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Measurement of transverse hyperfine interaction by forbidden transitions
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Precise characterization of a system’s Hamiltonian is crucial to its high-fidelity control that would enable
many quantum technologies, ranging from quantum computation to communication and sensing. In particular,
nonsecular parts of the Hamiltonian are usually more difficult to characterize, even if they can give rise to subtle but
non-negligible effects. Here we present a strategy for the precise estimation of the transverse hyperfine coupling
between an electronic and a nuclear spin, exploiting effects due to nominally forbidden transitions during the
Rabi nutation of the nuclear spin. We applied the method to precisely determine the transverse coupling between
a nitrogen-vacancy center electronic spin and its nitrogen nuclear spin. In addition, we show how this transverse
hyperfine coupling, which has been often neglected in experiments, is crucial to achieving large enhancements

of the nuclear Rabi nutation rate.
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Quantum technologies promise to revolutionize many
fields, ranging from precision sensing to fast computation. The
success of novel technologies based on quantum effects rests
on engineering quantum systems robust to noise and decoher-
ence and on controlling them with high precision. Solid-state
systems comprising nuclear spins have emerged as promising
candidates, since the nuclear spin qubits are only weakly
coupled to external fields and thus exhibit long coherence
times. In order for nuclear spins to be used as good qubits, there
are two important requirements: Their Hamiltonians need to be
known with very high precision, as this would enable applying,
e.g., optimal control methods [1,2], and strong driving should
be available, in order to achieve fast gates. Here we show
how to meet these two requirements by exploiting nominally
forbidden transitions in a hybrid electronic-nuclear spin system
associated with the nitrogen-vacancy center in diamond [3].
Specifically, we use second-order effects due to mixing of
the electronic and nuclear spin states [4] in order to identify
with high precision their coupling strength and to enhance the
nuclear spin nutation rate [5].

The nitrogen-vacancy (N'V) center is a naturally occurring
point defect in diamond [6]. Owing to its optical properties
and long coherence times, it has emerged as a versatile system
for quantum sensing [7-9], quantum information [10,11], and
photonics applications [12,13]. The nuclear '*N spin often
plays an important role in these applications. Not only can it
serve as a qubit in small quantum algorithms [14—16], but it can
also be used to enhance the readout fidelity of the NV electronic
spin [17] and achieve more sensitive detection of magnetic
fields [18,19] and rotations [20,21]. These applications are
made possible by the hyperfine interaction between the NV
electronic and nuclear spins.

While the secular part of the NV-'“N Hamiltonian has been
well characterized before [22-24], the transverse hyperfine
coupling is more difficult to measure [25] and published values
do not match well [26-28]. The most precise characterization
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to date has been achieved by ensemble electron spin resonance
(ESR) techniques [27]. In that work, the ESR spectrum
of an ensemble of NV centers was measured by induction
methods while applying a magnetic field along the (110)
direction to amplify nominally forbidden transitions. This
method is not applicable to single NV centers, since the strong
transverse field would quench the spin-dependent optical
contrast.

Here we propose a different strategy to measure the
transverse hyperfine coupling that can be carried out with
optically detected magnetic resonance. Owing to this method
we can determine the value of the transverse coupling with high
precision. The method is not restricted to the NV spin system,
but could be applied more generally to other electronic-nuclear
spin systems, such as phosphorus [29] or antimony [30] donors
in silicon, defects in silicon carbide [31,32], or quantum
dots [33]. Precise knowledge of the hyperfine interaction tensor
would enable achieving more precise control, elucidating
modulations of the NV echo dynamics or, as we show here,
achieving faster Rabi nutation of the nuclear spin.

Theoretical model. The NV ground state is a two-spin
system given by the electronic spin of the NV center (S = 1)
and the nuclear spin (I = 1) of the substitutional '*N adjacent
to the vacancy that comprise the defect. In the experiments,
we are only interested in two of the nuclear spin levels
(m; = +1,0) that we drive on resonance, while the third
level can be neglected. Then, the Hamiltonian of the reduced
system [34,35] is given by H = H 4+ H 1, where the secular,
‘H|, and nonsecular, H |, terms are

A
My = AS?+ (yeBz + 7”)5 +(Q+ Bl + Ay S L,

Hy = 2AL(S. I + S, 1,). (1)

Here, S and I are the electron spin-1 and nuclear spin-1,/2
operator, respectively. Also, A = 2.87 GHz is the zero-field
splitting and Q = —4.945 MHz [23] is the nuclear quadrupolar
interaction. The NV spin is coupled to the nuclear spin by
a hyperfine interaction with a longitudinal component A =
—2.162 MHz [23] and a transverse component A which we
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want to estimate. A magnetic field B, is applied along the NV
crystal axis [111] to lift the degeneracy of the m; = %1 level,
yielding the electron and nuclear Zeeman frequencies y, B,
and y, B;, where y, = 2.8 MHz/G and y,, = —0.308 kHz/G.

Let |mg,m ) be eigenstates of . The transverse coupling
A mixes states connected via zero-quantum (ZQ) transitions,
|[+1,0) <> 10,1) and |0,0) <> |—1,1). Diagonalization of the
total Hamiltonian can then be achieved by rotating the
two ZQ subspaces with a unitary transformation Uzq =
e 10?400 - where we  defined of = i(|+1,00(0,1] —
[0,1){+1,0]), 0, =i(]0,0)(—1,1] — |—1,1)(0,0]), and the ro-
tation angles are

n 2A1
tan(29 ") = ,
A+yeBz_ynBz_ Q (2)
—2A
tan(29 ") = =

A_yeBz_AII"_VnBz"‘Q'

Because of this level mixing, a field on resonance with
the nuclear spin transition also drives electronic transitions.
Although the electronic spin state is unchanged to first order,
as long as the mixing is small, the nominally forbidden
transitions result in an enhancement of the nuclear state
nutation frequency, as we explain below.

When applying a radio frequency (rf) field to drive the
nuclear spin, the interaction Hamiltonian of the NV-'*N system
with the rf field is

Hat(1) = 2By cos(@1)(ye Sy + V2yu L), 3)

where B is the rf field strength. The Hamiltonian can be
simplified by going into a rotating picture at the rf frequency
w and applying the rotating wave approximation (RWA) to
obtain Hy;y = B1(y.Sx + ﬁyn I,). We note that since we might
have y,B; > w, effects from the counterrotating fields, such
as Bloch-Siegert shifts of the electronic energies, might be
present. These effects were, however, negligible at the fields
and Rabi strengths used in the experiments [34]. Transforming
‘H.¢ with the unitary Uzq and denoting states and operators in
the new frame by a caret, we obtain ’Hrf = UZQHrf(t)UZTQ =
‘H, + H., with

Hy = 2y, Bi (o1 [1) (110 + @010) (O], 4+ a_i|-1)(~1|) 1.

“)
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Here, «,,, denote the enhancement factors in each manifold of
the NV spin,

Ve AJ_
N Yo A+YeB, —vuB; — Q
Ve( AJ_
oy~ 1——
Yu \A+ VB, —yuB; — O
A
+ - ), (©)
A_VEBZ_AII+VnBz+Q
' A
PRESS L @)

Vn A— VeBz - AII +VnBz + Q’
where we show expressions exact up to the first order in ¥+
(see Ref. [34] for the exact expressions). The Hamiltonian H,
can be neglected since electronic spin transitions are far off
resonance.

Owing to the strong dependence of the enhancement factors
on the transverse hyperfine coupling, we can determine A
with high precision from measurement of the '*N Rabi
oscillations.

Experiments. We used a home-built confocal microscope
to measure the transverse hyperfine interaction of a single NV
center in an electronic grade diamond sample (Element Six,
1N concentration ny < 5 ppb, natural abundance of '3C). The
NV center is chosen to be free from close-by '*C. We worked
at magnetic fields (300-500 G) close to the excited state level
anticrossing so that during optical illumination at 532 nm,
polarization of the NV spin can be transferred to the nuclear
spin by their strong hyperfine coupling in the excited state [36].
Asaresult,a 1 puslaser excitation polarizes the NV-4N system
into the |0, 1) state.

Then, the NV spin is prepared in the desired Zeeman
state by a strong microwave (MW) pulse (¢, ~ 50 ns) before
coherently driving the nuclear spin by an rf field on resonance
with the nuclear transition |mg,1) <> |my,0), for a duration
T (see Fig. 1). Finally, the nuclear spin state is detected by
employing a MW selective pulse (¢, ~ 700 ns) that maps
the nuclear spin state onto the NV spin, which in turn can
be read out optically due to spin-dependent fluorescence
emission intensity. The nuclear Rabi oscillations in Fig. 2
clearly show that for a fixed driving strength, the effective
Rabi frequency is quite different in the three electronic spin
manifolds.
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FIG. 1. (Color online) Left: Energy levels of the reduced NV-'*N spin system, showing the transitions that are mixed by transverse hyperfine
coupling. Right: Experimental sequence used to measure the nuclear '*N Rabi frequency in the three NV manifolds.
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FIG. 2. (Color online) *N Rabi oscillations at B = 450 G, B, ~
3.3 Gin the three NV manifolds (red solid line, m, = 0; black dashed
line, m; = —1; gray dotted line, m; = +1). Here, the dots are the
experimental results, while the lines are fits to cosine oscillations. The
different baseline of the m; = —1 curve is due to small differences
in the fluorescence emission of different nuclear manifolds [36].

To confirm the expected dependence of the Rabi enhance-
ment factors on the external magnetic field and the NV state,
we measured the Rabi oscillations at the three electronic
spin manifolds with varying magnetic field B,. As shown in
Fig. 3, the measured Rabi frequencies match well with the
theoretical model. It is worth noting that contrary to the static
pseudonuclear Zeeman effect [4], there is a large enhancement
(g =~ 16, a4+ = —9) even at zero field. Also, close to the
ground state avoided crossing (B & 0.1 T), the enhancement
can become very large, exceeding 100. The validity of our
approximation in this regime can be confirmed by numerical
simulations [34].

While these experiments could be used to extract A |, this
is not a practical method to obtain a good enough estimate.
The range of magnetic field is restricted by the need to be
close to the excited state level anticrossing to achieve a good
polarization of the nuclear spin. The number of acquired points
is limited by the time it takes to change and properly align the
external magnetic field. In addition, there might be variations
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FIG. 3. (Color online) YN Rabi frequency in the three NV
manifold (red solid line, m, = 0; black dashed line, m; = —1; gray
dotted line m; = +1) as a function of the magnetic field. Rabi
frequency corresponds to V"i‘ o, . The solid symbols correspond to
the experimental data, which match closely the theoretical prediction.
The effective Rabi frequencies increase rapidly with the field,
exceeding 1 MHz when close to the ground state level anticrossing.
The enhancement allows fast manipulation of the nuclear spin
even when the bare Rabi field is only B; & 3.3 G. The theoretical
prediction is confirmed by simulations (open symbols) of the spin
dynamics.
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FIG. 4. (Color online) Measured enhanced '“N Rabi frequency
in the three NV manifolds (red solid line, m, = 0; black dashed line,
my = —1; gray dotted line my; = +1) as a function of the bare Rabi
frequency at B = 509 G.

in the bare Rabi frequency in the three manifolds, because of
different responses of the electronics used to drive the nuclear
spins at the different frequencies.

In order to avoid these difficulties, we fixed the magnetic
field to 509 G and instead linearly swept the amplitude of
the rf driving (B;). With this procedure, we do not need an
independent measure of the bare Rabi frequency in order to
extract the transverse hyperfine coupling strength. The relative
rf amplitudes B, obtained when varying the driving strength
can be measured at each nuclear resonance frequency by
monitoring the rf voltage with an oscilloscope, confirming
its linear dependence with applied power.

We thus measure the effective nuclear Rabi frequency as a
function of the normalized rf amplitude B /| B max| in all three
electronic manifolds (Fig. 4). The measured Rabi frequency
Q,, is related to its on-resonance value by €, = +/Q2 + §2,
where § is the detuning from the nuclear spin resonance
frequency. We incorporate this unknown, small detuning in our
model and fit the experimental data with the Rabi enhancement
formulas (5)—(7). From the fit, we obtain an estimate of the
transverse hyperfine coupling, A; = —2.62 +0.05 MHz, in
good agreement with recently published values and with better
precision.

In order to achieve even better precision, we need to
consider all the sources of uncertainty and errors. We find
that small errors from imperfect MW m pulses and nuclear
polarization only contribute to a reduced fluorescent contrast,
but do not affect the estimate of the Rabi frequency under our
experimental condition. The detuning of the selective MW and
rf pulses from resonance and uncertainty in A contributes
only linearly to the uncertainty. All these minor errors and
uncertainties hardly affect the final uncertainty in the estimate
of A, [34]. The major source of error arises instead from
the uncertainty in the measured Rabi frequency, which is
limited by the photon shot noise of the optical readout process.
Therefore, the precision of the estimate could be improved
with more averaging, at the expense of a longer measurement
time. Currently, our total measurement time is limited by the
stability of the experimental setup, yielding §A; ~ 50 kHz.
Improving the stability of the setup by reducing thermal fluc-
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tuations and noise in the driving field (also using decoupling
schemes [37,38]), or by employing small ensembles or more
efficient optical readout methods such as solid-immersion
lenses [39] and charge-state sensing [40], could provide higher
precision. Then, the limit would come from uncertainties in
Ye and y,, with a relative error of 107* [26,41], yielding an
uncertainty in A of a few hundred Hz [34].

Conclusions. In conclusion, we observed enhanced nuclear
Rabi oscillations in the NV-'#N system due to level mixing be-
tween electronic and nuclear spin states. We harness the strong
dependence of this enhancement on the transverse hyperfine
coupling to determine its value with high precision. Theoretical
analysis predicts an enhancement factor of almost three orders
of magnitude when the magnetic field is close to the ground
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state level anticrossing, promising fast manipulation of the
nuclear spin qubit at ~MHz rates, with only moderate driving
strengths. More broadly, the method presented here can be
applied to many other electron-nuclear hybrid spin systems
to similarly characterize their interaction Hamiltonian with
high precision. Our results indicate that taking into account
the nonsecular parts of a system’s Hamiltonian is crucial to
achieving faster and more accurate control of the quantum
system.
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