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The relaxation processes of a wide variety of soft materials frequently contain one or
more broad regions of power-law–like or stretched exponential relaxation in time and
frequency. Fractional constitutive equations have been shown to be excellent models
for capturing the linear viscoelastic behavior of such materials, and their relaxation
modulus can be quantitatively described very generally in terms of a Mittag-Leffler
function. However, these fractional constitutive models cannot describe the non-
linear behavior of such power-law materials. We use the example of Xanthan gum
to show how predictions of non-linear viscometric properties such as shear-thinning
in the viscosity and in the first normal stress coefficient can be quantitatively de-
scribed in terms a nonlinear fractional constitutive model. We adopt an integral
K-BKZ framework and suitably modify it for power-law materials exhibiting Mittag-
Leffler type relaxation dynamics at small strains. Only one additional parameter
is needed to predict nonlinear rheology, which is introduced through an experimen-
tally measured damping function. Empirical rules such as the Cox-Merz rule and
Gleissle mirror relations are frequently used to estimate the nonlinear response of
complex fluids from linear rheological data. We use the fractional model framework
to assess the performance of such heuristic rules and quantify the systematic offsets,
or shift factors, that can be observed between experimental data and the predicted
nonlinear response. We also demonstrate how an appropriate choice of fractional
constitutive model and damping function results in a nonlinear viscoelastic constitu-
tive model that predicts a flow curve identical to the elastic Herschel-Bulkley model.
This new constitutive equation satisfies the Rutgers-Delaware rule. that is appropri-
ate for yielding materials. This K-BKZ framework can be used to generate canonical
three-element mechanical models that provide nonlinear viscoelastic generalizations
of other empirical inelastic models such as the Cross model. In addition to describ-
ing nonlinear viscometric responses, we are also able to provide accurate expressions
for the linear viscoelastic behavior of complex materials that exhibit strongly shear-
thinning Cross-type or Carreau-type flow curve. The findings in this work provide a
coherent and quantitative way of translating between the linear and nonlinear rhe-
ology of multiscale materials, using a constitutive modeling approach that involves
only a few material parameters.
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I. INTRODUCTION

Many complex fluids and soft solids are characterized by the presence of a very broad

range of microstructural length and time scales. Examples of such materials include

crosslinked polymer networks (Winter and Mours (1997)), microgel dispersions (Ketz,

Prud’homme, and Graessley (1988)), foams (Khan, Schnepper, and Armstrong (1988)),

colloidal suspensions (Mason and Weitz (1995); Rich, McKinley, and Doyle (2011)) and

soft glassy materials (Sollich (1998)). Such materials are commonly used to formulate

consumer products such as foods (Ng and Mckinley (2008); Gallegos, Franco, and Partal

(2004)), in biological materials (Fabry et al. (2001)) and in nanocomposite materials (Kr-

ishnamoorti and Giannelis (1997)). One common characteristic of these materials is the

presence of broad power-law spectra during stress relaxation or small amplitude oscilla-

tory tests due the multiscale nature of their microstructure. In fact Boltzmann considered

menory functions of the form G(t) ∼ 1/t in his original work on linear viscoelasticity

(Markovitz (1977)). The mechanical models that are commonly used to describe the rhe-

ology of multiscale materials often require the introduction of a large number of fitting

parameters and are thus unsatisfactory. Blair, Veinoglou, and Caffyn (1947a) have argued

that describing the rheological response of these materials in terms of conventional material

properties such as coefficients of viscosity and elastic moduli that characterize each possible

relaxation mode is far from ideal as it requires a very large number of parameters. They

suggest that quasi-properties, which are intermediate quantities between a viscosity and a

modulus (units: Pa sα, 0 < α < 1) offer a compact mathematical framework to describe

such materials with complex multiscale microstructures.

In the linear regime, fractional constitutive equations have been shown to be particularly

good models to describe such materials (Schiessel et al. (1995); Bagley and Torvik (1983b);

Nonnenmacher (1991); Glockle and Nonnenmacher (1991); Metzler et al. (1995)) and

naturally introduce material parameters that describe these quasi-properties. For example,

Bagley and Torvik (1983a) show that the high frequency response of the Rouse model has an

equivalent fractional constitutive representation. Fractional constitutive models utilize a rhe-

ological element known as the springpot (Koeller (1984); Jaishankar and McKinley (2013)),

that interpolates between the responses of a spring and a dashpot, using the mathematical

definition of a fractional derivative. Textbooks such as those by Podlubny (1999), Oldham
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and Spanier (1974), Mainardi (2010) and Miller and Ross (1993) are excellent references for

a background on the mathematics of these derivatives. Each springpot is characterized by

two parameters: a quasi-property generically denoted V and a fractional exponent α. The

physical basis for fractional constitutive models is found in the fact that multiscale systems

often display anomalous sub-diffusion on the microscopic scale, and the root mean square

distance of passive tracers 〈∆x2〉 scales with time as 〈∆x2〉 ∼ tα, 0 < α < 1 (Metzler, Barkai,

and Klafter (1999); Metzler and Klafter (2000); Sokolov, Klafter, and Blumen (2002a);

Sharma and Cherayil (2010)). Using the fractional Fokker-Plank equation (Sokolov, Klafter,

and Blumen (2002b)) in conjunction with the generalized Stokes-Einstein equation (Mason

(2000)) it can be shown how the sub-diffusive behavior seen in microrheology experiments

arises from the multiscale microstructure of these materials, and also leads to power-law

stress relaxation observed in bulk rheology experiments. Muthukumar (1985) has argued

that power-law materials such as branched polymers, percolation clusters and aggregates

can be idealized as having non-integer or fractal dimensions.

Many multiscale materials typically exhibit a broad power-law regime of stress relax-

ation over many decades of timescales, but at sufficiently long times (or low frequencies)

ultimately transition into either a sol-like flow regime or a gel-like plateau regime. Both of

these responses can be captured by appropriate two element fractional constitutive models

arranged in series or parallel. The Fractional Maxwell Model (FMM) consists of two spring-

pot elements in series (Friedrich and Braun (1992)). The FMM compactly describes the

rheological properties of multiscale materials that exhibit sol-like flow at long timescales. In

a previous publication, we have shown using the example of viscoelastic interfaces formed

from globular protein solutions that the FMM can quantitatively predict the linear rheolog-

ical behavior of complex fluids under a range of different deformation conditions (Jaishankar

and McKinley (2013)). The relaxation modulus in the FMM takes the analytical form of

a Mittag-Leffler function, which exhibits stretched exponential (KWW) behavior at short

times, and power-law behavior at long timescales (Metzler and Klafter (2002)).

On the other hand, complex fluids exhibiting a gel-like response in the long time scale

limit are better modeled by the Fractional Kelvin-Voigt Model (FKVM). This second canon-

ical fractional constitutive equation comprises of two springpots arranged in parallel. Both

the FMM as well as the FKVM are characterized by only four parameters — two power-

law exponents, which control the scaling for the temporal and frequency response, and two
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quasi-properties, which set the scales for magnitude of the stresses in these multiscale ma-

terials. Examples of the successful application of these two canonical fractional models

to describe the linear rheology of complex multiscale materials include red blood cell mem-

branes (Craiem and Magin (2010)), smooth muscle cells (Djordjević et al. (2003)), food gums

(Ma and Barbosa-Canovas (1996)) and comb-shaped polymers (Friedrich (1992)). However

we note that while the linear viscoelastic predictions of fractional models have now been

extensively studied, there is an absence of fractional constitutive equations that are able

to predict the nonlinear rheological response of these complex materials observed at large

strain. Yang, Lam, and Zhu (2010) provide an overview of previous attempts at developing

appropriate frame invariant models utilizing fractional derivatives and also list their short-

comings. They develop an appropriate finite strain measure coupled with the Mittag-Leffler

relaxation kernel, and this leads to a frame-invariant Fractional Upper Convected Maxwell

formulation. However, this model suffers from the same limitations of all quasi-linear mod-

els (Bird, Armstrong, and Hassager (1987)) and is unable to predict shear-thinning in the

viscosity, and also predicts a constant first normal stress coefficient Ψ1 at all shear rates.

This absence of shear-thinning effects is in stark contrast to the very broad shear-thinning

response observed in common complex multiscale materials such as Xanthan gum.

Larson (1985) has previously shown that by using the integral form of the K-BKZ type

equation with a simple power-law relaxation kernel and a suitable strain dependent damping

function, the nonlinear rheology of polydisperse polymer melts can be accurately predicted.

However as we have noted above, a single power-law type relaxation kernel of the form

G(t) = ct−α, in which c and 0 < α < 1 are the only material constants that characterize the

linear response, does not adequately characterize the viscoelastic response of many complex

materials that show two or more distinct power-law regimes during relaxation. One com-

monly employed experimental technique for gaining insight into nonlinear rheological prop-

erties of complex materials is through the use of empirical rules such as the Cox-Merz rule

(Cox and Merz (1958)), Laun’s rule (Laun (1986)) or the Gleissle Mirror Relations (Leblans,

Sampers, and Booij (1985); Bird, Armstrong, and Hassager (1987)). These empirical rules

connect the progressive shear-thinning behavior observed in many complex multiscale ma-

terials to the very broad relaxation spectra observed in linear viscoelastic tests such as

small amplitude oscillatory shear flow (Bird, Armstrong, and Hassager (1987); Sharma and

McKinley (2012)). Booij and Leblans (1983) have shown that irrespective of the particular
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form of the relaxation spectrum, viscoelastic materials will obey the Cox-Merz rule when

the shear component of the nonlinear strain measure S12(γ̇s) satisfies

S12(γ̇s) =

γ̇s∫

0

J0(v) dv (1)

in which J0(v) is the zeroth order Bessel function of the first kind and γ̇s is the total shear

strain accumulated in the time interval s. However, Renardy (1997) notes that this relation

is not plausible; he demonstrates very generally that materials with a very broad spectrum of

relaxation modes, and the simplest possible strain-dependent damping function, do indeed

obey rules like the Cox-Merz rule to within a constant factor. This assumption of a broad

spectrum of relaxation times holds true for a power-law material and we should thus expect

that a suitable nonlinear generalization of fractional viscoelastic models can be used to

understand the predictive capabilities of these empirical rheological rules.

In this work, we use the K-BKZ framework together with Scott Blair’s ideas of quasi-

properties and the fractional calculus to quantify the magnitude of this offset factor in

the Cox-Merz rule and interpret its existence in terms of the accumulated damage in a

multiscale material arising from the nonlinear response to the applied deformation. In Fig. 1

we present a flowchart of the various pathways discussed in this paper to predict nonlinear

material response, including the application of the empirically based Cox-Merz rule and the

Gleissle mirror relations. We discuss these relationships in more detail in Section IV. We

also demonstrate using our K-BKZ model how one may quantify the systematic offset that

is commonly observed between these empirical relationships and experimentally measured

data.

We begin with the Fractional Maxwell Model (Jaishankar and McKinley (2013)) and

extend Larson’s K-BKZ approach to include relaxation kernels of Mittag-Leffler type. In-

corporating Renardy’s arguments for broad relaxation spectra, we show that by using an

appropriate damping function that accurately captures the transition to nonlinear shear-

thinning behavior, one can make accurate predictions of both steady shear viscosity η(γ̇) as

well as first normal stress coefficient Ψ1(γ̇) as a function of shear rate. To demonstrate the

quantitative capabilities of the model, we compare our predictions with nonlinear rheological

data obtained for Xanthan gum, a complex semi-rigid, branched and physically associated
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SAOS measurements: G′(ω), G′′(ω)

Parameters determined: α, β, V, G

Cox-Merz rule

Predict η(γ̇) Predict η(γ̇) and Ψ1(γ̇)

Predict J(t) Predict G(t)

Gleissle relations K- BKZ Model

Measure Damping
Function

FIG. 1. Flowchart showing the pathways described in this paper to arrive at viscometric material

functions for multiscale materials. Beginning with a simple linear viscoelastic experiment such

as Small Amplitude Oscillatory Shear (SAOS), and characterizing the power-law responses of the

material using a fractional constitutive model, we can make accurate predictions of other linear

material functions such as the creep compliance J(t) and the relaxation modulus G(t). We also

show in this paper that by measuring the damping function h(γ) and using a K-BKZ framework

in conjunction with the previously determined quasi-properties, nonlinear material functions such

as the steady shear viscosity η(γ̇) and the first normal stress coefficient Ψ1(γ̇) can be evaluated

accurately.

polysaccharide that shows a very broad relaxation spectrum. Empirical rules such as the

Cox-Merz rule and the Gleissle Mirror relations (cf. Fig. 1) have been reported to over-

predict the nonlinear material functions in the case of polysaccharide gums (Oertel and

Kulicke (1991); Ross-Murphy (1995)) and we show that this over-prediction is connected

directly to the power-law exponents that characterize the shape of the material’s relaxation

spectrum.

Another rule relating steady shear flow and oscillatory flow, referred to by Krieger (1992)

as the Rutgers-Delaware rule, has been proposed by Doraiswamy et al. (1991) for materials

in which the timescale of the applied deformation is much shorter than a characteristic

structural recovery time. This is often the case with complex materials that yield upon

the application of a small deformation. These materials appear gel-like or solid-like at rest

and yield or flow at large strains. We use the Fractional Kelvin-Voigt Model (FKVM)

that characterize the linear viscoelastic properties of solid-like power-law gels, along with a

damping function proposed by Tanner and Simmons (1967) to derive the Herschel-Bulkley
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equation for flow of a yielding material under steady shear. For this nonlinear fractional

gel, we also demonstrate that we can recreate exactly the Rutgers-Delaware rule proposed

by Doraiswamy et al. (1991).

The remainder of this paper is organized as follows: in the next section we present details

of the preparation of the Xanthan gum solutions used in this study as prototypical power-

law materials. The linear viscoelastic properties of these gums can be well characterized in

compact form using the concept of quasi-properties and fractional constitutive equations.

We also discuss in this section the experimental protocol and instrumentation employed for

rheometric measurements. In the third section, we briefly review some of the mathematical

preliminaries of fractional calculus and springpots. The fourth section presents our experi-

mental results and theoretical insights from the K-BKZ framework, the quantification of the

shift factors that exist in the predictions of empirical relationships such as the Cox-Merz

rule and the development of the Herschel-Bulkley model for yielding multiscale materials.

We also derive exactly the Rutgers-Delaware rule for such materials. We next discuss the

Fractional Zener Model (FZM) and show how this leads to a prediction of the flow curves of

materials that are well described by the familiar inelastic Cross and Carreau models. The

advantage of our approach is that in addition to the correct nonlinear flow curves, we are

also able to obtain expressions for the linear viscoelastic response of materials described by

the Herschel-Bulkley and Cross models. Furthermore, we also obtain predictions for the first

normal stress coefficient Ψ1(γ̇) for such materials.

II. MATERIALS AND METHODS

Xanthan is a highly branched high molecular weight polysaccharide produced by the

Xanthomonas campestris bacterium (Rees and Welsh (1977); Lapasin and Pricl (1995)).

Both the molecular structure as well as the rheology of Xanthan gum has been extensively

characterized by Cuvelier and Launay (1986), Whitcomb and Macosko (1978), Rochefort

and Middleman (1987), Ross-Murphy, Morris, and Morris (1983) and Tako (1992), amongst

others. The Xanthan gum used in this study was sourced from Sigma-Aldrich (SKU: G1253)

in powder form. To prepare the solutions, the specified amount of the powder was weighed

using a Mettler-Toledo weighing scale (resolution 10−4 g) and added to deionized water at

25◦C to prepare a stock solution of 1 wt.% Xanthan gum solution. The mixture was then
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stirred using a magnetic stirrer for 24 hours at 300 rpm. To enable complete biopolymer

hydration, the solution was stored at 4◦C for at least another 12 hours before being used for

rheological testing (Sanchez et al. (2002)). Additional solutions of 0.5 wt.% and 0.25 wt.%

were prepared by careful dilution of the 1 wt.% stock solution immediately after the initial

24 hour stirring, and were also allowed to hydrate at 4◦C for 12 hours.

The rheometry performed in this study was carried out using a stress controlled DHR-3

rheometer (TA Instruments, Newcastle, DE) with a 6 cm diameter 2◦ cone-and-plate fixture.

Care was taken to prevent evaporation by saturating the environment around the test fluid

using a solvent trap. All experiments were performed on a Peltier plate at a constant

temperature of 25◦C.

III. MATHEMATICAL PRELIMINARIES

The Caputo definition for the fractional differentiation to order 0 < α < 1 of a function

γ(t) is given in terms of an integro-differentiation operation as (Caputo (1967); Surguladze

(2002))

dαγ(t)

dtα
=

1

Γ(1− α)

t∫

0

(t− t′)−αγ̇(t′) dt′ (2)

where γ̇(t) = dγ(t)/dt indicates conventional first order differentiation with respect to time.

Other definitions for the fractional derivative exist, such as the Riemann-Liouville definition;

however the Caputo derivative and the Riemann-Liouville derivatives can be shown to be

equivalent if the function being differentiated (in this case γ(t)) has n continuous derivatives

all of which tend to 0 as t → ∞, where n − 1 < α < n. The Caputo definition is a more

convenient formulation for rheological applications due to the relative ease of implement-

ing initial conditions (Heymans and Podlubny (2005)). Therefore, we will use the Caputo

definition of the fractional derivative in this paper. springpot (Koeller (1984); Torvik and

Bagley (1984)) as being written in the form

σ(t) = V
dαγ(t)

dtα
=

V
Γ(1− α)

t∫

0

(t− t′)−αγ̇(t′) dt′ (3)
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in which σ(t) is the instantaneous stress in the element and γ(t) is the instantaneous strain.

The quantity V is best referred to as a quasi-property (Blair, Veinoglou, and Caffyn (1947a);

Jaishankar and McKinley (2013)) with units of Pa sα and is a measure of the underlying

relaxation processes occurring in a multiscale material rather than a material property itself.

In the limits of α = 0 and α = 1 we retrieve the constitutive equations of a Hookean

spring and a Newtonian dashpot respectively (for α = 1, the Caputo definition for the

fractional derivative given in Eq. (2) is different; see, for example, Surguladze (2002) for

details). Because 0 ≤ α ≤ 1 for a springpot, this fractional constitutive element interpolates

between the ideal limits of spring and dashpot, and the quasi-property V provides a measure

of the magnitude of the stresses arising in a power-law–like material during deformation.

A schematic representation of the springpot is shown in Fig. 2a. We note the similarity

between Eq. (3) and the Boltzmann superposition integral; in fact, it can rigorously be

proved (Koeller (1984)) that the relaxation modulus of a single springpot is given by

G(t) =
Vt−α

Γ(1− α)
(4)

Because the constitutive equation of a springpot as embodied in Eq. (3) involves a linear

superposition integral, the techniques of Laplace and Fourier transforms may be applied to

fractional derivatives, and this enables us to derive expressions for standard linear viscoelas-

tic material functions such as the relaxation modulus G(t) as well as the storage and loss

moduli, G′(ω) and G′′(ω), respectively. Mathematical details of these transforms as applied

to fractional derivatives may be found in standard textbooks (Miller and Ross (1993); Pod-

lubny (1999); Friedrich, Schiessel, and Blumen (1999)). Valério et al. (2013) have recently

published a comprehensive table of formulas pertaining to various mathematical operations

on fractional derivatives.

Previous experiments performed on Xanthan gum have documented the very broad re-

laxation spectra in this complex hydrocolloid with power-law like regimes due to branching

and physical associations such as the interchain hydrogen bonds that continuously break and

reform. We use the Fractional Maxwell Model (FMM) to model the linear viscoelasticity of

Xanthan gum solutions in a compact form. This model consists of two springpots connected

in series, as shown schematically in Fig. 2b. The constitutive equation for this fractional
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(a) (b)

FIG. 2. (a) Schematic figure of a springpot characterized by a power-law exponent α and a quasi-

property V with dimensions Pa sα. In the limits of α = 1 and α = 0, the springpot reduces to

a Newtonian dashpot with viscosity η and Hookean spring of modulus G respectively. The cor-

responding linear viscoelastic constitutive equations are given below each element. (b) Schematic

figure of the Fractional Maxwell Model (FMM), showing two springpots in series. Each springpot

in this four parameter model is characterized by two parameters; a quasi-property (V or G) and a

fractional exponent (α or β).

constitutive model is given by (Jaishankar and McKinley (2013))

σ(t) +
V
G
dα−β

dtα−β
σ(t) = V

dαγ(t)

dtα
(5)

In the above equation, we assume 0 ≤ β < α ≤ 1 without loss of generality. It has been

shown that this model is consistent with the principles of thermodynamics and results in a

non-negative internal work and a non-negative rate of energy dissipation. See for example

Friedrich (1991) and Lion (1997). We can take the Fourier transform of Eq. (5) to obtain

the elastic and loss moduli G′(ω) and G′′(ω) for the Fractional Maxwell Model respectively

as

G′(ω) =
(Gωβ)2Vωα cos(πα/2) + (Vωα)2Gωβ cos(πβ/2)

(Vωα)2 + (Gωβ)2 + 2VωαGωβ cos(π(α− β)/2)
(6)

G′′(ω) =
(Gωβ)2Vωα sin(πα/2) + (Vωα)2Gωβ sin(πβ/2)

(Vωα)2 + (Gωβ)2 + 2VωαGωβ cos(π(α− β)/2)
(7)

The corresponding relaxation modulus G(t) for the FMM can be obtained by substituting a

step strain γ(t) = γ0H(t) into Eq. (5) solving for G(t) = σ(t)/γ0. An analytical solution for

G(t) can be derived by taking the Laplace transform of the resulting equation, simplifying
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and inverting the transform, and we obtain (Schiessel et al. (1995))

G(t) = Gt−βEα−β,1−β
(
−G
V
tα−β

)
(8)

Here Ea,b(z) is the generalized Mittag-Leffler function (MLF) defined as (Podlubny (1999))

Ea,b(z) =
∞∑

k=0

zk

Γ(ak + b)
(9)

We note that setting α = 1 and β = 0 in Eq. (5) yields the linear Maxwell model (a

dashpot and a spring in series) and we thus obtain single mode Maxwell-Debye response.

Equivalently, setting α = 1 and β = 0 in Eq. (8) also leads to Maxwell-Debye response and

the Mittag-Leffler function reduces to simple exponential decay in this limit. Mittag-Leffler

type relaxation of the form shown in Eq. (8) for 0 < β < α < 1 results in a broad range

of relaxation timescales and more accurately describes the relaxation dynamics of many

polymeric systems (Friedrich, Schiessel, and Blumen (1999)) as well as other soft materials,

including the Xanthan gums described in this paper. It can be shown using asymptotic

expansions of Eq. (8) (Podlubny (1999)) that at short times, G(t) ≈ Gt−β/Γ(1− β) and at

long times G(t) ≈ Vt−α/Γ(1−α). Hence this model is very well suited to describe materials

displaying two distinct power-law regimes during relaxation. The transition from one power-

law to the other occurs when the argument in the MLF function Ea,b(−z) is z ∼ O(1). This

leads to the identification of a single characteristic time scale in this four parameter model

given by τ ≈ (V/G)1/(α−β).

IV. RESULTS AND DISCUSSION

A. Linear Viscoelasticity

In Fig. 3 we show the results of a frequency sweep experiment using small amplitude

oscillatory shear (SAOS) on 0.25 wt.% and 0.5 wt.% Xanthan gum. The strain amplitude

chosen was γ0 = 1%, and this amplitude was chosen from an independently performed strain

amplitude sweep (not shown) to ensure tests are in the linear regime . We note that there are

two distinct power-law regimes visible at low and high frequencies respectively, and there is a
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gradual transition from one asymptote to the other. The solid and dashed lines represent fits

of the data to the predictions for G′(ω) and G′′(ω) (Eqs. (6) and (7) respectively) obtained

from the FMM. We also performed additional SAOS experiments on a 1 wt.% Xanthan gum

solution (not shown in Fig. 3 for clarity) which are equally well described by the FMM.

The values of the exponents α, β and the quasi-properties V,G obtained from these fits are

tabulated in Tab. I.

As the concentration of Xanthan gum is increased, the values of α and β progressively

decrease, indicating transition to more gel-like behavior, with an increasingly broad spec-

trum of relaxation times. At the same time, an increase in Xanthan concentration leads to

an increase in the quasi-properties V and G, implying that the magnitude of the stress in-

creases. These constitutive parameters completely characterize the linear rheology of these

viscoelastic Xanthan gum solutions and will be used to make predictions of the material

response in other deformations. There exists a characteristic frequency at which the two

power-law regimes transition from one to the other, and this is determined by the frequency

ωc at which G′(ω) and G′′(ω) intersect. This can be found by equating Eqs. (6) and (7) and

10−3 10−2 10−1 100 101 102
10−2

10−1

100

101

ω [rad s−1]

G
′ (
ω
),
G
′′ (
ω
)
[P
a]

0.25 wt. %

0.5 wt. %

FIG. 3. Small Amplitude Oscillatory Shear (SAOS) experiments performed on different concen-

trations of Xanthan gum. Data are shown by filled symbols (storage modulus) and hollow symbols

(loss modulus) ,while the solid lines are fits to the storage modulus G′(ω) (Eq. (6)) and the dashed

lines are fits to the loss modulus G′′(ω) (Eq. (7)). The parameter values determined for each fluid

are given in Tab. I.
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TABLE I. Values of the model parameters α, β,V and G of the FMM for different concentrations

of Xanthan Gum.

Conc. [wt. %] α β V [Pa sα] G [Pa sβ] ωc [rad s−1] τ [s]

0.25 0.76 0.24 7.02 1.82 7.46× 10−3 13.41
0.50 0.64 0.19 71.65 7.82 1.34× 10−3 748.74
1.0 0.60 0.14 208.54 22.46 5.4× 10−4 1846.05

solving for the crossover frequency:

ωc =

(
G
V

[
sin(πα/2)− cos(πα/2)

cos(πβ/2)− sin(πβ/2)

])1/(α−β)
(10)

In Eq. (10), real solutions to ωc exist only if 0 ≤ β < 0.5 < α ≤ 1 (Jaishankar and McKinley

(2013)). If these constraints are not satisfied, it means that there is no crossover between

the storage and loss moduli.

Once the linear viscoelasticity of the solutions have been characterized in this manner,

we may now make predictions of the rheological response of the Xanthan gum solutions in

other linear experiments. For example in creep tests, we apply a step stress of the form

σ(t) = σ0H(t) (11)

where H(t) is the Heaviside step function (Abramowitz and Stegun (1964)), and σ0 is the

magnitude of the step in the stress. For the case of the FMM, an analytical expression for

the creep compliance J(t) can be derived by substituting Eq. (11) in Eq. (5) and solving for

J(t) = γ(t)/σ0 (Schiessel et al. (1995); Jaishankar and McKinley (2013)). This is given by

J(t) ≡ γ(t)

σ0
=

tα

VΓ(α + 1)
+

tβ

GΓ(β + 1)
(12)

In Fig. 4 we show the measured creep compliance data (symbols) for 0.25 wt.% and 1

wt.% Xanthan gum solutions. The lines are a priori predictions obtained from the FMM

by substituting the corresponding model values (taken from Tab. I) into Eq. (12). At short

times the compliance increases as J(t) ∼ tβ whereas at long times the rate of creep increases,

and J(t) ∼ tα. The crossover between these regimes is gradual and depends on the values

of V, G, α and β. Our prediction closely agrees with the measured data, and both of these

power-law regimes are visible. At very short times t / 1 s, the measured creep compliance
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grows quadratically and overdamped periodic oscillations are observed. These oscillations,

frequently referred to as creep ringing, arises from the coupling of instrument inertia with

sample viscoelasticity (Ewoldt and McKinley (2007)). The initial quadratic response in

the compliance arises purely due to the inertia of the measurement system and is given by

J(t) = (b/2I)t2, in which b is a geometry dependent measurement system factor and I is the

total inertia of the spindle and the attached fixture. Because the initial quadratic response

is material independent and is only a function of the attached fixture and system inertia,

the short time response of both fluids coincide. However, the crossover from the short time

inertia dominated response to the power-law response of the fluid occurs when

1

2

b

I
(t∗)2 ≈ (t∗)β

GΓ(1 + β)
⇒ t∗ ≈

(
2I/b

GΓ(1 + β)

)1/(2−β)
(13)

We have studied the creep ringing that is observed in power-law materials in detail in a pre-

vious publication, and have extended the inertia-less result above (Eq. (12)) to a prediction

of the creep compliance for the Fractional Maxwell Model in the ringing regime (Jaishankar

and McKinley (2013)). We note that for the times t � 104, the strain accumulated in the

10−2 10−1 100 101 102 103 104
10−4

10−3

10−2

10−1

100

101

102

103

t [s]

J
(t
)
[P
a
−
1
]

0.25 wt. %

1.0 wt. %

FIG. 4. Creep experiments performed on different concentrations of Xanthan gum (symbols) at an

applied stress of σ0 = 0.01 Pa, and the corresponding predictions of the linear viscoelastic creep

compliance J(t) (Eq. (12)). The values of the constitutive parameters α, β,V and G used to make

the prediction are obtained directly from the SAOS experiments (Tab. I). The initial quadratic

response at short times is given by J(t) = (b/2I)t2 and occurs due to the coupling of the instrument

inertia with viscoelasticity, and is shown as a black dashed line.
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Xanthan gum solution will become large enough at some point so that nonlinear effects may

become important.

In a similar fashion, predictions of the relaxation modulus G(t) and other linear vis-

coelastic material functions such as the transient viscosity η+(t) observed during start up

of steady shear flow (Bird, Armstrong, and Hassager (1987)) can be made; we only require

the parameter set (α, β, V and G) that characterize the material. However, in each case,

the material response will be independent of the magnitude of the imposed stress or strain

amplitude. By contrast, experimental measurements on complex viscoelastic materials such

as Xanthan gum solutions show a transition to strongly shear rate dependent material prop-

erties (Ross-Murphy (1995)) and we now seek to characterize this transition by generalizing

the FMM to enable it to describe the rheological response to nonlinear deformations.

B. Nonlinear Viscoelasticity and the K-BKZ Model

When large nonlinear deformations are applied to complex fluids such as Xanthan gum,

there is progressive loss of internal structure or damage to the equilibrium network in the

material due to accumulated strain (Rolón-Garrido and Wagner (2009)). The material

functions measured upon the application of a nonlinear strain are bounded by a linear

viscoelastic envelope, and nonlinear material functions lie below this envelope. This damage

or loss of internal structure is quantified by a monotonically decreasing damping function

h(γ), which we define below. We note that there are some polysaccharide systems that show

thickening and hardening effects upon large strain deformations (Yalpani et al. (1983); Goh

et al. (2007)). Such systems are beyond the scope of this work, but can be described by

more complex functional forms of h(γ). In the present study we focus on responses that are

bounded by a linear viscoelastic envelope.

For the case of a steady shearing deformation, we may first evaluate this envelope by

substituting into the constitutive equation for the FMM (Eq. (5)) the functional form of the

deformation imposed during steady shear:

γ̇(t) = γ̇0H(t), (14)
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where γ̇0 is the steady shear rate applied at time t = 0 and H(t) is the Heaviside step

function. We therefore arrive at

σ(t) +
V
G
dα−βσ(t)

dtα−β
= Vγ̇0

dα−1H(t)

dtα−1
(15)

Taking the Laplace transform (Podlubny (1999)) of (15) we obtain

σ̃(s) =
Vγ̇0sα−2

1 + (V/G)sα−β
(16)

In deriving the Laplace transformed stress σ̃(s) above, we have assumed initial conditions of

γ(0) = 0 and γ̇(0) = 0. We invert the transformed stress using known identities (Podlubny

(1999); Valério et al. (2013)) to obtain

η+(t) =
σ(t)

γ̇0
= Gt1−βEα−β,2−β

(
−G
V
tα−β

)
(17)

We note two things here: first, that the steady shear viscosity is independent of the shear

rate, as expected for a linear model and second, that the shear viscosity grows as a function

of time and never reaches steady state, unless α = 1. The Mittag-Leffler function asymp-

totically decays as t−(α−β) (see Eq. (27)) for large arguments and hence η+(t) ∼ t1−α. This

means that for the case of a dashpot with α = 1, η+(t)→ V(= η) at long times.

To be able to capture experimental observation of the shear rate dependence of the vis-

cosity, and to be able to obtain an equilibrium steady state viscosity, we need to incorporate

into our model a frame invariant finite strain measure. We follow the approach of Lar-

son (1985) who argued that the nonlinear rheology of complex multiscale materials such as

polydisperse polymer melts can be described by using a separable equation of the integral

K-BKZ type (Bird, Armstrong, and Hassager (1987)). While Larson selected a single power-

law relaxation kernel, we extend the analysis to relaxation kernels of the Mittag-Leffler kind.

By assuming that the temporal response and strain response are separable or factorizable,

so that the stress tensor σ(t) can be written as (Bird, Armstrong, and Hassager (1987);

Larson (1988))

σ(t) =

t∫

−∞

m(t− t′)
[
2
∂U

∂I1
C−1 − 2

∂U

∂I2
C

]
dt′ (18)
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in which

m(t− t′) =
∂G(t− t′)

∂t′
(19)

is the memory function of the material, U ≡ U(I1, I2) is a potential function that is related

to the strain energy function of the material and C−1 = (F−1)T · F is the Finger tensor

(Bird, Armstrong, and Hassager (1987)). If we neglect the second term in brackets, i.e. the

potential function have no dependence on the second invariant I2, (Wagner, Raible, and

Meissner (1979)), then for the specific kinematics of a shear deformation, the expression for

the shear stress can be written as (Larson (1988))

σ(t) =

t∫

−∞

m(t− t′)h(γ)γ(t, t′) dt′ (20)

in which γ(t, t′) = γ(t′)− γ(t) is the relative strain accumulated between times t and t′ and

h(γ) is a damping function defined as

h(γ) =
G(t, γ)

G(t)
. (21)

Many polymer kinetic theories can be rewritten in the form of the separable K-BKZ integral

equations defined above, including the Rouse-Zimm theory and the Lodge network theory

(Bird, Armstrong, and Hassager (1987)). The challenge lies in determining a molecular basis

for the memory function m(t − t′). In what follows we select the Mittag-Leffler relaxation

kernel as the appropriate memory function for our biopolymer solutions, i.e., we set

m(t− t′) ≡ ∂G(t− t′)
∂t

(22)

= −G(t− t′)−1−βEα−β,−β
(
−G
V

(t− t′)α−β
)
. (23)

where we have used G(t) from Eq. (8). Although our choice of the memory function is

motivated by experimental data, and the large number of publications that have shown that

complex multiscale materials exhibit relaxation of the Mittag-Leffler kind, a micro-molecular

basis for this kind of relaxation process in polymeric materials has been recently proposed

by Sharma and Cherayil (2010).
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FIG. 5. Relaxation modulus G(t) obtained from step strain experiments performed on a 0.5 wt.%

Xanthan gum solution at different strain amplitudes. The legend box shows the strain amplitude

γ0 at which the stress relaxation test was performed. Increasing the strain amplitude causes a

progressive decrease in the relaxation modulus, which can be quantified using a damping function

of the form given by Eq. (21).

In order to calculate the steady shear viscosity from Eq. (20), we need to determine the

damping function h(γ) for our Xanthan gum solutions. For this we performed a series of

stress relaxation experiments with increasing step strain, and the results for a 0.5 wt.%

solution are shown in Fig. 5. Note that here too we can detect the signature of two distinct

limiting power-law regimes during relaxation, with a gradual cross over from one to the other

occurring at times of order τ ∼ (V/G)1/(α−β). At small strain amplitudes (γ0 < 0.3), the

step strain experiments yield a relaxation modulus that is independent of strain amplitude,

indicating a linear viscoelastic response. However, upon increasing the strain amplitude,

we observe a progressive decrease in the relaxation modulus G(t, γ). We may collapse these

curves generated at different strain amplitudes onto a single master curve, and in the process

experimentally determine the damping function h(γ), which is given by Eq. (21). We show

the measured value of the damping function h(γ) as a function of strain amplitude γ for

0.25, 0.5 and 1.0 wt.% Xanthan gum solutions in Fig. 6. The damping functions for all

concentrations of Xanthan gum tested in this study overlap on each other and fall on the

same master curve. The damping function is independent of strain for small values of applied

step strain; however at strains of γ ≈ 30%, h(γ) drops sharply and approaches a power-law
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FIG. 6. Measured values of the damping function h(γ) = G(t, γ)/G(t) for different concentrations

of Xanthan Gum. The damping function is independent of concentration and is well described by

a function of the form h(γ) = 1/(1 + 0.3γ2).

function of the applied strain for large γ. We have independently verified that non-linearity

appears at γ0 = 30% using a strain amplitude sweep under SAOS deformations. The black

line in Fig. 6 indicates a fit to this master curve with a function of the form

h(γ) =
1

1 + aγ2
. (24)

and we find that a = 0.3 describes our data well. Rolón-Garrido and Wagner (2009) have

recently reviewed the various kinds of damping functions that arise in rheology and their

role in describing non-linear rheological behavior. A damping function of the form h(γ) =

1/(1 + aγb) where a and b are constants has been commonly observed in a number of other

polymeric systems (Soskey and Winter (1984)).

We now have all the elements required to find the steady shear viscosity η(γ̇) using

Eq. (20). We substitute Eq. (23) and Eq. (24) into Eq. (20) and also note that γ(t, t′) =
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γ(t′)− γ(t) = γ̇(t− t′) for steady shearing flow to arrive at

η(γ̇) ≡ σ(t)

γ̇

= −G
∞∫

0

u−βEα−β,−β

(
−G
V
uα−β

)
1

1 + 0.3(γ̇u)2
du (25)

in which we have made the variable transformation u = t− t′. The above integral for η(γ̇)

is evaluated numerically and can be shown to converge for all values of γ̇. We note that to

evaluate this integral for each fluid no additional fitting parameters are required, and we

use the corresponding values of α, β,V and G from Tab. I, which were obtained using SAOS

experiments.

In Fig. 7a we show measured data (symbols) for the steady shear viscosity η(γ̇) as a

function of the steady shear rate γ̇ for different concentrations of Xanthan gum in solution.

For all concentrations tested, η(γ̇) displays either one (1 wt. %) or two (0.25 wt.% and 0.5

wt.%) distinct power-law regions. Moreover there is no appearance of a zero shear viscosity

plateau even at shear rates as low as γ̇ = 10−3 s−1, with η(γ̇) continuing to grow as a weak

power-law function of γ̇ as the shear rate is progressively decreased. This asymptotic power-

law behavior with the absence of a well-defined zero-shear plateau has been documented

previously for Xanthan gum solutions (Ross-Murphy (1995); Oertel and Kulicke (1991))

as well as for other complex fluids such as liquid crystalline polymers (Guskey and Winter

(1991)) and associative polymer solutions (English et al. (1999)). We also show in Fig. 7a

the predictions of η(γ̇) obtained from the K-BKZ model described above (Eq. (25)). The

predicted material response captures the behavior of the Xanthan gum solutions very closely.

We may gain additional analytical insight into the asymptotic behavior of the flow curve

by approximating the integral in Eq. (25). We begin by noting that the Mittag-Leffler

function has the following asymptotic behavior (Podlubny, 1999, pp. 17 and pp. 34):

Ea,b(z) ≈
N∑

k=0

zk

Γ(ak + b)
+O(zN+1); z � 1 (26)

Ea,b(z) ≈
N∑

k=1

(−z)−k

Γ(b− ak)
+O(z−(N+1)); z � 1 (27)
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FIG. 7. Predictions of nonlinear material functions using the K-BKZ type model (lines) compared

with measured data (symbols); (a) steady shear viscosity η(γ̇), and (b) first normal stress coefficient

Ψ1(γ̇). The model parameters for each fluid are determined from linear viscoelasticity and are

given in Tab. I. The dashed lines in (a) show the viscosity given by the asymptotic simplification

in Eq. (32).

We make use of these asymptotes to evaluate Eq. (25) by approximating the Mittag-Leffler

function in Eq. (25) as being a piecewise continuous function of the form

Eα−β,−β

(
−G
V
uα−β

)
=

1

Γ(−β)
;u < u∗

=
(V/G)uβ−α

Γ(−α)
; u ≥ u∗ (28)

where u∗ is the location of the cross over from one asymptote to the other. We assume this

crossover occurs when the argument of the Mittag-Leffler function z∗ = (V/G)1/(α−β)u∗ ∼ 1,

i.e., u∗ = (V/G)1/(α−β) = τ . Therefore we now approximate Eq. (25) as

η(γ̇) ≈−Gγ̇β−1
[∫ γ∗

0

γ−β
1

Γ(−β)

1

1 + 0.3γ2
dγ +

∫ ∞

γ∗
γ−β

(
(V/G)γ̇α−βγβ−α

)

Γ(−α)
dγ

]
. (29)

In deriving the above, we have made the variable substitution γ̇u = γ for steady shear flow,

and consequently γ∗ = (V/G)1/(α−β)γ̇ = τ γ̇. Note that γ∗ is a product of a timescale τ and

a shear rate γ̇ and hence γ∗ = τ γ̇ may be interpreted as a critical shear strain during start

up of steady shear at a rate γ̇, or as a Weissenberg number Wi that gives a measure of the
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flow strength (Dealy (2010)). Upon simplifying Eq. (29) we arrive at

η(γ̇) ≈ Gγ̇β−1
β

Γ(1− β)

∫ γ∗

0

γ−β

1 + 0.3γ2
dγ + Vγ̇α−1

α

Γ(1− α)

∫ ∞

γ∗

γ−α

1 + 0.3γ2
dγ (30)

where we have used the identity Γ(n + 1) = nΓ(n). Both the integrals obtained above can

be written in terms of the hypergeometric function 2F1(a, b; c;x) defined as (Abramowitz

and Stegun (1964))

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞∑

k=0

Γ(a+ k)Γ(b+ k)

Γ(c+ k)

zk

k!
(31)

and we finally obtain

η(γ̇) ≈ Gγ̇β−1
β

Γ(1− β)

(γ∗)1−β

1− β 2F1

(
1,

1− β
2

;
3− β

2
;−0.3(γ∗)2

)
+

Vγ̇α−1
α

Γ(1− α)

(γ∗)−α−1

(0.3)(1 + α)
2F1

(
1,

1 + α

2
;
3 + α

2
;− 1

0.3(γ∗)2

)
. (32)

We show the predictions of this approximate analytic expression for η(γ̇) as dotted lines in

Fig. 7a. It is observed that this analytical solution agrees very closely with the full numerical

solution and hence one may avoid calculating a numerical solution to Eq. (25). For values

of α ≈ 1 or β ≈ 0, this approximate solution is less accurate; in the Appendix we derive an

expression for η(γ̇) to arbitrary order, and one may retain as many terms as required in the

expansion depending on the accuracy needed. The utility of the analytical solution Eq. (32)

is that it enables us to calculate the asymptotic behavior of η(γ̇) as Wi � 1 and Wi � 1;

in fact, it can be shown using appropriate Taylor series expansions of the hypergeometric

functions that at low shear rate

lim
γ̇�1/τ

η(γ̇) ≈
[
(0.3)(α−1)/2

(πα/2) sec(πα/2)

Γ(1− α)

]
Vγ̇α−1 (33)

and at high shear rate

lim
γ̇�1/τ

η(γ̇) ≈
[
(0.3)(β−1)/2

(πβ/2) sec(πβ/2)

Γ(1− β)

]
Gγ̇β−1 (34)

From Eq. (33), it is apparent that the existence of a constant bounded viscosity in the limit
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of zero shear rate thus only exists for materials in which α = 1. The shear stress however

tends to zero for all α because σ = ηγ̇ ∼ γ̇α for all α. This slow asymptotic divergence in

the viscosity at low shear rates agrees with the experimentally observed behavior of many

complex multiscale materials, some of which have been cited above.

The K-BKZ approach also enables us to make predictions of the first normal stress coeffi-

cient Ψ1(γ̇). Again, we begin with the K-BKZ framework (Eq. (18)), and neglect the second

term for uncrosslinked materials. We select the correct components of the Finger tensor

C−1 to calculate the normal stress difference N1 = σxx− σyy and we obtain (Venkataraman

and Winter (1990))

N1(t) =

t∫

−∞

m(t− t′)h(γ)γ2(t, t′) dt′ (35)

and consequently, substituting the Mittag-Leffler relaxation modulus we obtain

Ψ1(γ̇) ≡ N1

γ̇2
= −G

∞∫

0

u1−βEα−β,−β

(
−G
V
uα−β

)
1

1 + 0.3(γ̇u)2
du (36)

In Fig. 7b we show measurements of the first normal stress coefficient Ψ1(γ̇) (symbols) for

three different concentrations of Xanthan gum in solution. The solid lines show the numerical

prediction of Ψ1(γ̇) evaluated using Eq. (36) and the parameters in Tab. I. In this case too

we observe that the agreement between measured data and the prediction of our model is

good with no additional fitting parameters required. Similar to the approximation made

above for η(γ̇), an analytical approximation for Ψ1(γ̇) may be found, and is given by

Ψ1(γ̇) ≈ Gγ̇β−2
β

Γ(1− β)

(γ∗)2−β

2− β 2F1

(
1,

2− β
2

;
4− β

2
;−0.3(γ∗)2

)
+

Vγ̇α−2
α

Γ(1− α)

(γ∗)−α

(0.3)(α)
2F1

(
1,
α

2
;
2 + α

2
;− 1

0.3(γ∗)2

)
(37)

As before, γ∗ = (V/G)1/(α−β)γ̇ = τ γ̇ is a measure of the flow strength. This approximate

analytical solution is nearly identical to the full numerical solution of Eq. (36), and the

numerical and analytical curves overlap; therefore, we do not show the approximate solution

as dashed lines for the sake of clarity. Again, with the help of the analytical solution we are
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able to determine the behavior of Ψ1(γ̇) for Wi� 1 given by

lim
γ̇�1/τ

Ψ1(γ̇) ≈
[
(0.3)(α−2)/2

(πα/2)cosec(πα/2)

Γ(1− α)

]
Vγ̇α−2 (38)

and for γ∗ � 1

lim
γ̇�1/τ

Ψ1(γ̇) ≈
[
(0.3)(β−2)/2

(πβ/2)cosec(πβ/2)

Γ(1− β)

]
Vγ̇β−2 (39)

i.e. Ψ1(γ̇) ∼ γ̇α−2 for γ∗ � 1 and Ψ1(γ̇) ∼ γ̇β−2 for γ∗ � 1. We note in particular that the

asymptotic behavior of Ψ1(γ̇) at low shear rates obtained above agrees with the asymptote

calculated from a second order fluid expansion (Bird, Armstrong, and Hassager (1987))

lim
γ̇�1/τ

Ψ1(γ̇) = lim
ω�1/τ

2G′(ω)

ω2
(40)

which we can calculate with the help of Eq. (6).

In this section we have presented a theoretical constitutive framework to make predictions

of the nonlinear rheological response of power-law complex fluids with broad relaxation spec-

tra that exhibit liquid-like behavior at long timescales. Although we discuss the examples

of η(γ̇) and Ψ1(γ̇) in this paper, these arguments can be extended to other nonlinear de-

formations such as uniaxial extensional flows and LAOS. We next discuss the performance

of empirical rules such as the Cox-Merz rule and the Gleissle Mirror relations that also

make predictions of a material’s nonlinear response (from knowledge of the linear rheology

alone), and show how the very broad range of relaxation timescales that are embodied by

the Mittag-Leffler function influences the validity of these approximations. We will also put

these empirical rules in context by using our model to quantify the systematic deviations

that these predictions can exhibit from measured data.

C. Empirical Relationships for Nonlinear Viscoelasticity

One widely known relationship that enables the prediction of the nonlinear viscometric

response for complex materials from linear response is the Cox-Merz rule which states that
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(Bird, Armstrong, and Hassager (1987))

η(γ̇) ≈ η∗(ω)
∣∣
ω=γ̇

(41)

where η∗(ω) is the complex viscosity given by

η∗(ω) =

√
G′(ω)2 +G′′(ω)2

ω
(42)

For the FMM, in which G′(ω) and G′′(ω) are given by Eq. (6) and Eq. (7) respectively, we

calculate η∗(ω) to be

η∗(ω) =
VGωα+β−1√

(Vωα)2 + (Gωβ)2 + 2VωαGωβ cos
(
π(α−β)

2

) (43)

and consequently from (41) we have

η(γ̇) ≈ VGγ̇α+β−1√
(Vγ̇α)2 + (Gγ̇β)2 + 2Vγ̇αGγ̇β cos

(
π(α−β)

2

) (44)

There also exists a less widely used empirical framework to predict nonlinear behavior from

linear rheology, collectively known as the Gleissle mirror relations which state that (Bird,

Armstrong, and Hassager (1987); Dealy and Wissbrun (1990))

η+(t) ≈ η(γ̇)
∣∣∣
t=1/γ̇

(45)

Ψ+
1 (t) ≈ Ψ1(γ̇)

∣∣∣
t=k/γ̇

(46)

Ψ1(γ̇) ≈ −2

∞∫

γ̇/k

x−1
[
∂η(x)

∂x

]
dx (47)

Here η+(t) is the transient shear viscosity upon the start-up of steady shear measured in

the linear viscoelastic regime and Ψ+
1 (t) is the transient first normal stress coefficient upon

the start-up of steady shear, and 2 < k < 3 is a fitting constant. Evidently, these Gleissle

mirror relations allow estimation of the nonlinear material functions η(γ̇) and Ψ1(γ̇) from

their quasilinear counterparts η+(t) and Ψ+
1 (t). The third relation Eq. (47) allows a direct
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calculation of Ψ1(γ̇) from η(γ̇). For the FMM, we have already determined η+(t) in Eq. (17),

because in deriving that expression we set γ̇ = γ̇0H(t), which is the imposed deformation in

a start-up of steady shear flow experiment. Therefore Eq. (17) and Eq. (45) yield

η(γ̇) u G
(

1

γ̇

)1−β
Eα−β,2−β

(
−G
V

(
1

γ̇

)α−β)
(48)

in which Ea,b(z) is the Mittag-Leffler function defined in Eq. (9). The argument z = −G
V

(
1
γ̇

)α−β

in Eq. (48) can also be written as z = −(τ γ̇)β−α. It can be shown using the asymptotic

forms of the Mittag-Leffler function given in Eq. (26) and Eq. (27) that Eq. (48) exhibits

power-law regimes at low as well as high γ̇. At low shear rates we obtain

lim
γ̇�1/τ

η(γ̇) ≈ Vγ̇α−1/Γ(2− α), (49)

and at high rates we find

lim
γ̇�1/τ

η(γ̇) ≈ Gγ̇β−1/Γ(2− β). (50)

These asymptotes are identical in form to those we obtained from the K-BKZ model derived

above (cf. Eqs. (33) and (34)) and only differ in the pre-multiplying factor.

We may now use this expression for η(γ̇) in Eq. (47) to find Ψ1(γ̇). Making this substi-

tution we have

Ψ1(γ̇) = −2

∞∫

γ̇/k

1

x

∂

∂x

[
G
(

1

x

)1−β
Eα−β,2−β

(
−G
V

(
1

x

)α−β)]
dx (51)

Making the variable transformation 1/x = u and then integrating by parts we obtain

Ψ1(γ̇) = 2G
(
k

γ̇

)2−β
[
Eα−β,2−β

(
−G
V

(
k

γ̇

)α−β)
− Eα−β,3−β

(
−G
V

(
k

γ̇

)α−β)]
(52)

As in the case of η(γ̇), it can be shown that the low and high shear rate asymptotes are both

power-laws, and are given by Ψ1(γ̇) ∼ γ̇α−2 and Ψ1(γ̇) ∼ γ̇β−2 respectively. These asymp-

totic power-laws agree with those of the K-BKZ model derived in Eq. (38) and Eq. (39).
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FIG. 8. Comparison of the agreement between the Cox-Merz rule and the Gleissle mirror relations

for the FMM. The predicted values of the steady shear viscosity from the two different rules

virtually overlap. Additional arguments for this agreement are given in appendix. α = 0.64,

β = 0.19, V = 71.65 Pa sα, G = 7.82 Pa sβ.

In Fig. 8 we show a comparison of the prediction of η(γ̇) from the Cox-Merz rule (Eq. (44))

with the prediction of the Gleissle mirror relation (Eq. (48)) for the special case of α = 0.64,

β = 0.19, V = 71.65 Pa sα and G = 7.82 Pa sβ, corresponding to a 0.5 wt.% Xanthan

gum solution. The two predictions agree very closely over 6 orders of magnitude in the

deformation rate. We have verified for various other values of α, β, V and G that the two

predictions are nearly equal at all shear rates. Therefore we may use either the Cox-Merz

rule or the Gleissle mirror relations to arrive at an empirical prediction of the nonlinear ma-

terial properties η(γ̇) and Ψ1(γ̇) for a multiscale material with linear viscoelastic properties

described by the Fractional Maxwell Model.

In Fig. 9 we show as symbols the same steady shear data measured for two different

concentrations of Xanthan gum already presented in Fig. 7. The lines in Fig. 9 depict the

predictions obtained from the Gleissle mirror relations (Eqs. (48) and (52)). Note that

although we do not show it in Fig. 9 for the sake of clarity, applying the Cox-Merz rule

(Eq. (41)) would give us identical predictions as the Gleissle mirror relation as explained

above. We choose to show the predictions of the Gleissle mirror relations because this also

provides an analytical expression for Ψ1(γ̇), however all of the conclusions in the following

section apply to the Cox-Merz rule as well.
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FIG. 9. Predictions of the Gleissle mirror relations for the FMM (lines) compared to measured

data for Xanthan gum(symbols); (a) steady shear viscosity η(γ̇) prediction (Eq. (48)) and (b) first

normal stress co-efficient Ψ1(γ̇) prediction (Eq. (52)). There is a consistent offset between the

prediction and measured data, which increases with increasing concentration. Values of α, β, V
and G used to make the model predictions were taken from Tab. I.

We observe in Fig. 9 that the predictions of the Gleissle mirror relations correctly cap-

ture the functional form of the experimental data but exhibit a systematic offset from the

measurements in both η(γ̇) (Fig. 9a) as well as Ψ1(γ̇) (Fig. 9b). The predictions are sys-

tematically higher than the measured data. This offset between measured data and the

predictions of empirical rules such as the Cox-Merz rule or Gleissle mirror relations has been

observed previously in various complex fluids, especially in polysaccharide systems where

it has been reported that η∗(ω)|ω=γ̇ > η(γ̇). For Xanthan gum solutions this offset has

been shown to increase with increasing Xanthan concentration (Ross-Murphy (1995)). Us-

ing Xanthan gum and Schizophyllum solutions with varying amounts of urea (Ross-Murphy,

Morris, and Morris (1983)) or DMSO (Oertel and Kulicke (1991)) respectively, this offset

has been shown to arise from the presence of intermolecular interactions such as hydrogen

bonds. These weak physical interactions give rise to the broad power-law–like character-

istics we observe in the linear relaxation modulus, but are disrupted at the large strain

deformations applied in steady shear.

In our K-BKZ model, we capture this structural damage accumulated during large shear

deformations using the damping function. With this K-BKZ framework, it is also relatively

straightforward to quantify the magnitude of this offset between the measured steady shear

viscosity and the predictions of the Cox-Merz rule or Gleissle mirror relations. We define
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FIG. 10. The offset factor f (Eq. (53)) as a function of the shear rate γ̇ for different values of the

damping function parameter a. 0 < f < 1 indicating that the steady shear viscosity is lower than

the complex viscosity. This arises from damage accumulated at the large strains imposed during a

steady shear experiment. The values of the FMM parameters are α = 0.60, β = 0.14, V = 208.54

Pa sα and G = 22.46 Pa sβ corresponding to the 1 wt.% Xanthan gum solution with characteristic

timescale τ = (V/G)1/(α−β) = 1846 s.

the offset factor f as

f ≡ η(γ̇)

η∗(ω)

∣∣∣
ω=γ̇

(53)

where η(γ̇) and η∗(ω)
∣∣
ω=γ̇

are given by Eqs. (25) and (44)) respectively. We could also

replace η∗(ω)
∣∣
ω=γ̇

by η(γ̇) obtained from the Gleissle mirror relationship (Eq. (48)) because

both empirical relations give nearly identical predictions of the steady shear viscosity (cf.

Fig. 8). Note that as long as 0 < f < 1, the smaller the value of f , the larger is the deviation

between η(γ̇) and η∗(ω). We show the value of f as a function of shear rate γ̇ for various

values of the strain damping coefficient a in Fig. 10. We do not compare this plot of the

offset with our measured data because that would mean plotting the ratio of two measured

quantities on the y-axis. Moreover, the y-axis only ranges from 0 to 1; it can be calculated

that even a 5-6% error in both η(γ̇) and η∗(ω), which is a reasonable assumption to make

in bulk rheology, can lead to as much as a 25% error in the calculated offset. Nevertheless,

from Fig. 10 we can discern various qualitative features: the introduction of the damping

function leads to a systematic offset of magnitude 0.3 ≤ f ≤ 0.9 between the Cox-Merz

29



prediction and the full nonlinear model. Similar offsets were found experimentally for all

the Xanthan gum concentrations tested in this study. The offset factor f also monotonically

decreases as a function of γ̇. We see from Fig. 9(a) that this is true for the 1 wt.%, and

0.5 wt.% (not shown for clarity); however, the trend seems to be reversed for the 0.25 wt.%

solution, which we ascribe to experimental variability. The magnitude of this offset also

plateaus at both low and high γ̇. These plateaus indicate that approximations to the steady

shear viscosity obtained from these empirical relationships will exhibit asymptotic behavior

(to within a constant factor) that is identical to the full K-BKZ model, which compares well

with experimental measurements. In fact, using our analytical solution, we can show this

exactly; the plateau values of the offset may be calculated from the asymptotic values of

η(γ̇) from the K-BKZ model (Eqs. (33) and (34)) and those of the Gleissle mirror relations

(Eqs. (49) and (50)). Finally, we note that increasing the damping function parameter a

decreases the magnitude of the offset factor f (i.e. it increases the disparity between η(γ̇)

and η∗(ω)
∣∣
ω=γ̇

). From (33) and (34), we observe that the plateau value of f depends on the

damping function parameter a in a power-law manner, and the low shear and high shear

plateau scale as f ∼ a(α−1)/2 and f ∼ a(β−1)/2 respectively. Renardy (1997) has shown that

the Cox-Merz rule is valid for materials with a broad spectrum of relaxation times to within

a constant factor. We have shown in this section that for complex multiscale materials

with a relaxation modulus that can be well described by the Mittag-Leffler function, these

constant factors can be quantified, and vary gradually with shear rate.

D. The Delaware-Rutgers rule for power-law Materials

For other classes of complex fluids such as concentrated suspensions which exhibit a yield

stress, the Cox-Merz rule is known to fail. Instead, observations show that there exists a new

relationship for yield-like materials that relates dynamic and steady-shear measurements,

which Krieger (1992) has suggested be called the Rutgers-Delaware rule. Doraiswamy et al.

(1991) have developed a nonlinear model for such materials, and the existence of this rule

is rigorously proved. The rule states that dynamic measurements performed at frequency

ω and shear strain amplitude γ0 are equivalent to steady shear response performed at shear

rate γ̇ when γ0ω = γ̇. The starting point of their model is an empirically introduced elastic

Herschel-Bulkley type relationship for stress and strain. A critical strain parameter γc is
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introduced, at which transition from elastic to inelastic behavior takes place. In what follows,

we show that an appropriate choice of fractional constitutive model, along with a suitable

damping function can give rise to not only a constitutive equation of Herschel-Bulkley type

in steady shear but also a linear viscoelastic material response and agreement with the

Rutgers-Delaware rule.

We consider a model of Fractional Kelvin-Voigt type (FKVM) with a Hookean spring in

parallel with a springpot such that the total stress σ is given by

σ = σs + σsp (54)

with σs being the stress in the spring and σsp the stress in the springpot. The elastic

spring, however, is nonlinear and plastically yields at a critical strain γc = σy/G so that the

constitutive response is

σs = Gγs, |γs| ≤ γc (55)

= Gγc, |γs| > γc (56)

where G is the linear elastic modulus of the unyielded element and γc is a critical strain

amplitude. We are now interested in determining the response of such a FKVM constitutive

model under a steady shear rate γ̇. To find the steady state response for the springpot, we

use a K-BKZ approach as before, along with a damping function h(γ) given by Tanner and

Simmons (1967)

h(γ) = 1,
∣∣γ
∣∣ ≤ γc (57)

= 0,
∣∣γ
∣∣ > γc

The choice of this damping function is motivated by the fact that materials such as concen-

trated suspensions yield catastrophically (Dimitriou, Ewoldt, and McKinley (2013); Dzuy

(1983)), and the elastic modulus of the material decreases sharply upon yield. We obtain
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from Eq. (4) and Eq. (20) and expression for the stress in the springpot σsp that is given by

σsp(γ̇) =

t∫

−∞

V(−α)

Γ(1− α)
(t− t′)−α−1h(γ) γ̇ dt′ (58)

Making the variable substitution γ = γ̇(t− t′) and noting that γ̇ is constant, we obtain

σsp(γ̇) = γ̇α
∞∫

0

Vα
Γ(1− α)

γ−αh(γ) dγ (59)

and substituting for the damping function h(γ) from Eq. (55) and solving the integral, we

finally obtain

σsp(γ̇) =
Vα

Γ(2− α)
γ1−αc γ̇α (60)

The total stress σ = σs + σsp in steady flow is now calculated using Eq. (56) and Eq. (60)

as being

σ(γ̇) = Gγc +
Vα

Γ(2− α)
γ1−αc γ̇α (61)

or equivalently the steady shear viscosity is given by

η(γ̇) ≡ σ(γ̇)

γ̇
=
Gγc
γ̇

+
Vα

Γ(2− α)
γ1−αc γ̇α−1 (62)

Note that Eq. (62) is identical to the Herschel-Bulkley type stress-strain relationship pro-

posed by Doraiswamy et al. (1991). It is immediately seen that at low shear rates

η(γ̇) ≈ Gγc
γ̇

=
σy
γ̇

(63)

and at high shear rates

η(γ̇) ≈ Vαγ1−αc

Γ(2− α)
γ̇α−1 = Kγ̇α−1 (64)

The presence of the quasi-properties V and the power-law exponent α in the expression

for the steady shear viscosity, which are independently determined from linear viscoelastic

measurements, indicate that the linear and nonlinear rheology are interconnected through
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the damping function and the parameter γc at which the material suddenly yields.

To derive the response of this elastoviscoplastic FKVM model in oscillatory flow, we as-

sume that a deformation profile of the form γ = γ0 sin(ωt) is applied, in which γ0 is the strain

amplitude. Similar to Doraiswamy et al. (1991), we also assume that the material yields

upon an infinitesimally small deformation (i.e. although we are interested in small ampli-

tude oscillations and γ0 is small, we assume the critical strain γc � γ0.) This means that

the nonlinear spring saturates and yields before the oscillating strain reaches its maximum

amplitude.

Because we use a FKVM type model with elements in parallel, the stresses in each element

are additive and hence

G′(ω) = G′(s)(ω) +G′(sp)(ω) (65)

G′′(ω) = G′′(s)(ω) +G′′(sp)(ω) (66)

where the superscripts s and sp stand for spring and springpot respectively, as before. We

know from linear viscoelasticity theory that (Macosko (1994))

G′(s)(ω) = ω

∞∫

0

G(s) sin(ωs) ds (67)

G′′(s)(ω) = ω

∞∫

0

G(s) cos(ωs) ds (68)

Although the limits of the integral run from 0 to ∞, we have noted that the spring yields

when the strain reaches γc in the first quarter cycle. This happens at time tc given by

tc =
1

ω
sin−1

(
γc
γ0

)
(69)

Therefore, in Eqs. (67) and (68), G(s) = G for s ≤ tc and G(s) = 0 for s > tc. Consequently,

the limits of the integrals in Eq. (67) and Eq. (68) span from 0 to tc. Evaluating these
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integrals, we find that

G′(s)(ω) = G(1− cosωtc) ≈
G

2

(
γc
γ0

)2

(70)

G′′(s)(ω) = G sinωtc = G
γc
γ0

(71)

In Eq. (70) we have used the fact that γc � γ0 to approximate the cosine term using a

Taylor series expansion.

To find G′(sp)(ω) and G′′(sp)(ω), we use the K-BKZ equation with the Tanner-Simmons

damping function given in Eq. (57). Therefore in this case Eq. (20) becomes

σ(sp)(t) =
V(−α)

Γ(1− α)

t∫

−∞

(t− t′)−(α+1)h[γ(t, t′)][γ(t′)− γ(t)] dt′ (72)

and making the variable transformation u = t− t′ we obtain

σ(sp)(t) =
Vα

Γ(1− α)

∞∫

0

u−(α+1)h[γ(t, t′)][γ(t)− γ(t− u)] du (73)

In Fig. 11 we show as a green line the absolute value of an applied deformation of the form

γ(t) = γ0 sin(ωt) for two complete cycles. The blue dashed line is a plot of h(γ) defined

in Eq. (57). Because h(γ) depends only on the instantaneous value of the strain, whenever
∣∣γ(t)

∣∣ ≤ γc, h(γ) = 1, as seen in the figure. This means that any structural damage

induced in the material at strains larger than γc is instantly undone when the strain drops

below γc. This instantaneous recovery of material structure, however, is unphysical; in real

materials there is typically a recovery time for the reversal of structural damage induced at

large strains. In other words, any damage accumulated in the initial increasing portion of the

sinusoidally oscillating strain will not be reversed instantaneously in the decreasing portion of

the strain cycle. Wagner and Stephenson (1979) call this the irreversibility assumption, and

show that for a LDPE melt, constitutive predictions of the rheological response in reversing

flows are much improved by accounting for irreversibility. In line with this assumption,

we modify our damping function and assume that there is zero recovery upon the strain

reaching the critical value γc in the first cycle. Therefore, once h(γ) = 0, it remains zero for

all subsequent times. This damping function is shown by the red circles in Fig. 11, and this
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FIG. 11. The irreversibility assumption. The green line shows
∣∣γ(t)

∣∣ = γ0
∣∣ sinωt

∣∣. The blue

dashed line is the damping function without the irreversibility assumption, and there is instant

microstructural recovery of accumulated damage in the material when γ < γc. The red circles

denote the damping function we use in (73), which accounts for irreversibility and assumes zero

recovery after the strain first exceeds the critical strain γc.

is the function we use in our model, given by Eq. (73).

Substituting this damping function into Eq. (73) and noting that γ(t) = γ0 sinωt, we

obtain

σ(sp)(t) =
Vαγ0

Γ(1− α)

uc∫

0

u−(α+1)[sinωt− (sinωt cosωu− cosωt sinωu)] du (74)

in which uc is given by

uc =
1

ω
sin−1

(
γc
γ0

)
≈ 1

ω

γc
γ0

(75)

because γc � γ0. Upon simplifying and separating the in-phase and out of phase components

of the stress σ(sp)(t) with respect to the applied strain γ(t) we obtain the storage and loss
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moduli G′(sp)(ω) and G′(sp)(ω) respectively as

G′(sp)(ω) =
Vα

Γ(1− α)

uc∫

0

u−(α+1)(1− cosωu) du (76)

G′′(sp)(ω) =
Vα

Γ(1− α)

uc∫

0

u−(α+1) sinωu du (77)

To analytically solve these integrals, we note that 0 ≤ u ≤ uc � 1, and we approximate 1−
cos(ωu) ≈ (ωu)2/2 and sin(ωu) ≈ ωu, from appropriate Taylor series expansions. Therefore

we finally obtain

G′(sp)(ω) ≈ Vαωα

2(2− α)Γ(1− α)

(
γc
γ0

)2−α
(78)

G′′(sp)(ω) ≈ Vαωα

Γ(2− α)

(
γc
γ0

)1−α
(79)

We now use Eqs. (70), (71), (78) and (79) to find the overall elastic and loss moduli predicted

by the model, and these are given by

G′(ω) =
G

2

(
γc
γ0

)2

+
Vαωα

2(2− α)Γ(1− α)

(
γc
γ0

)2−α
(80)

G′′(ω) = G
γc
γ0

+
Vαωα

Γ(2− α)

(
γc
γ0

)1−α
(81)

with η∗(ω) given by Eq. (42) as before. From Eqs. (80) and (81), we see that

G′(ω)

G′′(ω)
∼ γc
γ0
� 1 (82)

and therefore

η∗(ω) =
G′′(ω)

√
1 + (G′(ω)/G′′(ω))2

ω
≈ G′′(ω)

ω
(83)

and consequently

η∗(ω) = G
γc
γ0ω

+
Vα

Γ(2− α)
γ1−αc (γ0ω)α−1 (84)
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Comparing this result with Eq. (62), we find that

η∗(ω) = η(γ̇)
∣∣
γ̇=γ0ω

(85)

This result is identical to the Rutgers-Delaware rule. Krieger (1992) has noted in a brief

correspondence that the Rutgers-Delaware rule is of a fundamentally different form to the

Cox-Merz rule, and not merely an alternate form or extension of it. The Rutgers-Delaware

rule applies to materials that are inherently nonlinear, and for which the period of oscillation

is much shorter than the structural recovery time of the material. We incorporate both these

properties of the material using our choice of Tanner-Simmons damping function, detailed

in Fig. 11. The inherent nonlinearity is accounted for by assuming γc/γ0 � 1; i.e. the

elastoplastic material always yields and flows during the imposed oscillatory deformation.

The long timescale typically associated with structural recovery in such materials is captured

using our damping function by assuming zero recovery after the first yielding event, as shown

in Fig. 11.

We have shown above that with an appropriate choice of a fractional constitutive model,

not only can we develop a nonlinearly-elastic constitutive formulation of the familiar Herschel

Bulkley model, but the resulting theoretical framework naturally gives rise to relationships

such as the Rutgers-Delaware rule that relates oscillatory and steady shear rheology. We

emphasize that the advantage of using a fractional constitutive model together with the K-

BKZ framework is that we also obtain the linear viscoelastic response of multiscale yielding

materials that exhibit a nonlinear rheological response of Herschel-Bulkley type; the linear

and nonlinear properties are naturally related through the damping function.

In addition to the Herschel-Bulkley model discussed above, there are other empirical

inelastic power-law models which can also be derived from first principles by an appropriate

choice of fractional constitutive equation. We illustrate this process below by deriving the

Cross and Carreau models starting with a Fractional Zener Model (FZM) and coupling it

with a damping function using the K-BKZ framework.

E. Fractional Zener Model (FZM) and Carreau-Type Flow Curves

The FZM consists, in most general form, of a fractional Maxwell model branch in parallel

with a single springpot (Schiessel et al. (1995)), resulting in three mechanical elements
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FIG. 12. A special case of the Fractional Zener Model (FZM) which we refer to as the Fractional

Viscoelastic Cross Model (FVCM).

and six model parameters (a quasi-property and a power-law exponent for each springpot).

Various forms of power-law response can be obtained from this model depending on the

specific values of the power-law exponents and the corresponding quasi-properties of each

of the springpots. In this paper, we will consider one special case of the FZM, as shown

schematically in Fig. 12, in which two of the springpots are reduced to Newtonian dashpots.

We show below that this four parameter model is well suited for describing concentrated

polymer solutions and other shear-thinning multiscale systems.

The dashpot in the left-hand branch of the FZM has viscosity ηs and accounts for the

background solvent viscosity. One of the springpots on the FMM branch (right-hand side

of the FZM) is set to be a Newtonian dashpot with viscosity V = ηp and α = 1. This

dashpot accounts for the polymer contribution to the steady shear viscosity, and the shear

viscosity is bounded by η0 = ηp + ηs as γ̇ → 0. This FZM has a characteristic relaxation

time given by τ = (ηp/G)1/(1−β) . The third springpot has a power-law exponent β and a

quasi-property G. Therefore, this model has a total of four parameters. We call this special

case of the FZM the Fractional Viscoelastic Cross Model (FVCM) and we explain this choice

of nomenclature below.

Following Schiessel et al. (1995), the constitutive equation of the FVCM can be written

as

σ(t) +
ηp
G
d1−β

dt1−β
σ(t) = (ηp + ηs)

dγ(t)

dt
+
ηpηs
G

d2−βγ(t)

dt2−β
(86)

Using the Laplace and Fourier transform techniques already outlined in this article (Pod-
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FIG. 13. Simulations of the viscosity predicted by the FVCM model plotted in dimensionaless

form as a function of the Weissenberg number Wi = τ γ̇. (a) Effect of varying the value of the

springpot exponent β, which controls the slope of the shear-thinning region. (b) Effect of varying

the damping function parameter a. For a = 0, no shear-thinning is observed.

lubny (1999)), the linear viscometric functions may be determined as follows:

G′(ω) =
η2pGωβ+2 cos(πβ/2)

(ηpω)2 + (Gωβ)2 + 2ηpGωβ+1 sin(πβ/2)
(87)

G′′(ω) = ηsω +
G2ηpω

2β+1 + η2pGωβ+2 sin(πβ/2)

(ηpω)2 + (Gωβ)2 + 2ηpGωβ+1 sin(πβ/2)
(88)

G(t) = ηsδ(t) + Gt−βE1−β,1−β

(
−G
ηp
t1−β

)
(89)

Because we have an expression for the relaxation modulus G(t) we can use this in the K-

BKZ framework as before (Eq. (18)) to compute the model predictions in large straining

deformations. To evaluate the integral we need to specify the form of the damping function.

Here we take the same simple form as Eq. (24) which adequately describes many systems

and introduces one additional model parameter.

We present simulations of the steady shear viscosity predicted by the FVCM in Fig. 13.

The values of ηs and ηp were chosen to be ηs = 1 Pa s and ηp = 100 Pa s. We choose to plot

the predictions on dimensionless axes, with the steady shear viscosity η(γ̇) suitably scaled by

ηp and ηs and the x axis is a Weissenberg number Wi = τ γ̇, with τ being the characteristic
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relaxation time given above. Fig. 13(a) shows the effect of changing the exponent β of the

springpot, holding all other parameters constant. Increasing β decreases the slope of the

shear-thinning region; in fact, because the shear-thinning region is controlled by the Maxwell

arm of the FZM (the solvent term dictates the high shear rate viscosity plateau ηs), Eq. (34)

is applicable and η(γ̇) ∼ γ̇β−1. We also show the effect of changing the strain damping

parameter a in Fig. 13b. We observe that for a = 0, the damping function h(γ) = 1,

and there is no shear-thinning because there is no microstructural damage accumulated in

the material upon imposing large strains. For all non-zero values of a, shear-thinning is

observed; as a is increased, it can be seen that at the same value of Weissenberg number Wi,

the scaled viscosity is lower as expected. In this manner, the damping parameter a simply

offsets each predicted curve from the next, when all other parameters are held constant.

When we consider the role of the five model parameters in this form of the FVCM, we find

that the model has all the capabilities of the Cross model (Macosko (1994)) which proposes

the following expression to capture the flow curves of polymer melts:

η(γ̇) = ηs +
ηp

1 + (γ̇/γ̇∗)(1−n)
(90)

where η(γ̇) is the steady shear viscosity. The parameters ηp and ηs control the zero shear and

infinite shear plateau viscosities respectively, n dictates the slope of the power-law region

between the two plateau regions and γ̇∗ is a characteristic shear rate that determines the

point of transition between the zero-shear plateau and the asymptotic power-law region.

In Fig. 14 we show as a solid line the predicted steady shear viscosity η(γ̇) obtained for

the FVCM. The dashed line in the figure is the prediction of the Cross model. The model

parameters used to obtain these simulations are given in the figure caption, and it is clear

that the agreement between the FVCM and the Cross model is excellent.

The advantage of using the FVCM over the Cross model is three-fold: first, our approach

also enables the determination of the linear viscoelastic material functions such as G′(ω)

and G′′(ω) (Eqs. (87) and (88) respectively) for materials that exhibit a flow curve that is

captured by the Cross model. The inelastic Cross model does not have a linear viscoelastic

limit at all. For example, if the shear rate γ̇ were stepped up from γ̇1 to γ̇2 > γ̇1, the

shear stress in the Cross model responds instantaneously. Second, the linear viscoelastic

parameters play a role in nonlinear behavior and their relative contribution is weighted by
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FIG. 14. Simulations of the the steady shear viscosity η(γ̇) as a function of shear rate γ̇ obtained

from the FVCM model. For all curves, ηp = 100 Pa s and ηs = 1 Pa s. The FCVM (Cross)

prediction was obtained using a damping function of the form h(γ) = 1/(1+0.1γ2) and a springpot

with β = 0.3 and G = 10 Pa sβ, and τ = (ηp/G)1/(1−β) = 26.83 s. To generate the Cross model

simulation, the same values of (γ̇∗)−1 = 26.83 s and n = 0.3 were chosen.

the damping function. We illustrate this point in Fig. 14 by showing the magnitude of

the complex viscosity |η∗(ω)| at ω = γ̇, i.e., the prediction of the steady shear viscosity

obtained from the application of the Cox-Merz rule (Eq. (41)) to the FVCM. Here too, we

see that the magnitude of shear-thinning obtained from the linear viscoelastic properties

agrees closely with the full nonlinear prediction as well as with the empirical Cross model.

We also note in passing that the small offset between η(γ̇) and η∗(ω)
∣∣
ω=γ̇

can be quantified

in terms of the damping function parameter a, as discussed previously. The third advantage

of our fractional constitutive modeling approach to the Cross model is that the FVCM

model also yields a prediction of the first normal stress coefficient Ψ1(γ̇) for materials such

as concentrated polymer solutions that exhibit a Cross-like flow curve under steady shearing

flow.

To generate the simulations of the FVCM in Fig. 14, note that we chose a damping

function of the form h(γ) = 1/(1 + aγ2). In their review, Rolón-Garrido and Wagner

(2009) discuss more complicated forms of the damping function. Conceivably, depending

on the microstructural properties of the material, the form of the damping function could

be different from the one we have chosen above. We show as a dotted line in Fig. 14 the
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simulation of the steady shear viscosity η(γ̇) obtained from Eq. (18) with the relaxation

kernel given by Eq. (89) and a damping function of the form h(γ) = 1
[1+(0.1γ2)3]1/3

. We

observe that the transition from the zero shear viscosity plateau to the power-law shear-

thinning region is now ‘sharper’, displaying behavior of the kind exhibited by the empirical

Carreau model (Bird (1976); Bird, Armstrong, and Hassager (1987)). Hence, by controlling

the damping function, we can reproduce a wide variety of steady flow curves (as commonly

observed experimentally); these four linear viscoelastic parameters in the model remain

unchanged and are determined from independent linear deformation histories such as SAOS.

V. CONCLUSIONS

There is a wealth of rheological data available in the literature on complex fluids that

exhibit broad power-law–like behavior in their linear viscoelastic material properties. It has

been shown in previous studies that fractional constitutive equations provide an excellent

framework to quantitatively describe the linear rheological properties of multiscale materials.

However, there was no mechanism for extending these models to nonlinear deformations.

Using the concept of quasi-properties (Blair, Veinoglou, and Caffyn (1947b)), it is possible

to compactly describe the linear rheology of power-law materials using an appropriate choice

of fractional constitutive model. These models can be visualized as consisting of springs,

dashpots and springpots in series or parallel. The resulting constitutive equations of these

models are linear ODEs and can also be written in terms of linear convolution integrals with a

relaxation modulus that is of Mittag-Leffler form. We have extended these linear viscoelastic

models to make predictions of the nonlinear behavior of power-law materials using the K-

BKZ framework. To evaluate the resulting integrals, we are required to determine the

appropriate form of the material’s damping function, for which we use a series of step strain

experiments with increasing strain amplitude. This introduces just one additional model

parameter, and results in a nonlinear integral equation given by Eq. (18). We use this

model to make accurate predictions of both η(γ̇) and Ψ1(γ̇) for Xanthan gum solutions and

provide analytical approximations for both material functions.

Evaluating empirical rules such as the Cox-Merz relationship and the Gleissle mirror rela-

tions using this constitutive framework show that a shift factor exists, and that η∗(ω)
∣∣
ω=γ̇

>

η(γ̇). This is because the small amplitude deformations upon which these empirical rules
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are based on do not account for the structural damage that is accumulated during a non-

linear deformation. Using our integral formulation, we quantify this shift factor (or offset)

in terms of the linear viscoelastic as well as damping function parameters. In the limit of

an exponential relaxation kernel of Maxwell-Debye form the offset is zero, but systemati-

cally increases for relaxation kernels of Mittag-Leffler form that more accurately capture the

broad relaxation dynamics of complex materials such as Xanthan gum.

We also address a semi-empirical relationship that is fundamentally different from the

Cox-Merz rule, but also relates steady shear and oscillatory experiments, known as the

Rutgers-Delaware rule (Doraiswamy et al. (1991)). This rule applies to viscoelastoplastic

materials such as concentrated suspensions exhibiting yield-like behavior beyond a critical

strain. Starting with a Fractional Kelvin-Voigt representation we derive from first principles

a viscoelastic generalization of the elastic Herschel-Bulkley equation, which correctly follows

the Rutgers-Delaware rule. Finally, we have also shown how to derive a nonlinear viscoelastic

model to quantify the nonlinear rheology of shear-thinning viscoelastic materials such as

concentrated polymer solutions exhibiting Cross or Carreau-type behavior in steady shear

flow.

In this manuscript, we have presented a framework that helps translate between the

linear and nonlinear rheology of power-law multiscale materials. There are only two compo-

nents that need to be determined within this framework: the fractional relaxation dynamics

(specifically the memory kernel which describes the linear viscoelastic response), and the

strain-dependent damping function. The extension of the fractional constitutive framework

to the Cross or Carreau model detailed here opens up the possibility of accurately describing

the rheological response of a large class of complex fluids in a general manner, using only

a few model parameters. The resulting constitutive models provide a compact but accu-

rate description of the linear and nonlinear viscoelastic properties of complex liquids and

soft solids which should be useful for quantitative materials diagnostics, and quality control

comparisons as well as for computational simulations.

APPENDIX A: HIGHER ORDER ANALYTICAL SOLUTION FOR η(γ̇)

AND Ψ1(γ̇)

In the main text of this manuscript, we provide analytical expressions for η(γ̇) and Ψ1(γ̇)

(Eqs. (32) and (37) respectively). However, the solution presented is the lowest order term

43



of a more general higher order solution. For most experimental values of the exponents α

and β, including for the fluids discussed in the main manuscript, a single term expansion is

fine. But for α → 1 and/or β → 0, higher order descriptions are needed.In this appendix

we provide the derivation of the full analytical solution. However for the particular values

of α = 1 and β = 0, the Mittag-Leffler kernel reduces to an exponential, and hence does

not have a power-law asymptote at long times. In this case, the integral must be solved

explicitly with an exponential relaxation kernel. For all other values of 0 < β < α < 1, the

analysis below holds.

We begin with the expression for the steady shear viscosity η(γ̇) given by Eq. (25) as

follows:

η(γ̇) = −G
∞∫

0

u−βEα−β,−β

(
−G
V
uα−β

)
· 1

1 + a(γ̇u)2
du (91)

Note that in Eq. (25) we set the damping function constant a = 0.3 on account of this

being the appropriate experimentally measured value for our Xanthan gum solutions, but

in Eq. (91) we keep it general. Setting γ = γ̇u, we obtain

η(γ̇) = −Gγ̇β−1
∞∫

0

γ−β

1 + aγ2
Eα−β,−β

(
−G
V
γ̇β−αγα−β

)
dγ (92)

As before, we split the integral with limits that range from 0 to∞ into two different integrals

as follows:

η(γ̇) =−Gγ̇β−1




γ∗∫

0

γ−β

1 + aγ2

∞∑

k=1

(
−G
V
γ̇β−αγα−β

)k−1

Γ((k − 1)(α− β)− β)
dγ

+

∞∫

γ∗

− γ−β

1 + aγ2

∞∑

k=1

(
−G
V
γ̇β−αγα−β

)−k

Γ(−k(α− β)− β)
dγ


 (93)

in which γ∗ = (V/G)α−βγ̇ = τ γ̇. The decomposition exploits the fact that the Mittag-

Leffler function has well defined asymptotes for both small and large arguments, and has
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the following expansions (Podlubny (1999))

Ea,b(z) =
N∑

k=1

zk−1

Γ(a(k − 1) + b)
+O

(
zN+1

)
, z � 1 (94)

Ea,b(z) = −
N∑

k=1

z−k

Γ(b− ak)
+O

(
z−(N+1)

)
, z � 1 (95)

The Mittag-Leffler function smoothly transitions between its small argument power-law

(∼ z0) to its large argument power-law (∼ z−1). By separating the integrals into two

domains, we assume that the Mittag-Leffler function is piecewise continuous, and transitions

from the power-law asymptote for z � 1 to the asymptote for z � 1 at the discrete point

γ = γ∗.

We can solve for the integrals in Eq. (93) in terms of hypergeometric function defined in

Eq. (31) and we obtain

η(γ̇) =
N∑

k=1

[
−G

(
−G
V

)k−1
γ̇−pk

Γ(pk − 1)

(γ∗)pk

pk
× 2F1

(
1,
pk
2
, 1 +

pk
2

;−a(γ∗)2
)

+

G
(
−G
V

)−k
γ̇qk−2

Γ(−qk + 1)

(γ∗)−qk

aqk
× 2F1

(
1,
qk
2
, 1 +

qk
2

;
−1

a(γ∗)2

)]
(96)

in which we have introduced the parameters

pk = α(k − 1)− kβ + 1 (97)

qk = αk − (k − 1)β + 1 (98)

for ease of notation, we obtain

An analytical expression for the first normal stress coefficient Ψ1(γ̇), given by (36), can
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be derived in an identical fashion, and we obtain

Ψ1(γ̇) =
N∑

k=1

[
−G

(
−G
V

)k−1
γ̇−pk

Γ(pk − 1)

(γ∗)pk+1

pk + 1
× 2F1

(
1,
pk + 1

2
,
pk + 3

2
;−a(γ∗)2

)

+

G
(
−G
V

)−k
γ̇qk−2

Γ(−qk + 1)

(γ∗)1−qk

a(qk − 1)
× 2F1

(
1,
qk − 1

2
,
qk + 1

2
;
−1

a(γ∗)2

)]
(99)

Eq. (96) and (99) reduce to Eqs. (32) and (37), respectively, by retaining only the lowest

order term, i.e. the k = 1 term and neglecting all higher order terms.

We note that Eq. (95) is strictly valid only in the limit of z � 1. However, for the

purposes of our analytical approximation, we apply this asymptotic limit for z ≥ 1 (cf.

the second integral in Eq. (93); the limits of the argument of the Mittag-Leffler function

range from 1 to ∞). In this second integral, as the value of k is increased, the term

1/Γ(−β − k(α − β)) begins to increase rapidly in magnitude and alternate in sign. This is

easily seen by plotting the value of 1/Γ(x) for x ≤ 0 (not shown here). Therefore, we in

fact obtain poorer approximations for higher orders, beyond a certain value of k. Note that

this counter-intuitive result would not have arisen if we had used a larger value of the lower

limit in the second integral in Eq. (93), say γ∗ → 10γ∗, because the z−k term, being large,

would damp put these oscillations in the Gamma function. In this case, we could find the

approximate solution up to large k, without diminishing accuracy.

However, we note that in practice, we rarely require large k; to check the accuracy and

convergence of our approximation, we compared the exact numerical solution to Eq. (92)

with the approximate solution given in Eq. (93) with various randomly generated values of

0 < β < α < 1 and V, G. We find that in all cases, we require at most k = 3 to get very

close agreement between the approximate result and the exact numerical solution, and the

1/Γ(−β − k(α− β)) is well behaved.
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APPENDIX B: CREEP RECOVERY

Single Springpot

The constitutive equation for a single springpot is given by

σ(t) = V
dαγ(t)

dtα
(100)

where σ(t) and γ(t) are the stress and the strain, respectively, in the element. Let us assume

that the creep phase of the experiment is performed until time t0. We are interested in the

recovery phase of the experiment for all times t > t0. In this phase, the applied stress σ(t)

is given by

σ(t) = σ0(H(t)−H(t− t0)) (101)

in which H(t) is the Heaviside step function given by H(t) = 1 for t ≥ 0 and H(t) = 0 for

t < 0, and σ0 is the step in stress. Substituting equation (100) into equation (101) we have

σ0(H(t)−H(t− t0)) = V
dαγ(t)

dtα
(102)

Taking the Laplace transform of the equation (keeping in mind that t > t0) we have

σ0

(
1− e−st0

s

)
= Vsαγ̃(s) (103)

where γ̃(s) is the Laplace transformed strain. Therefore

σ0
V

(
1

sα+1
− e−st0

sα+1

)
= γ̃(s) (104)

and taking the inverse Laplace transform, we finally have

γ(t) =
σ0
V

(
tα

Γ(α + 1)
− (t− t0)α

Γ(α + 1)

)
(105)

In Fig. 15, we show an example of the creep compliance J(t) = γ(t)/σ0 for a power-law

material, followed by its behavior in the recovery phase. The specific model parameters

chosen to generate this plot are given in the caption. The green line depicts the material
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FIG. 15. Example of a creep experiment during flow as well as recovery. The model parameters

chosen are α = 0.5, V = 1 Pa s0.5 and t0 = 5 s.

response for the entire creep experiment, including the recovery phase (i.e. the combined

response of both terms in parenthesis in Eq. 105). The red dotted line is the response of the

first term alone, which is identical to the creep response before the stress is removed.

We now examine the long time behavior of the above expression; we rewrite the expression

as

γ(t) =
1

Γ(α + 1)

σ0t
α

V

[
1−

(
1− t0

t

)α]
(106)

For long times, t0/t� 1, and using the Binomial theorem we have to leading order

γ(t) ≈ σ0
VΓ(α + 1)

tα
[
1−

(
1− αt0

t

)]
(107)

⇒ γ(t) ≈ σ0t
α
0

VΓ(α)

(
t

t0

)α−1
(108)

We therefore observe that the long time strain recovery for a single springpot is a power-law

function of time.
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Fractional Maxwell Model

In the FMM, the two springpots are in series and consequently the strains are additive.

We can therefore simply add the strain recoveries of the two individual springpots to arrive

at the full expression of the recovery. This expression is given by

γ(t) = σ0

(
tα − (t− t0)α
VΓ(α + 1)

+
tβ − (t− t0)β
GΓ(β + 1)

)
(109)

We can now use a similar argument as shown above to find the long time asymptotic behavior

of this expression, and we have for t/t0 � 1

γ(t) ≈ σ0t0
VΓ(α)

tα−1 +
σ0t0

GΓ(β)
tβ−1 (110)

This expression can be simplified further. For large enough times, tα−1 > tβ−1 and hence to

leading order the strain during recovery is given by

γ(t) ≈ σ0t
α
0

VΓ(α)

(
t

t0

)α−1
(111)
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