openings in the atrium. While the total exhaust area is 4m
2
 like all other CFD 

simulated buildings, the opening from each floor to the atrium is 30 m
2
 compared to 6 m

2
 for the other 

cases. 

 

Figure 11 – Simulated airflow rates through the three story office building modeled with CFD, the original 

CoolVent, and an improved version of CoolVent. All four shaft sizes are considered and labeled on the 

horizontal axis. 
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5. Discussion 

Measured flow rates from the small scale experiment presented in Table 2 show that essentially no airflow, 

0.0029 m
3
/s reverse flow, occurs through the upper takeoff duct in the 0.5 m by 0.5 m case. However, when the 

shaft area is halved to 0.5 m by 0.25 m, airflow through the upper duct, 0.012 m
3
/s, surpasses the airflow through 

the middle duct, 0.0090 m
3
/s, despite the larger height differential for the middle duct. This same dramatic 

increase in airflow through the upper floor is also predicted by the CFD simulations. Fig. 6 shows flow rates 

through the upper floor of the office building for larger chimney sizes of 3 m by 2 m and 3.5 m by 2 m, 0.0168 

and 0.0224 m
3
/s respectively, increase by more than an order of magnitude to 0.766 m

3
/s when the shaft size is 

reduced to 2 m by 2 m. Natural ventilation is unsuitable for the third floor when a 3 m by 2 m shaft is used as 

indicated by the high temperatures shown in Fig. 7. By decreasing the shaft to 2 m by 2 m, the third floor 

temperature drops 3-4 
0
C. This scenario provides an example of how the ejector effect can be used to enable the 

use of buoyancy-driven natural ventilation in a building where it may otherwise be deemed ineffective. Although 

the small scale experiment and CFD simulations model two different geometries with different heat gains, they 

both illustrate how a smaller ventilation shaft can lead to higher flow rates through upper floors or takeoff ducts 

for a fixed exhaust area. 

One explanation for this effect is that the airflow through the larger chimney must contract to be exhausted 

through the 2 m by 2 m outlet. This contraction introduces an additional pressure loss not experienced by the 

airflow in the 2 m by 2 m chimney case. However, if this were the sole explanation, the additional pressure loss 

should reduce the airflow through all three floors. Furthermore, it fails to account for the higher flow rate through 

the upper duct than the flow rate through the middle duct of the small scale experiment when the chimney size is 

reduced from 0.5 m to 0.25 m. 

A more thorough explanation is provided by what has been called the ejector effect, which describes how 

increased vertical momentum within smaller shafts helps induce airflow through upper floors. The velocity fields 

presented in Figs. 9 and 10 illustrate this increased momentum and subsequent induced flow. Consider the 

velocity field for the 3 m by 2 m shaft in Fig. 9, in which air velocities in the shaft opposite the third floor are 

generally lower than 0.5 m/s. A clear reverse flow from lower floors into the third floor also exists. Comparing 

these two characteristics of the 3 m by 2 m shaft to the velocity field for the 2 m by 2 m case also shown in Fig. 9 

reveals increased velocities in the 2 m by 2 m shaft opposite the third floor. These higher velocities increase the 

vertical momentum within the shaft and help induce flow through the third floor, where reverse flow no longer 

occurs. This same principle of using a stream of high momentum to induce flow through an adjacent space is 

commonly used in a jet pump, a schematic drawing of which is shown in Fig. 12. By the conservation of 

momentum, the increased momentum from the jet decreases the pressure at (1), which induces flow from 

reservoir (a) through the channel. Although no pump is used in the simulated office building, the smaller 

ventilation shaft creates higher local velocities, which increases the vertical momentum within the shaft enough to 

induce airflow through the third floor. Airflow visualization in the small scale experiment also suggests an 

increased vertical momentum in the smaller ventilation shaft. Longer vertical bubble streaks in the smaller shaft in 

Fig. 5 indicate increased vertical velocities. In the larger shaft, the airflow expands more as it enters the shaft and 

thus smaller vertical velocities are observed. 
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Figure 12 – Schematic drawing of a jet pump that uses a jet to increase momentum in a channel, thereby 

lowering the pressure at (1) and inducing flow from reservoir (a) through the channel. 

 

As expected, results from the CoolVent simulations shown in Fig. 11 confirm that the original CoolVent predicts 

the same airflow rates for all four shaft sizes within the office building. Thus the significant impact of the ejector 

effect is not accounted for and the general trend of the CFD predicted flow rates is not matched. The original 

CoolVent under predicts the CFD values by nearly 40% for the first and second floors and drastically over 

predicts the airflow rate on the third floor for the 3.5 m by 2 m case. The improved CoolVent values agree much 

more closely with the CFD values on the first and second floors, agreeing to within 3% in some cases. The largest 

disagreement on these two floors is 19% for the first floor of the 3 m by 2 m case. Additionally, the improved 

CoolVent matches the trend of decreasing flow rate through the third floor as the shaft is expanded. Although the 

improved CoolVent over predicts the CFD value, it offers significant improvement over the original CoolVent by 

allowing designers to predict a trend rather than suggesting that an increased shaft area has no impact on the flow 

rate. This over prediction results from bi-directional flow at the opening from the upper floor to the shaft 

predicted by CFD. The empirical models incorporated into the improved CoolVent assume uni-directional flow at 

each opening, and thus do not account for the bi-directional flow. Fig. 9 shows this bi-directional flow in all cases 

but the 2 m by 2 m case, in which there is uni-directional flow. Consequently, the improved CoolVent predicts the 

third floor flow rate for the 2 m by 2 m case to within 4%, but over predicts the three other cases with bi-

directional flow. Given the desire to only make improvements that are easily transferable to other airflow network 

models, the close agreement between the improved CoolVent and CFD on the first and second floors and the 

correct trend on the third floor provide significant and valuable improvements over the original CoolVent. 

 

6. Conclusions 

Buoyancy-driven natural ventilation in ventilation shafts is investigated with a small scale physical experiment 

within a duct and CFD simulations of an office building. For a fixed exhaust opening, smaller shafts lead to 

higher flow rates in upper floors of a multi-story building with a shared ventilation shaft. These higher flow rates 

are caused by increased vertical momentum within the smaller shafts that induce flow through upper floors, an 

effect referred to as the ejector effect. In the small scale duct, a 0.5 m by 0.5 m shaft leads to a slight reverse flow 
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of 0.0029 m
3
/s through the upper floor. Holding all other parameters constant and reducing the shaft to 0.25 m by 

0.5 m leads to a flow rate of 0.012 m
3
/s through the upper floor. In the CFD simulations of a three story office 

building, this same pattern is observed. A 3 m by 2 m shaft leads to a flow rate of 0.0168 m
3
/s through the third 

floor, while the reduced shaft of 2 m by 2 m leads to a flow rate of 0.766 m
3
/s through the same floor. This 

increased airflow rate from the ejector effect can allow natural ventilation to be used in buildings where it may 

otherwise have been deemed inappropriate, as in the simulated three story office building with a 3 m by 2 m 

ventilation shaft. 

 

Most airflow network models assume negligible air momentum and fail to account for the ejector effect. Results 

from the original CoolVent, an MIT-developed airflow network model, demonstrate the inaccuracies this 

assumption can introduce when ventilation shafts are used, in which momentum effects can be significant. To 

improve airflow network models, an empirical model is incorporated into CoolVent that accounts for some of the 

momentum effects within ventilation shafts. The improved CoolVent is shown to more accurately model the three 

story office building simulated with CFD. Although these improvements leave room for further accuracy gains, 

especially in modeling bi-directional flow, they offer significant gains over current models that neglect air 

momentum. Improvements to CoolVent are designed to be easily transferable to most airflow network models to 

better account for the ejector effect in ventilation shafts and promote their use in buoyancy driven natural 

ventilation systems.  

 

In addition to enhancing the ability to model bi-driectional flow in airflow network models, future work should 

focus on optimizing the shaft cross sectional area to maximize the ejector effect while maintaining acceptable 

frictional pressure losses. As the shaft cross sectional area is reduced, local velocities are increased, which 

increases the vertical momentum within the shaft and further induces airflow through upper floors. However, 

higher velocities along the shaft walls also lead to larger frictional losses within the shaft.  

 

More research is also needed to better isolate the effect of the exhaust geometry from the ejector effect. The shaft 

geometry investigated in the current work couples an increased pressure drop from a sudden reduction in cross-

sectional area at the exhaust for large shafts with a decrease in vertical momentum due to lower local velocities 

within the shaft. Although the same exhaust opening is used, except for the atrium configuration, the transition 

from the shaft to the exhaust opening should be more uniform in future work to better isolate the ejector effect. 
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