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Adjoint-based deviational Monte Carlo methods for phonon transport calculations
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In the field of linear transport, adjoint formulations exploit linearity to derive powerful reciprocity relations
between a variety of quantities of interest. In this paper, we develop an adjoint formulation of the linearized
Boltzmann transport equation for phonon transport. We use this formulation for accelerating deviational Monte
Carlo simulations of complex, multiscale problems. Benefits include significant computational savings via direct
variance reduction, or by enabling formulations which allow more efficient use of computational resources,
such as formulations which provide high resolution in a particular phase-space dimension (e.g., spectral). We
show that the proposed adjoint-based methods are particularly well suited to problems involving a wide range of
length scales (e.g., nanometers to hundreds of microns) and lead to computational methods that can calculate
quantities of interest with a cost that is independent of the system characteristic length scale, thus removing the
traditional stiffness of kinetic descriptions. Applications to problems of current interest, such as simulation of
transient thermoreflectance experiments or spectrally resolved calculation of the effective thermal conductivity
of nanostructured materials, are presented and discussed in detail.
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I. INTRODUCTION

Nanoscale heat transport mediated by phonons has received
considerable attention in recent years [1,2], both due to the
scientific challenges arising from the failure of Fourier’s
law at small scales, as well as the potential applications to
nanoscale engineering [3]. In this context, numerical methods
for solving the Boltzmann transport equation (BTE) are
invaluable because they enable the solution of problems of
practical interest but also provide insight into the physics of
phonon transport. Due to the high dimensionality associated
with the Boltzmann equation, important problems of practical
interest remain computationally expensive, if not intractable,
making the development of new and more efficient methods
very desirable, especially for treating multiscale problems.

This paper focuses on the benefits that can be derived
by exploiting the observation that many phonon transport
problems of scientific and practical interest involve relatively
small driving forces (temperature differences) and thus may be
treated by the linearized Boltzmann equation. Recent work [4]
has shown that using the linearized Boltzmann equation in
the presence of temperature differences of magnitude smaller
than 10% of the reference temperature (e.g., temperature
differences on the order of ±30 K for a reference temperature
of 300 K) results in errors on the order of a few percent.
Examples of problems featuring small temperature differences
include calculations of the effective thermal conductivity of
nanostructures (where, in fact, small temperature differences
are required to prevent a nonlinear response), simulation of
transient thermoreflectance experiments [5], and simulations
of the thermal behavior of thin films, nanowires, and su-
perlattices. This observation was already used in a previous
paper [5] in which a kinetic Monte Carlo type scheme for
simulating the Boltzmann equation was developed. In that
work, linearity enabled the decoupling of deviational particle
trajectories leading to an algorithm that was significantly faster
and easier to code while exhibiting no time-step error [4,5].

In this paper, we present formulations which again exploit
linearity of the governing equation to gain computational

advantages (speedup, simplicity). The developments presented
here, however, are completely distinct from the work presented
in Ref. [5], but at the same time complementary, that is,
the computational advantages of the two can be compounded
(multiplicatively in the case of speedup). They are based on
an adjoint formulation which exploits the duality between the
linearized Boltzmann equation and its adjoint.

The adjoint formulation for the phonon Boltzmann equation
in the frequency-dependent relaxation-time approximation
is derived and discussed in Sec. III. We note that adjoint
formulations have been developed in other domains of linear
transport (e.g., radiation, neutron transport) [6,7] and have
served as inspirations for this work. Acceleration techniques
based on this new formulation are discussed in Sec. IV in the
context of problems of practical interest. In Secs. V and VI, we
discuss the use of adjoint formulations for developing schemes
that are particularly suited to multiscale problems.

II. BACKGROUND

The nonlinear Boltzmann equation for phonon transport in
the relaxation-time approximation can be written in the form

∂f

∂t
+ Vg · ∇xf = f loc − f

τ
, (1)

where f (x,ω,p,�,t) is the occupation number of phonon
modes, Vg denotes the phonon group velocity (obtained from
the dispersion relation), and the unit vector � denotes the
phonon traveling direction. Here, we use

f
eq
T = 1

exp
(

�ω
kbT

)− 1
(2)

to denote the Bose-Einstein distribution with temperature pa-
rameter T ; under this notation, f loc = f

eq
Tloc

is a Bose-Einstein
distribution with T = Tloc. The latter temperature (Tloc) is
referred to as the “pseudotemperature” and is defined such that
the scattering processes remain strictly energy conservative
(see, for example, [8]). In the isotropic model considered here,
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the relaxation time τ = τ (ω,p,T ) depends on the phonon
frequency ω, the polarization p, and the temperature T .

It has been shown previously [9] that the deviational,
energy-based Boltzmann equation

∂ed

∂t
+ Vg · ∇xe

d =
(
eloc − e

eq
Teq

)− ed

τ (ω,p,T )
, (3)

where ed = e − e
eq
Teq

, e = �ωf , and e
eq
Teq

= �ωf
eq
Teq

lends it-
self naturally to Monte Carlo solution of phonon transport
problems, especially for problems involving small deviations
from equilibrium. In such simulations, energy-conserving
deviational particles represent the distribution

D(ω,p)

4π

(
e − e

eq
Teq

)
. (4)

The “control” temperature Teq is chosen by balancing simplic-
ity (of the resulting algorithm) with computational efficiency
(maximizing variance reduction); because of the small devia-
tion from equilibrium, the “optimal” value of this parameter is
close, if not equal, to the system reference temperature (note
that Teq can be spatially variable; this is discussed at length in
Ref. [4] and Sec. V of this paper).

When temperature deviations are sufficiently small, Eq. (3)
can be linearized by approximating the nonlinear scattering
operator using the expansion

e
eq
Tloc

− e
eq
Teq

− ed

τ (ω,p,T )
=

de
eq
Teq

dT
(Tloc − Teq) − ed

τ (ω,p,Teq)
+ O[(Tloc − Teq)2],

(5)

leading to

∂ed

∂t
+ Vg · ∇xe

d = L(ed) − ed

τ
, (6)

where the operator L is given by

L(ed) =
∫

D
4πτ

eddω d2�∫
D
τ

de
eq
Teq

dT
dω

de
eq
Teq

dT
. (7)

Here and in what follows, the sum over polarizations is implied
by the integral over frequencies ω. Moreover, in the interest
of simplicity, the integration range for variables ω,�,x will be
shown explicitly under a different integral sign only when
different from the whole phase space associated with the
problem of interest; in the case of time, the integration range
will be shown if different from (−∞,∞).

In addition to the above, we will also be using the following
notation:

(i) The deviational temperature will be denoted by T

(instead of T − Teq).
(ii) The mode-dependent free path �ω,p is defined as the

product Vg(ω,p)τ (ω,p,Teq).
(iii) We define the mean free path as

〈�〉 =
∫

D
de

eq
Teq

dT
�ω,pdω∫

D
de

eq
Teq

dT
dω

. (8)

(iv) The frequency- and polarization-dependent Knudsen
number Knω,p is defined as �ω,p/L, where L is the smallest

characteristic length scale in the problem. The Knudsen
number based on the mean free path is defined as 〈Kn〉 =
〈�〉/L.

(v) The specific-heat capacity C is given by

C = 4π

∫
� dω, (9)

where

�(ω,p) ≡ D(ω,p)

4π

de
eq
Teq

(ω)

dT
. (10)

A. Kinetic Monte Carlo for linearized problems

The linearized BTE (6) lends itself to very efficient
simulation methods. Here, we summarize the kinetic Monte
Carlo (KMC) algorithm described in Refs. [5,10] that is
particularly efficient for the types of problems considered here
and will be referred to extensively in this work.

One of the key features of the KMC method is that
computational particles are treated independently and thus
sequentially. Let N denote the total number of particles;
what follows describes the calculation of the trajectory of
each particle as a sequence of linear (straight-line) segments
separated by scattering events or collisions with boundaries:

(i) Randomly draw the particle initial properties from the
source distribution [4] which includes contributions from
the initial condition, boundary conditions, heat sources, etc.
Sources in linear phonon transport are discussed in detail in
Ref. [4]. Each particle is assigned a (constant) weight called the
“effective energy” Eeff, which corresponds to the total energy
emitted by the source divided by the total number of particles
to be used by the simulation. In steady problems, the “effective
energy” has the unit of an energy rate.

(ii) Calculate the particle trajectory until the time the parti-
cle exits the computational domain (via absorbing boundaries,
or when the particle leaves the time domain of interest in
time-dependent cases) by repeating the following steps:

(a) Calculate the time between the latest scattering
event i and the next scattering event i + 1, using �ti =
−τ (ωi,pi,Teq) ln(R), where R is a uniform random variate
in the interval (0,1). The next scattering time is ti + �ti at
location xi + Vg,i�ti .

(b) If no boundary is encountered between xi and xi +
Vg,i�ti , then the particle’s updated position is xi+1 = xi +
Vg,i�ti . If on the other hand one or several boundaries are
encountered along this trajectory, the next position is the
intersection point between the segment [xi ,xi + Vg,i�ti]
and the first boundary. The time of scattering event i + 1,
ti+1, is set to the time of encounter with the boundary.

(c) If xi+1 corresponds to a scattering event, then
the frequency, polarization, and traveling direction of the
particle are reset. The new properties are drawn from the
linearized post-scattering distribution

D(ω,p)

4πτ (ω,p,Teq)
L(ed)(ω,p). (11)

(d) If xi+1 corresponds to an encounter with a boundary,
properties will be updated depending on the type of
boundary (e.g., diffusely reflective, partially transmissive,
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etc.). An absorbing boundary simply terminates the current
particle trajectory.
(iii) Accumulate the contribution of the calculated trajec-

tories to the quantities of interest. For instance, if the quantity
of interest is the average temperature in a given region of space
at time tmeasure, then a given particle contributes to the estimate
if it is located within that volume when the time is equal to
tmeasure. In that case, the contribution Eeff/(CN ) is added to the
estimate.

III. ADJOINT BOLTZMANN EQUATION

A. Background

The adjoint formulation is best introduced in a framework
where boundary and initial conditions are incorporated into
the governing equation as (special) sources of deviational
particles. We remind the reader that in the deviational and
linearized formulations, sources can emit positive or negative
particles [4,5,9].

In what follows, we will use q to denote the generalized
source term, namely, the sum of all particle sources in a given
problem. From this definition, it follows that energy-based
deviational particles are emitted from (4π )−1D(de

eq
Teq

/dT )q.
We also recall that, here, T denotes the deviational tempera-
ture. With these definitions in mind, the deviational Boltzmann
equation reads as

∂ψ

∂t
+ Vg · ∇ψ = L(ψ) − ψ

τ
+ q, (12)

where ψ = ed(de
eq
Teq

/dT )−1 and the linearized operator L can
now be written as

L(ψ) =
∫

�
τ
ψ dω d2�

4π
∫

�
τ
dω

. (13)

We also define the scalar product

〈φ,ψ〉 =
∫

φ�ψ dω d2� d3x dt (14)

with respect to which L/τ is self-adjoint; namely,

〈φ,L(ψ)/τ 〉 = 〈L(φ)/τ,ψ〉. (15)

In addition to sources, Monte Carlo simulations and
experimental setups are also characterized by detectors, which
sample phonons as a means of returning “measurements” of
quantities of interest. Mathematically, a detector is defined by
its characteristic function h; the quantity of interest I is then
written as

I =
∫

h
D

4π
eddω d2� d3x dt =

∫
h�ψ dω d2� d3x dt.

(16)
The function h prescribes both the type of quantity that is
estimated (temperature, heat flux,...) and the location (in phase
space, including time) over which the quantity is averaged.
For example, for the average deviational temperature within a
volume V at time t such that t1 < t < t2, h is given by

h = 1

CV (t2 − t1)
1V 1[t1,t2], (17)

where 1V refers to the indicator function of V , i.e., the function
that takes the value 1 inside the volume V and 0 otherwise. For
the temperature at a given time t0, h would instead be given by

h = 1

CV
1V δ(t − t0), (18)

where δ(t − t0) refers to the Dirac delta function centered in
time on t0. Although these expressions might not always seem
intuitive, they can be verified by considering an equilibrium
system at (deviational) temperature T : in the linearized
framework, ed = T de

eq
Teq

/dT ; substituting in Eq. (16) leads
to I = T .

B. Fundamental relation

We now introduce the adjoint Boltzmann equation

−∂ψ∗

∂t
− Vg · ∇xψ

∗ = L(ψ∗) − ψ∗

τ
+ h. (19)

In this equation, particles simulating the adjoint distribution
ψ∗ evolve backwards in time and are emitted by the adjoint
source h, which is the function characterizing the detector in
the original problem. The specification of the adjoint problem
is completed by using the source q as the adjoint detector, in
the sense

I∗ =
∫

q�ψ∗dω d2� d3x dt. (20)

The importance of the adjoint formulation can be summarized
by the relation

I∗ = I, (21)

which we will refer to as the fundamental relation. In words,
this relation implies that any quantity of interest [of the
form (16)] can be obtained by solving the adjoint problem
which uses the detector (of the original problem) h as a
source and the source (of the original problem) q as detector.
Based on the observation that the adjoint equation describes
particles that move backwards in time, we will frequently use
the term “backward problem” to describe the adjoint problem
defined by Eqs. (19) and (20); in analogy, we will use the
term “forward” to describe the original problem defined by
Eqs. (12) and (16).

To prove the fundamental relation we write

I∗ =
∫ [

∂ψ

∂t
+ Vg · ∇ψ − L(ψ) − ψ

τ

]
�ψ∗dω d2� d3x dt

(22)

=
∫

ψ�

[
−∂ψ∗

∂t
− Vg · ∇ψ∗ − L(ψ∗) − ψ∗

τ

]

× dω d2� d3x dt (23)

=
∫

ψ�h dω d2� d3x dt = I. (24)

Obtaining expression (23) from (22) requires use of Eq. (15),
integration by parts and, depending on the problem of interest,
some manipulation.

We now discuss this integration for the term involving
the time derivative. The use of sources for imposing initial
conditions allows us to extend the integration over time from
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−∞ to ∞ by taking ψ(t < 0) = 0 and ψ∗(t > tfinal) = 0
where tfinal denotes the last detector instance. As a result,∫ ∞

t=−∞

∂ψ

∂t
�ψ∗dt = [ψ�ψ∗]∞−∞ −

∫ ∞

t=−∞
ψ�

∂ψ∗

∂t
dt (25)

= −
∫ ∞

t=−∞
ψ�

∂ψ∗

∂t
dt. (26)

We now consider the term∫
x∈X

∫
Vg · ∇ψ�ψ∗dω d2� d3x (27)

which can be written in the form

−
∫

∂X

∫
Vg · nψ�ψ∗dω d2� d2x

−
∫

x∈X

∫
ψ�Vg · ∇ψ∗dω d2� d3x, (28)

where n is the inward-pointing normal vector to the boundary
∂X. The above proof requires the first term in Eq. (28)
to vanish. This will be established for various boundary
conditions of interest below. In the case where the spatial
domain is unbounded, one may proceed by assuming (as
was done in this work) that the integral over the boundary
∂X tends to zero when the latter is made infinitely large. A
sufficient condition for this is that ψψ∗ → 0 sufficiently fast
as x → ∞; this is expected to be satisfied by problems that
can be simulated by the deviational Monte Carlo method.

In addition to periodic boundary conditions, the most com-
monly encountered boundary conditions in phonon transport
literature are diffusely/specularly reflective and prescribed
temperature boundaries. The case of diffusely/specularly
reflective boundaries is treated in Sec. III D; prescribed
temperature boundaries are treated in Appendix A. Periodic
boundary conditions are discussed in Sec. IV B.

C. Adjoint particle dynamics and simulation

Comparison of the adjoint BTE (19) and the original
linearized BTE (12) reveals strong similarities, suggesting that
algorithms for performing forward simulations could also be
used for backward simulations with small modifications. As
expected, one difference between the two lies in the source
term. In the forward case, the energy-based particles are
emitted from the distribution �q. By analogy, the adjoint
particles must be emitted from the distribution �h. In contrast
to the forward case where

∫
�q dω d2� d3x dt has the unit of

energy,
∫

�h dω d2� d3x dt will not, in general, have the unit
of energy. Nonetheless, energy will be conserved provided
the number of computational particles is conserved during
scattering events since this guarantees∫

ψ∗�
τ

dω d2� =
∫ L(ψ∗)�

τ
dω d2�. (29)

Note that although the quantity E∗
eff = ∫ �h dω d2� d3x dt/N

does not always represent an energy, we will still refer to it as
“adjoint effective energy.”

The second difference can be found in the rules for
calculating a particle trajectory. The minus signs in the
left-hand side of (19) mean that the time parameter of a

particle monotonically decreases and a particle with parameter
�, moves in the −� direction. In practice, the isotropy of
the collision operator and typical boundary conditions (e.g.,
diffuse reflection, prescribed temperature boundary) means
that the “backward” algorithm differs very little from the
“forward” algorithm.

D. Reflecting boundaries

Let us consider a point xb on a reflective boundary, whose
inward (towards the material) pointing normal is denoted by
n. When a particle encounters a diffusely reflective boundary,
it is reflected back, and its traveling direction is randomized,
such that the outgoing distribution is isotropic. As a result, the
distribution ψ , for a given frequency and polarization, obeys
the following relation at the boundary (x = xb):

ψ(� · n > 0) = − 1

π

∫
�·n<0

ψ� · n d2�. (30)

Since particles subject to the adjoint Boltzmann equation travel
backward in time, the diffusely reflective boundary conditions
for the adjoint distribution ψ∗ read as

ψ∗(� · n < 0) = 1

π

∫
�·n>0

ψ∗� · n d2�. (31)

We may now use (30) and (31) to write∫
� · nψψ∗d2�

=
∫

�·n<0
� · nψψ∗d2� +

∫
�·n>0

� · nψψ∗d2� (32)

= ψ∗(� · n < 0)
∫

�·n<0
� · nψ d2� + ψ(� · n > 0)

×
∫

�·n>0
� · nψ∗d2� (33)

= −πψ∗(� · n < 0)ψ(� · n > 0)

+πψ(� · n > 0)ψ∗(� · n < 0) = 0, (34)

which proves that the surface integral over the diffusively
reflective boundary is zero.

For specular reflective walls, proving that∫
� · nψψ∗d2� = 0 (35)

follows by noticing that if both ψ and ψ∗ satisfy the specular
reflection condition, then so does their product.

IV. APPLICATIONS

As briefly discussed in Sec. I, the adjoint formulation can
provide a number of computational benefits, including algo-
rithmic simplicity and considerable computational speedup
for certain classes of problems. The latter can be described as
problems in which the “detector is small,” that is, problems for
which the outputs of interest are defined over small regions of
physical space or, more generally, phase space. An example
of the former is the transient thermoreflectance experiment
discussed in the next section, in which the quantity of interest
is the temperature at the specimen surface (which, strictly
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speaking, has zero volume in three dimensions); an example of
the latter is spectrally resolving the contribution of individual
phonon modes to the effective thermal conductivity (the
detector extends over a small range of frequencies, or, in the
most challenging case, features a delta function in frequency).
In these problems, in the “forward” Monte Carlo method, the
probability for a particle to be found in the detector at a given
time is small. The adjoint formulation uses h as a source
thus providing an opportunity for alleviating this burden. If
the source is larger than the detector, the adjoint formulation
ensures that the signal collected by the detector will be
enhanced, leading to improved signal (variance reduction).
Clearly, the speedup will depend on the size ratio between the
detector and the source; in cases where the detector features
a delta function and the source does not, the speedup is
theoretically infinite (in practice the forward calculation would
smear the delta function into a computational bin in order
to collect some samples, thus making the speedup finite, but
introducing error in the process).

Examples of applications of the adjoint formulation are
given in the following sections. Note that although the adjoint
formulation is indifferent to the numerical implementation
(i.e., time step based or KMC type), here we will proceed
to demonstrate these methods using the KMC-type algorithm
developed in Ref. [5] and briefly described in Sec. II.

A. Surface temperature in a transient
thermoreflectance experiment

This section illustrates the adjoint formulation using an
example of engineering and scientific interest, namely, the
pump-probe thermoreflectance experiment [11,12].

1. Background

We briefly recall the configuration of the experiment that
we consider here; note that several versions of pump-probe
thermoreflectance exist, all with their own advantages and
shortcomings. More details can be found in Refs. [5,9]. A layer
of aluminum (approximately 100 nm thick) lies on a silicon
wafer, considered semi-infinite. Figure 1 depicts the system
geometry and the coordinate system used in the calculations.
At time t = 0, the aluminum is heated by a laser pulse. The
resulting (deviational) temperature field in the aluminum at
t = 0 is given by

Ti(x) = T̂ exp

(
−βz − 2r2

R2
0

)
, (36)

where T̂ is taken as 1 K. Here, the penetration depth β−1 is
taken to be 7 nm and the characteristic radius R0 is taken to
be 15 μm. More details on the model parameters, such as the
transmission coefficient at the aluminum-silicon interface, can
be found in Ref. [9] as well as Appendix C. Also, we recall that
heat transfer by electron transport is neglected in this example.

This problem features only one source term (the initial
condition), which can be written as

q = Ti(x)δ(t). (37)

The quantity of interest is the surface temperature at time
tj , j = 1, . . . ,M . The function hj for the corresponding

FIG. 1. (Color online) Schematic of a transient thermore-
flectance experiment. Point O denotes the center of the heating pulse,
also taken to be the origin of the Cartesian (x,y,z) set of axes. The
system is assumed infinite in the z > 0 direction and in the x-y plane.

detector is 1diskδ(z)δ(t − tj ); here, we consider the slightly
more general case of the temperature in a general and arbitrary
volume V :

hj = 1V

1

V C
δ(t − tj ) (38)

because as shown below, the adjoint formulation lends itself
to this generalization naturally. Note here that, for simplicity,
we will use the same symbol V to denote the region of interest
and its volume.

2. Adjoint calculation

Let us consider here the case of one sampling time,
namely, tM ; extension to multiple sampling times is discussed
in Sec. IV A 3. A particle from the corresponding adjoint
source (forward detector) hM is emitted at time tM and travels
backward in time. At t = 0, the position xend is noted, leading
to

I∗
M,i = E∗

effT̂ exp

(
−βzend − 2r2

end

R2
0

)
(39)

as the contribution of particle i to the estimate of the
temperature at time tM . Here, the weight of each particle, or
adjoint effective energy, is given by

E∗
eff = 1

N

∫
�hjd

2� dω d3x dt (40)

= 1

N

1

V C

∫
ω,x

4π�1V dω d3x = 1

N
(41)
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FIG. 2. (Color online) Temperature as a function of time in a
transient thermoreflectance experiment. Results shown for the pulse
center, 6 μm away from the pulse center, and 12 μm away from the
pulse center.

and is independent of the (forward) detector shape. The
temperature is thus given by

T (t = tM ) =
N∑

i=1

I∗
M,i (42)

3. Multiple sampling times

To treat other sampling times tj < tM , in principle we have
to simulate new particles starting at time t = tj and measure
their position (and contribution) at time t = 0. However, by
noting that the evolution rules for particles emitted at tj are
the same for all j (only the “internal clock” of the particles
differs), we may reuse the information given by the trajectory
of the particle emitted at time tM , by simply recording their
contributions at times tM − tj for all j .

Ultimately, this process amounts to setting t = 0 when the
particle is emitted, then to counting the time forward while
computing the trajectory. Contributions can then be sampled
at times tj , exactly like in the “forward” Monte Carlo method.
Algorithmically, the only difference lies in the exchange of
source and detector.

4. Computational results

Figure 2 shows the temperature variation as a function of
time at three locations, as measured by the distance ρ from the
origin, on the sample surface (in this case the forward detector
is a point on the surface z = 0). We note here that the profiles at
ρ = 6 and 12 μm were obtained using the same particles as for
the ρ = 0 calculation by exploiting the translational invariance
of the problem. Namely, since translation of the particle
source in the x (or y) direction leaves the particle trajectory
unaltered, translation of the adjoint detectors should also result
in equivalent results. This implies that contributions to the
temperature at distance ρ from the origin can be calculated
using data from particles from the original calculation using

FIG. 3. (Color online) Ratio between the standard deviation in
the temperature measurement, σT , and the temperature, for three
cylindrical detectors with height 10, 5, and 1 nm.

the “shifted” detector

I∗
M,i = T̂

N
exp

(
−βzend − 2

(xend − ρ)2 + y2
end

R2
0

)
. (43)

Figure 3 shows the standard deviation in the temperature
measurement in the case of the forward method. In this method,
the temperature on the surface is measured in a cylindrical bin
of depth (measured from the surface) d. The figure clearly
shows that the statistical uncertainty (and thus the statistical
accuracy of the results) deteriorates as d is made smaller. On
the other hand, d needs to be made as small as possible to
minimize deterministic errors resulting from averaging over
a finite volume (rather than strictly on the surface). In the
limiting case where the detector is simply a disk at the surface,
calculating the surface temperature using a (forward) Monte
Carlo method becomes impossible (unless time discretization
is introduced, in which case it is “just” very expensive) since
the probability that a particle hits the interface at a specified
time is 0. Using the adjoint makes such a calculation possible
by switching the source and the detector.

5. Discussion

Although the above example clearly highlights the com-
putational gains made available by the adjoint method in
principle, here we note that the magnitude of the computational
gain in this particular experimental setup [13] is hard to quan-
tify: the physical detector is a laser probe which theoretically
measures the surface temperature by relating it to the surface
reflectivity. Since the reflection of photons at a surface involves
a penetration to some (small) depth, a more accurate model of
this process would take into account that the measured quantity
uses a finite depth such as d ≈ 2 nm (range of the optical skin
depth for visible light in aluminum). Consequently, the benefit
from using the adjoint should be determined by comparing
the size of the detector with the size of the source properly
adjusted for the above effects.

From a broader perspective, physical detectors usually can
only access the surface of a given system, whereas phonons
are generated via mechanisms which are inherently volumetric

235321-6



ADJOINT-BASED DEVIATIONAL MONTE CARLO METHODS . . . PHYSICAL REVIEW B 91, 235321 (2015)

(Joule effect, electron-phonon interaction). For these reasons,
accurate and faithful description of physical experiments is,
in general, expected to strongly benefit from the adjoint
formulation.

Finally, we note that drawing random particles from the
distributions derived from the detectors is usually easier than
from the forward source terms. For example, a temperature
detector usually weighs all samples within a volume equally
and thus calls for the creation of a uniform distribution
when used as an (adjoint) source. In contrast, the distribution
associated with the initial temperature field (36) in the
above example is a product of a decaying exponential and
a Gaussian. Although this distribution is invertible, this would
not necessarily be the case with more general initial conditions.

B. Highly resolved calculations of mode-specific thermal
conductivity calculations

Another class of methods where the detector is “small”
includes problems for which the quantity of interest needs to
be spectrally resolved. Previous work [14] has highlighted the
fact that the contribution of low-frequency phonon modes is
challenging to resolve due to their small densities of states and
very large free paths. Unfortunately, due to their low density
of states, the forward Monte Carlo technique tends to “under-
resolve” estimates of their heat-flux contributions, while on
the other hand it “over-resolves” the contributions of phonons
with the highest densities of states. Increasing the number of
samples in order to reach the desired level of resolution at low
frequencies will reduce the statistical uncertainty for every
frequency, hence wasting computational resources.

The adjoint formulation lends itself naturally to this
situation. The quantities of interest here are the heat-flux
contributions from individual phonon modes (in the isotropic
relaxation-time approximation, this corresponds to bins in
phonon frequency).

To illustrate the method, we will study a nanostructure
that has been considered in recent work [8] and calculate
the contribution of each phonon frequency to the thermal
conductivity. Specifically, we analyze a single period of the
porous periodic structure shown in Fig. 4. The system is
subjected to a temperature gradient, and periodic boundary
conditions are applied [8]. As explained in Refs. [4,5], apply-
ing a spatially variable control with uniform gradient results
in strictly periodic boundary conditions for the deviational
quantity ed and particles are emitted from the source term

Q = �q outside the pore, (44)

where q = −Vg · ∇xTeq. To spectrally resolve the effective
thermal conductivity, we need to calculate the heat flux for a
given frequency “bin” [ω0 − �ω/2,ω0 + �ω/2] and a given
polarization. We are interested in the response in the direction
of the applied temperature gradient. In other words, the
characteristic function for this detector is

h = 1[ω0−�ω/2,ω0+�ω/2]Vg · ê1, (45)

where ê1 is the unit vector in the direction of the applied
temperature gradient (see Fig. 4). The adjoint approach is only

FIG. 4. (Color online) Sketch of the nanoporous structure studied
in Sec. IV B. The dashed square represents the boundary of the
computational domain, along which periodic boundary conditions
are applied (see Refs. [5,8]).

valid if ∫
∂X

∫
Vg · nψ�ψ∗dω d2� = 0, (46)

where ∂X refers to the boundary of the square computational
domain and the square pore, and where n is the normal
vector pointing inward. The diffuse reflective surface of the
pore was treated in Sec. III A. To show that (46) is true,
we may simply notice that the periodic boundary condition
imposes ed(x1,ω,p,�) = ed(x2,ω,p,�) where x1 and x2 are
corresponding points of two opposite sides of the periodic
boundary condition. As a result, ed(x1,ω,p,�)Vg · n1 =
−ed(x2,ω,p,�)Vg · n2, leading to the desired result after
integration over the boundary domain.

We introduce the adjoint equation and the adjoint source
q∗ = h. Adjoint particles are then emitted from

�q∗ = D

4π

de
eq
Teq

dT
1[ω0−�ω/2,ω0+�ω/2]Vg · ê1 (47)

and assigned the weight

1

N

∫
�q∗dω d2� d3x = 1

N

D(ω0,p)

4

de
eq
Teq

dT

∣∣∣∣
ω0

Vg(ω0,p)�ω.

(48)

We note once again that the resulting backward algorithm is
nearly identical to the forward one as explained in Refs. [4,5]
and Sec. III C, with the main difference being that the initial
frequency/polarization (and the resulting velocity) properties
can now be chosen by the practitioner (instead of being
randomly drawn from the distribution �q).

Figure 5 shows results calculated using the adjoint method
for two different pore sizes (25 and 50 nm). These results were
obtained using the method for terminating particle trajectories
described in Ref. [5]; trajectories were terminated after 30 scat-
tering events. These results confirm that low-frequency (large
free path) phonons may play a critical role in the design of
nanostructures for efficient thermoelectric materials. In Fig. 6,
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FIG. 5. (Color online) Frequency-resolved differential contribu-
tion to the thermal conductivity (measured heat flux per unit
temperature gradient) from the longitudinal acoustic (LA) modes
in the problem defined in Fig. 4. Result is normalized by the
corresponding frequency-resolved differential contribution to the
bulk thermal conductivity, and calculated using the adjoint method.
Results shown for square pores of side 25 and 50 nm; the spacing
between the pores is 2 μm in both cases. These calculations used
28 000 particles per frequency cell, for a total of 1399 frequency cells
(for a total of approximately 40 million particles).

we show the same result obtained with the forward method
using the same overall number of particles. We clearly see how
the quality of the results deteriorates in the very low-frequency
(large free path) regime. In other words, obtaining the insights
shown by Fig. 5 with the forward method is significantly more

FIG. 6. (Color online) Frequency-resolved differential contribu-
tion to the thermal conductivity (measured heat flux per unit
temperature gradient) from the longitudinal acoustic (LA) modes
in the problem defined in Fig. 4. Result is normalized by the
corresponding frequency-resolved differential contribution to the
bulk thermal conductivity, and calculated using the forward method.
Results shown for square pores of side 25 and 50 nm; the spacing
between the pores is 2 μm in both cases. These calculations used a
total of 40 million particles.

costly. For example, we found that the statistical uncertainty
associated with the contributions of particles with free paths
of 10 μm, 100 μm, and 1 mm were 10 times, 25 times,
and 70 times smaller, respectively, when calculated using
the adjoint method rather than the forward method. These
uncertainties correspond to speedup factors of approximately
100, 600, and 5000. In reality, the observed speedup will be
somewhat smaller due to the following considerations: first,
because trajectories of particles with long free paths, which
are larger than the system periodicity and thus require more
operations to calculate, are more frequently sampled in the
backward calculation (for a given number of particles), this
method is approximately five times more expensive than the
forward method. Second, the quality of the solution using the
backward method is worse than that of the forward method
for high frequencies. The latter can be rectified at small
computational cost by customizing the number of particles
used for each particular frequency range. This is possible in
the backward case because the detector is no longer frequency
specific, ensuring that all particles emitted in a particular
frequency range will contribute. The forward method does not
allow such a flexibility. The results in Fig. 5 were calculated
using the same number of particles for each frequency bin.

V. SPATIALLY VARIABLE CONTROL TEMPERATURE
IN THE ADJOINT FRAMEWORK

So far we have discussed situations where the control
econtrol is a constant. Previous work, both in the rarefied
gas domain [15,16] and the phonon domain [4,5], has
used spatially variable controls as a means of accelerating
the computation (variance reduction) [16] or introducing
externally imposed driving forces (e.g., a temperature gradient
for the calculation of the effective thermal conductivity of a
material [5]). As an example, consider a variable control of
the form econtrol(x) = e

eq
Teq

+ T0(x)de
eq
Teq

/dT which results in

the following equation governing ed:

∂ed

∂t
+ Vg · ∇xe

d = L(ed) − ed

τ
− Vg · ∇xT0

de
eq
Teq

dT
. (49)

Under these dynamics, particles are emitted from the dis-
tribution �Vg · ∇xT0 in the bulk and from the distribution
eb(xb) − econtrol(xb) at the system boundaries. In the linearized
setting, we may write eb(xb) = e

eq
Teq

+ Tbde
eq
Teq

/dT . Thus,

eb(xb) − econtrol(xb) = [Tb − T0(xb)]de
eq
Teq

/dT . To simplify the
discussion, we will assume that, by choice, T0(x) obeys Dirich-
let boundary conditions for prescribed temperature boundaries
and von Neumann boundary conditions for reflective bound-
aries. This allows us to eliminate the boundary effects from the
present discussion, although extending the conclusions of this
paragraph to more general choices of T0 is straightforward.

Drawing particles from �Vg · ∇xT0 can be a significant
programming burden if the spatial dependence of T0 is
complicated. Let us explore the implications of applying
an adjoint approach to this situation; we consider here the
steady-state case. Particles are emitted from the detector
function, while the quantity of interest is given by

I∗ =
∫

[−Vg · ∇xT0(x)]�ψ∗dω d2� d3x dt. (50)
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The contribution of particle j , with weight Ėeff, to the final
estimate can be written as

I∗
j = Ė∗

eff

∫ tend

t=0
−Vg · ∇xT0[x(t)]dt, (51)

where the time t is only used formally to parametrize the line
integral along the particle trajectory (see Refs. [5,10]). In other
words, the value of the line integral does not depend on the
direction of the time parametrization, which is consistent with
the fact that the time is absent from the steady-state adjoint
equation. We may considerably simplify this expression by
introducing the particle coordinates at the scattering points xi .
Since the trajectory is a series of Nseg linear segments delimited
by the points xi , expression (51) becomes

I∗
j = Ė∗

eff

i=Nseg−1∑
i=0

[T0(xi+1) − T0(xi)]. (52)

The fact that particles travel in the opposite direction of Vg

is important for deriving the above expression since the line
integral over a segment may be written as∫ ti+1

ti

−Vg · ∇xT0[xi − (t − ti)Vg]dt

= {T0[xi − (t − ti)Vg]}ti+1
ti (53)

= T0(xi+1) − T0(xi). (54)

Equation (52) straightforwardly simplifies into

I∗
j = Ė∗

eff

[
T0(xNseg ) − T0(x0)

]
. (55)

This result appears powerful in the sense that the source
q can be handled by evaluating the value of T0 at the
emission and termination points (with the latter usually
given by boundary conditions) instead of generating random
samples from the distribution �Vg · ∇xT0; this represents a
considerable simplification in most cases.

However, this result needs to be put into context by
comparing with the case of the adjoint algorithm with fixed
control. In the case of fixed control (and no other sources, i.e.,
the same problem studied above) the source term only includes
the prescribed temperature boundaries. In other words, the
same development as above leads to

I∗
j = Ė∗

effT0
(
xNseg

)
, (56)

which only differs from (55) by the term T0(x0). The latter
term is usually fixed (when the estimate is calculated at one
point only).

This means that, although the adjoint formulation led to
considerable simplification [removing the need to sample
the source term in Eq. (49)], the statistical uncertainty of
the adjoint formulation with spatially variable control is
not smaller (in fact, it may be higher) than the statistical
uncertainty of the adjoint calculation with a fixed control.
In other words, the adjoint formulation with the source term
esource = e

eq
Teq

+ T0(x)de
eq
Teq

/dT is not expected to provide im-
proved variance reduction compared to the adjoint formulation
with a fixed control, in contrast to forward, time-step-based
algorithms where additional variance reduction is observed
when a (suitably chosen) spatially variable control is used [16].

On the other hand, the control esource = e
eq
Teq

+ T0(x)de
eq
Teq

/dT

remains useful for imposing a temperature gradient for
effective thermal conductivity calculations [4].

Fortunately, significantly reduced variance is indeed pos-
sible with a spatially variable control within the adjoint
formulation. In fact, as we show in the following, the improved
variance can be achieved while retaining the simplification
resulting from avoiding the generation of samples from
complex distributions. Such formulations are discussed in the
following section.

VI. IMPLEMENTING ASYMPTOTICALLY DERIVED
CONTROLS THROUGH THE ADJOINT APPROACH

Previous work using spatially variable controls for im-
proved variance reduction [15,16] utilized the local equi-
librium, based on real-time (cell-based) estimates of its
parameters, as a control. One drawback of this approach is that
the resulting discontinuities in the control (at cell boundaries)
require particle generation at cell boundaries, which becomes
cumbersome in higher dimensions [16]. Here, we introduce an
approach which uses asymptotic solutions of the Boltzmann
equation as controls and show how the adjoint formulation
can make such approaches more efficient as well as simpler
to code. This section considers steady-state problems only,
although extension to transient problems will be considered in
future work.

A. Asymptotic control for steady multiscale problems

Let T0(x) be the solution of Laplace’s equation with ad hoc
boundary conditions. It is shown in Refs. [17–19] that

ed
1(x) =

de
eq
Teq

dT
{T0(x) + 〈Kn〉[TK (x) + TG1(x)]

− τVg · ∇xT0(x)} (57)

is a first-order asymptotic solution of the steady Boltzmann
equation in the expansion parameter 〈Kn〉 (assumed small)
and subject to arbitrary kinetic (Boltzmann) boundary con-
ditions. In this expression, TG1 denotes a solution of the
heat equation with boundary conditions that are determined,
self-consistently, by the asymptotic analysis once the kinetic
boundary condition is specified. The same analysis determines
TK , a kinetic boundary layer in the vicinity of the boundaries
which blends the equilibrium distribution at the wall with
the bulk distribution (which is clearly nonequilibrium). The
interested reader is referred to [17–19] for more details.

Here, we adopt a heuristic approach which amounts to
including the most readily available first-order term of (57)
in the control, namely, choose

econtrol = e0 − Vgτ · ∇xT0

de
eq
Teq

dT
. (58)

By noting that L(Vgτ · ∇xT0) = 0, the BTE for ed = e −
econtrol can now be written in the form

Vg · ∇xe
d = L(ed) − ed

τ
+ τVg · ∇[Vg · ∇xT0(x)]

de
eq
Teq

dT
.

(59)
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The source term that appears is composed of all the second-
order derivatives of T0. It can be explicitly written as the double
sum

V 2
g τ
∑

i

∑
j

�i�j

∂2T0

∂xi∂xj

. (60)

Drawing particles from such a distribution as is required in
forward frameworks is very challenging. In addition to this
volumetric source, other source terms appear at the boundaries,
from the mismatch (anisotropy) between the control and the
boundary condition. For instance, for a prescribed temperature
boundary, the modified boundary condition reads as

ed(ω,p,� · n > 0) = Vg · ∇xT0

de
eq
Teq

dT
. (61)

On the other hand, in the case of the adjoint formulation,
for the source given in Eq. (60), and using the same procedure
used for (50) to (55), the contribution of trajectory (particle) j

can be shown to be

I∗
j = Ė∗

eff

Nseg−1∑
i=0

τiVg,i · [∇xT0(xi) − ∇xT0(xi+1)], (62)

where τi and Vg,i , respectively, refer to the characteristic
relaxation time and the velocity vector of the particle on
segment i. A source term of type (61) is treated by adding
Vgτ · ∇xT0(xNseg ) to the contribution. This cancels the last term
of expression (62) for i = Nseg − 1 (all trajectories terminate
at the boundaries).

Finally, we need to recall that the final result will be obtained
by adding the stochastic estimate to the deterministic value
represented by the control. The deterministic value for the
temperature is T0. In the case of the heat flux, the deterministic
heat flux associated with the control is −kbulk∇xT0.

B. Validation and accuracy

In this section we validate the method described in
Sec. VI A, which we will refer to as asymptotically controlled
adjoint (ACA), using the following two-dimensional problem.
We consider an infinitely long slab of material of thickness
2L. We denote the coordinate in the infinite direction by x1

and the coordinate in the other direction by x2. At x2 = L the
material is held at a prescribed (deviational) temperature Tb =
Teqε cos[2πx1/(3L)]; at x2 = −L the deviational temperature
is given by Tb = −Teqε cos[2πx1/(3L)]. Here, ε denotes
a small quantity; in other words we are interested in the
linear regime around a reference temperature Teq = 300 K.
By linearity, the discussions that follow do not depend on the
dimensionless coefficient ε; all calculations were performed
with ε = 1/300.

The system was chosen because the solution of Laplace’s
equation can be obtained analytically:

T0(x1,x2) = εTeq cos

(
2πx1

3L

)
sinh

( 2πx2
3L

)
sinh

(
2π
3L

) . (63)

This will allow us to focus our validation on the stochastic
error only. This solution is plotted in Fig. 7.

This phonon transport problem can be easily solved using
either the forward Monte Carlo method or the adjoint method.

FIG. 7. (Color online) Contour plot of the solution (63) of
Laplace’s equation in a thin film with sinusoidal Dirichlet boundary
conditions.

In Fig. 8, we show the temperature calculated on 51 equispaced
points of the line parametrized by x1 = 0 and 0 � x2 � 1,
using both the adjoint method with uniform control, and the
ACA method presented above, for 〈Kn〉 = 0.5 and 〈Kn〉 = 0.1.
In the interest of simplicity, both calculations used the single
free path model (constant relaxation time and Debye model);
in other words, �ω,p = Vgτ = � = constant. The agreement
between the two methods is excellent.

Figure 9 shows the statistical uncertainty associated with the
calculation of the x2 component of the heat flux at point (0,0). It
clearly reveals that, in the ACA method, the standard deviation
scales linearly with the Knudsen number, while in the adjoint
method with uniform control it is approximately constant.
In Appendix B, we provide a mathematical explanation for
the scaling observed in the ACA case. In particular, we

FIG. 8. (Color online) Temperature profile along the segment
AB in Fig. 7. Comparison between the solution to the BTE calculated
using the adjoint method of Sec. III A and the ACA method of
Sec. VI A. The analytical solution of Laplace’s equation is also shown.
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FIG. 9. (Color online) Standard deviation σq ′′
x2

of the particle
contributions to the estimate of the heat flux at point A of Fig. 7
in the x2 direction, in the single free path model. In the ACA method,
the standard deviation is proportional to 〈Kn〉. The latter outperforms
the adjoint method with fixed control for 〈Kn〉 � 0.2.

highlight the major difference that arises, in terms of statistical
properties, when a temperature field other than the zeroth-order
solution T0 is used as control and show that using a solution
of Laplace’s equation is key to this result.

This result is of great importance for multiscale simulations
because it means that, for a fixed uncertainty, low Knudsen
number systems (large length scales) can be simulated using
the ACA technique at a fixed computational cost as 〈Kn〉
decreases. This follows from the fact that the cost of computing
a single-particle trajectory increases proportionally to 〈Kn〉−2

as 〈Kn〉 → 0 since characteristic transport time scales follow
a diffusive scaling in this regime. On the other hand, the
statistical uncertainty scales as σ/

√
N , where σ is the standard

deviation of particle contributions to the estimate and N is
the number of particles used; therefore, for a fixed statistical
uncertainty the scaling σ ∝ 〈Kn〉 requires N ∝ 〈Kn〉2. Since
the overall cost per simulation scales with the product of
the number of particles times the cost of a single trajectory,
we obtain a constant cost. In contrast, the cost of methods
which have a constant statistical uncertainty as a function of
〈Kn〉 (such as traditional MC methods, as well as forward
deviational methods) increases as 〈Kn〉−2 in the 〈Kn〉 → 0
limit, a manifestation of the kinetic description becoming stiff
in this limit. In other words, the ACA formulation overcomes
this stiffness and results in a computational method that can
simulate large systems as efficiently as small systems, a highly
desirable feature of any multiscale method [20]. In fact, for
classes of problems for which the cost of computing a single
trajectory scales as 〈Kn〉−1, such as the case of solving for the
heat flux at a location close to the boundary1 discussed in the
next section, the cost of the ACA formulation is expected to
scale as 〈Kn〉 and therefore decrease as length scales increase.

1This scaling may be arrived at by applying the optional stopping
theorem to the martingale representing the transverse coordinate of
the particle position (see, for example Chap. 12 in Ref. [21]).

We note that the above features pertain to problems for
which the adjoint method is primarily suited for, namely,
problems in which the solution of interest is the transport field
in a small region of space (see Sec. VII for further discussion).
It should also be noted that the above scaling estimates for
the cost refer to the case where the acceptable uncertainty
level is prescribed in an absolute sense. In some cases, for
instance when calculating the heat flux (which is formally a
quantity that also scales with 〈Kn〉 [17–19]), it may be more
appropriate to consider the uncertainty in a relative sense,
namely, the ratio between the uncertainty and the calculated
heat flux. A multiscale method that features a constant cost
as a function of 〈Kn〉 at constant relative uncertainty would
have to use a control which includes the higher-order terms
presented in Ref. [17] and is a direct extension of this
work.

Figure 10 shows the uncertainty associated with the calcu-
lation of the x2 component of the heat flux at points (0,0) and
(0,L) when using a material model with frequency-dependent
free path (for a description of the material model, see
Appendix C). This figure reveals that, when the variable free
path model is used, the computational advantage associated
with the ACA method is beneficial only for low Knudsen num-
bers [〈Kn〉 � 0.02 in Fig. 10(a) and even lower for Fig. 10(b)].
The reason for the breakdown of the efficiency for large
Knudsen numbers lies in the fact that the contribution (62)
to the estimate is a sum of terms that scale with 〈Kn〉. While
this feature contributes to variance reduction at low Knudsen
numbers, it becomes a hindrance in the ballistic limit. We also
note that even though the small values of the Knudsen number
might create the impression that a diffusive approximation
might be sufficient (i.e., the problem can be solved using
Fourier’s Law), due to the large variation in mean free paths
this is not the case (significant discrepancies exist between
the Boltzmann and Fourier solutions, and thus Boltzmann
solutions are still necessary); this is further quantified in
the following section, which also lays out an approach for
recovering and in fact enhancing some of the computational
benefits lost in the presence of widely variable free paths.

C. Using a “hybrid” control for models with
widely variable free paths

In Sec. IV B, we showed that the adjoint method is well
suited to the case where free paths cover a wide range and
when we seek to calculate the contribution of each individual
mode to a given quantity of interest (typically, the heat flux or
the thermal conductivity). On the other hand, as was shown in
Fig. 10, in the presence of a large variation in free paths, the
benefits associated with the ACA method become significant
only for very low Knudsen numbers. In this section, we show
that this limitation can be overcome with a slight modification
of the ACA formulation; in fact, the modified formulation,
referred to here as hybrid, improves the performance of the
ACA formulation for all 〈Kn〉 at almost no additional cost.

In order to motivate the hybrid version, we first explain
why the ACA formulation fairs poorly as 〈Kn〉 increases.
When this method is applied to a phonon model with highly
variable free paths, such as the one described in Appendix C,
the terms that compose the sum (62) span several orders of
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FIG. 10. (Color online) (a) Standard deviation σq ′′
x2

of the particle contributions to the estimate of the heat flux at point B of Fig. 7 in the
x2 direction, in the variable free path model. (b) Standard deviation σq ′′

x2
of the particle contributions to the estimate of the heat flux at point A

of Fig. 7 in the x2 direction, in the variable free path model.

magnitude. The presence of phonon modes with large free
path (exceeding 100 μm) tends to increase the variance of the
estimate because the prefactor Vgτ becomes comparatively
large. We can overcome this limitation by adapting the
expression of the control. Since the problem is caused by
the prefactor Vgτ which appears in Eq. (62), we propose a
control which uses (58) for the small mean free path modes
only, namely,

econtrol = e0 − 1Knω,p<cVgτ · ∇xT0

de
eq
Teq

dT
. (64)

In words, according to this definition, the “hybrid” control
uses e0 for modes with large free paths (�ω,p � cL), while
it introduces (58) for small free paths (�ω,p < cL). There
is some degree of freedom in the choice of the constant c,
although some trial and error revealed that, for the model that
we used and the problem tested, c ≈ 0.4 is close to optimal.
Repeating the derivation procedure of the previous section, we
can show that, algorithmically, the adjoint routine stays nearly
the same, apart from the following two changes:

(i) The contribution of a particle j to the estimate is now

I∗
j = Ė∗

eff

i=Nseg−1∑
i=0

Fi , (65)

where

Fi =
{

T0(xi+1) − T0(xi) if �ω,p � cL,

τiVg,i · [∇xT0(xi) − ∇xT0(xi+1)] if �ω,p < cL.

(66)

Similarly to the ACA approach, the second case of Eq. (66)
must account for the mismatch between the control and the
boundary conditions by adding Ė∗

effτNseg−1 Vg,Nseg−1∇xT0(xNseg )
if the particle encounters the boundary with a mode obeying
the criterion �ω,p < cL.

(ii) The deterministic quantity associated with the final
estimate needs to be calculated using the hybrid control.

We emphasize that implementing these changes only
requires minor modifications since the core of the algorithm,

i.e., the calculation of particle trajectory, remains the same.
Only the values assigned to the estimates change. In fact, in
the comparison of the three approaches in Figs. 9 and 10,
all results were obtained using the same random numbers
(all three methods were evaluated using the same particle
trajectories).

Our results show that the hybrid method outperforms
the two other approaches for all average Knudsen numbers.
The amount of computational savings is, however, problem
dependent. The results presented in Fig. 10(a) correspond to
a favorable case where the heat flux is calculated at a surface
point (point B in Fig. 7). In this case, the length of a trajectory,
and therefore computational time per particle, is proportional
to 〈Kn〉−1 enabling us to accurately resolve the asymptotic
behavior of the standard deviation of the solution all the
way to 〈Kn〉 = 0.001 (in general, the standard deviation of
a given quantity, as a higher moment of the distribution, is
more expensive to resolve than the actual quantity).

At the crossing point of the constant control and the ACA
method, 〈Kn〉 ≈ 0.02, the hybrid approach already reduces
the standard deviation by a factor of 10, which corresponds
to a speedup of around 100. Such a Knudsen number might
appear small in the sense that kinetic effects might be expected
to be negligible at such scales (10 μm). This point of view
would be incorrect since the free paths of low-frequency
modes, known to significantly contribute to the heat flux [14],
do not behave diffusively. Our calculations corroborate this
claim; we find that, at this scale, the normal heat flux near
a boundary still differs from the heat flux calculated using
Fourier’s Law by 30%. At 〈Kn〉 ≈ 0.002, the speedup is close
to a factor 2000 (standard deviation improvement of almost
45) and, although the system is quite close to the diffusive
limit, we find a difference of almost 10% with respect to the
Fourier solution. In addition, kinetic effects near boundaries
and interfaces [17–19] can not be captured by the Fourier
description at any 〈Kn〉.

The results presented in Fig. 10(b) show a less favorable
case in which the heat flux is calculated in the middle of
the domain (point A in Fig. 7). In this case, the length
of particle trajectories is proportional to 〈Kn〉−2, making
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accurate resolution of the standard deviation in the solution
more expensive. As a result, we are unable to study the
asymptotic behavior of the standard deviation of the ACA
method for 〈Kn〉 � 0.01. We also observe that the asymptotic
behavior of the hybrid method for 〈Kn〉 → 0 has not reached
the expected σ ∝ Kn. We attribute this to the presence of
a wide range of free paths which causes some phonons to
behave ballistically even at these small Knudsen numbers (at
this Knudsen number, the discrepancy between the Fourier
solution and the simulation result is 13%) delaying the onset
of the asymptotic behavior. A study showing the progressive
delay of the onset of the asymptotic behavior as the range
of free paths grows can be found in Ref. [19]. Moreover,
Fig. 10(a) shows that the scaling σ ∝ 〈Kn〉 is still valid for
the hybrid case at a surface point (for a discussion of the effect
of the dependence of trajectory length on 〈Kn〉, 〈Kn〉−1 vs
〈Kn〉−2, as well as the validity of the mathematical justification
to the variable free path case, see Appendix B). We finally
note that despite the fact that the hybrid approach has not
reached the asymptotic regime at the smallest Knudsen number
considered here, 〈Kn〉 ≈ 0.001, the speedup provided by the
hybrid method compared to uniform control is appreciable,
namely, a factor of 25.

The hybrid approach, which takes advantage of the fact
that the modes with small free paths behave diffusively,
shares connections with the work in Ref. [22], in which these
modes are assumed diffusive and treated by a Fourier-based
description. The key difference is that in our method no Fourier
model (approximation) is used; instead, the proximity of these
modes to the diffusive regime is used for switching between
two modes of variance reduction (for numerically solving
the same equation); diffusive behavior or particular modes
of interaction between the long and short free path modes is at
no point assumed.

In this section, we only used the most readily available
asymptotic solution of the Boltzmann equation, namely, the
order 0 temperature field and its gradient. We expect that
using higher-order approximations, as derived in Refs. [17–
19], would contribute even further to reducing the cost.
Including such higher-order terms would be very complicated
in a forward particle Monte Carlo. It would be close to
straightforward in the adjoint framework since, as already
demonstrated in this section, only the values assigned to the
particle contributions would be modified, while the adjoint
particle trajectories would remain unchanged.

VII. DISCUSSION

We developed an adjoint formulation for the linearized
Boltzmann transport equation for phonons in the relaxation-
time approximation. We showed that, similarly to what
is found in the fields of radiation, neutron transport, or
computer graphics, the adjoint approach is particularly suited
to situations where the detector is small and the source is
large. In the case of phonons, this is not only often true in
a spatial sense, but also in a spectral sense. The free paths
of phonons in semiconductors are known to cover a very
broad range and, for this reason, the ability to discriminate
individual phonon-mode contributions, as shown in Fig. 5, is a
very powerful feature of the adjoint framework. Although the

precise speedup will depend on the relative size of the detector
and source, in the examples considered here, speedups ranging
from one to three orders of magnitude were observed. We note
that, in consultation with the authors, Hua and Minnich [23]
applied the proposed adjoint formulation to the investigation
of boundary scattering in nanocrystalline materials. The
method allowed them to show that low-frequency phonons,
in spite of the nanocrystalline structure, still carry a significant
proportion of the heat and that, as a consequence, design
of efficient thermoelectric materials should account for such
effects.

An additional strength of the adjoint approach is its
simplicity: the forward linearized approach relies on a cell-
based approach, where quantities need to be sampled in
computational cells of specific geometries. Sampling the
contribution of a particle trajectory requires to study the
overlap between the cell geometry and the trajectory geometry,
which may be complicated. Unless the original source term is
complicated itself, the adjoint alleviates this problem. We also
note that the adjoint formulation proposed here is sufficiently
general to be applicable to both time-step-based MC- and
KMC-type algorithms.

We showed that by using a control inspired by asymptotic
solution of the Boltzmann equation, steady-state problems of
arbitrarily low Knudsen number can be treated at constant cost.
This last feature results from an absolute statistical uncertainty
that is proportional to 〈Kn〉 (see Appendix B). The associated
quadratic savings balance the quadratically increased cost
caused by the calculation of longer trajectories in the low
Knudsen number limit. As a result, simulations of structures
or devices with length scales ranging from nanometers to
hundreds of microns (see Fig. 9) are not only possible,
but also efficient. Extension to unsteady problems directly
follows.

One weakness of the adjoint method is that each detector
has to be replaced by an adjoint source. As a result, the more
detectors, the more complex and thus less desirable the adjoint
method becomes. Although exceptions sometimes occur (for
instance, we saw in Sec. IV A 3 that multiple time detectors
may be treated the same way as in the forward problem),
in practice, the adjoint method is best suited to problems
requiring high resolution (low statistical uncertainty) in small
regions of phase space. One example is the recent use of
adjoint formulation to validate the jump coefficients of the
asymptotic theory developed and presented in Refs. [17–19].
These validations required a high level of accuracy for low
Knudsen numbers, which was made possible by the method
outlined here.

In the field of neutron and gas transport, studies of the
adjoint BTE have yielded results whose application extended
well beyond Monte Carlo simulations [24]. We hope that this
study will stimulate research efforts in this direction and lead
to new insights for better understanding of phonon transport
in general.

Future work will consider extension of the adjoint method-
ology to more realistic material models, ranging from models
which include anisotropic dispersion relations [25] to the
Boltzmann equation with (linearized) ab initio scattering [26].
The possibility of developing adjoint formulations for treating
coupled electron-phonon transport will also be investigated.
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APPENDIX A: PROOF OF THE FUNDAMENTAL
RELATION (21) FOR THE PRESCRIBED-TEMPERATURE

BOUNDARY CONDITIONS

A boundary with prescribed (deviational) temperature Tb
is modeled as a black body. Any particle incident on the
boundary is absorbed. At the same time, the boundary emits
particles from the equilibrium (Bose-Einstein) distribution
with temperature parameter Tb. The classical model consists
of simply defining the boundary condition by specifying the
incoming distribution at the wall for incoming particles:

ψb(ω,p,xb,� · n > 0) = Tb. (A1)

Here, following the general methodology developed in
Sec. III A, this boundary condition is expressed in terms of
a combination of source terms. Emission of particles by the
boundary can be represented by the source term

qb = δ(x − xb)H (Vg · n)Vg · nTb, (A2)

where H is the Heaviside function defined by

H (x) =
{

1 for x � 0,

0 for x < 0.
(A3)

In addition to this source term that is independent of ψ and
which replaces the thermalized region beyond the boundary,
we need to use a source term that absorbs particles incident
on the boundary. Such source term can be written [27] in the
form

δ(x − xb)H (−Vg · n)Vg · nψ. (A4)

Since ψ appears explicitly in the above expression, we write
the linearized BTE (12) in the form

∂ψ

∂t
+ Vg · ∇ψ

= L(ψ) − ψ

τ
+ q + δ(x − xb)H (−Vg · n)Vg · nψ, (A5)

where q includes qb and any other sources that do not depend
on ψ . By analogy, the adjoint BTE is given by

−∂ψ∗

∂t
− Vg · ∇ψ∗

= L(ψ∗) − ψ∗

τ
+ h − δ(x − xb)H (Vg · n)Vg · nψ∗. (A6)

We now repeat the integration by parts procedure of Sec. III B
by writing

I∗ =
∫

q�ψ∗d3x d2� dω dt (A7)

=
∫ [

∂ψ

∂t
+ Vg · ∇ψ − L(ψ) − ψ

τ
− δ(x − xb)H (−Vg · n)Vg · nψ

]
�ψ∗d3x d2� dω dt, (A8)

I∗ =
∫

∂X

∫
Vg · nψ�ψ∗d2x d2� dω dt +

∫
ψ�

[
−∂ψ∗

∂t
− Vg · ∇ψ∗ − L(ψ∗) − ψ∗

τ

]
d3x d2� dω dt

−
∫

δ(x − xb)H (−Vg · n)Vg · nψ�ψ∗d3x d2� dω dt. (A9)

By noting that ∫
∂X

∫
Vg · nψ�ψ∗d2x d2� dω dt =

∫
δ(x − xb)H (−Vg · n)Vg · nψ�ψ∗d3x d2� dω dt

+
∫

δ(x − xb)H (Vg · n)Vg · nψ�ψ∗d3x d2� dω dt,

we obtain I∗ = I.

APPENDIX B: ON THE CONVERGENCE RATE OF THE
ACA METHOD: MATHEMATICAL

JUSTIFICATION AND DISCUSSION

In Sec. VI A, we find that using the spatially variable control

econtrol =
de

eq
Teq

dT
(T0 − τVg · ∇xT0) (B1)

yields estimates whose standard deviations scale with the
Knudsen number 〈Kn〉, provided that the temperature field
T0 is a solution to Laplace’s equation. In this section, we
provide a mathematical explanation for this assertion. In the
interest of simplicity, we consider here the case of a constant
free path �ω,p = �. The case of variable free path can be
treated by simple extension of this approach and is expected
to yield similar results. This is further discussed below.

In the linearized algorithm, each particle i is associated with
a contribution yi which is a realization of a random variable
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Y such that, ultimately, the quantity estimated is the average
I∗

N =∑ yi/N which converges to E(Y ) in the limit N → ∞.
The standard deviations of Y and I∗

N , respectively σY and
σI∗

N
, are related by σI∗

N
= σY /

√
N . Showing that the standard

deviation of σI∗
N

scales with 〈Kn〉 amounts to showing that σY

scales in the same manner (with 〈Kn〉). The random variable
Y is a sum of random variables Y = Z1 + Z2 + · · · + ZNseg ,
where each variable Zj corresponds to the contribution of a
single segment of trajectory, as shown in Sec. VI A. Let us first
recall that Zj is given by

Zj = N Ė∗
effτj−1Vg,j−1 · [∇xT0(xj−1) − ∇xT0(xj )] (B2)

except for j = Nseg. Note that E∗
tot ≡ N Ė∗

eff is independent of
〈Kn〉. When 〈Kn〉 is small, Zj may be written as

Zj = −E∗
tot�lj

∂2T0

∂xm∂xn

∣∣∣∣
xj

�m�n

− E∗
tot

�l2
j

2

∂3T0

∂xm∂xn∂xq

∣∣∣∣
xj

�m�n�q + h.o.t., (B3)

where lj (≈ �) is the length of that segment of the trajectory
and h.o.t. denotes higher-order terms. This can be rearranged
in the form

Zj = −E∗
tot〈Kn〉2 lj

�

∂2T0

∂x ′
m∂x ′

n

∣∣∣∣
xj

�m�n

− E∗
tot〈Kn〉3

l2
j

2�2

∂3T0

∂x ′
m∂x ′

n∂x ′
q

∣∣∣∣
xj

�m�n�q + h.o.t. (B4)

≡ Z̃j + O
(

l2
j

�2
〈Kn〉3

)
, (B5)

where x′
j is the dimensionless coordinate defined by x′

j =
xj /L. First we note that due to the isotropy of the post-
scattering distribution, E(�i) = 0. Moreover, here we are
examining the case ∇2

x′T0 = 0. From these two observations it
directly follows that E(Z̃j ) = 0 and therefore

Ỹn =
n∑

i=1

Z̃i (B6)

defines a martingale [21] with (optional) stopping time n =
Nseg − 1. In what follows, we denote ỸNseg−1 by Ỹ .

In summary, Y = Ỹ + ZNseg + ζ , where ζ represents the
contribution of Nseg − 1 order 3 terms and

ZNseg = Ė∗
tot〈Kn〉

(
�j

∂T0

∂x ′
j

∣∣∣∣
xNseg−1

)
. (B7)

The variance of Y is therefore

Var(Y ) = Var(Ỹ ) + Var(ζ ) + Var(ZNseg ) + 2Cov(Ỹ ,ZNseg )

+ 2Cov(ζ,ZNseg ) + 2Cov(Ỹ ,ζ ). (B8)

Below, we examine each of the terms of the above expression
and show that they all scale with 〈Kn〉2:

(i) Variance of Ỹ : By applying the optional stopping
theorem to the martingale Sn = Ỹ 2

n −∑n
i=1 Var(Z̃i) (see [21]),

which implies that E(Sn) = 0, we obtain

Var(Ỹ ) = E

⎛
⎝Nseg−1∑

i=1

Var(Z̃i)

⎞
⎠. (B9)

We note that, provided the second derivatives of T0 are
bounded, we can find a positive constant M1 such that the
variances of Z̃i are all smaller than M1〈Kn〉4. It follows that

Var(Ỹ ) � E

⎛
⎝Nseg−1∑

i=1

M1〈Kn〉4

⎞
⎠, (B10)

and therefore

Var(Ỹ ) � M1〈Kn〉4E(Nseg). (B11)

Finally, since the average number of jumps is asymptotically
proportional to 〈Kn〉−2,

Var(Ỹ ) = O(〈Kn〉2). (B12)

(ii) Variance of ζ : The variance of ζ is defined as E(ζ 2) −
E(ζ )2, where

E(ζ 2) = E

⎧⎪⎨
⎪⎩
⎡
⎣Nseg−1∑

i=1

O
(

l2
i

�2
〈Kn〉3

)⎤⎦
2
⎫⎪⎬
⎪⎭, (B13)

E(ζ 2) = E

⎡
⎣Nseg−1∑

i=1

Nseg−1∑
j=1

O
(

l2
i l

2
j

�4
〈Kn〉6

)⎤⎦. (B14)

Wald’s equation [21] applies to the latter expression and yields

E(ζ 2) = E

⎧⎨
⎩

Nseg−1∑
i=1

Nseg−1∑
j=1

E

[
O
(

l2
i l

2
j

�4
〈Kn〉6

)]⎫⎬
⎭. (B15)

We can find a positive constant M2 such that

E(ζ 2) � M2E[(Nseg − 1)2]〈Kn〉6. (B16)

In other words,

E(ζ 2) = O(〈Kn〉2). (B17)

Also,

E(ζ ) = E

⎡
⎣Nseg−1∑

i=1

O
(

l2
j

�2
〈Kn〉3

)⎤⎦, (B18)

E(ζ ) � M3E(Nseg − 1)〈Kn〉3, (B19)

E(ζ ) = O(〈Kn〉) (B20)

We finally find that Var(ζ ) = O(〈Kn〉2).
(iii) Variance of ZNseg : From the definition of ZNseg , we

immediately find that Var(ZNseg ) = O(〈Kn〉2).
(iv) Covariance of Ỹ and ZNseg :

Cov
(
Ỹ ,ZNseg

) = E
(
ỸZNseg

)− E(Ỹ )E
(
ZNseg

)
, (B21)

235321-15
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Cov
(
Ỹ ,ZNseg

) = E
(
ỸZNseg

)
, (B22)

Cov
(
Ỹ ,ZNseg

) =
∫

ỹ

E
(
ỸZNseg

∣∣Ỹ = ỹ
)
P (Ỹ = ỹ)dỹ, (B23)

Cov
(
Ỹ ,ZNseg

) =
∫

ỹ

ỹE
(
ZNseg

∣∣Ỹ = ỹ
)
P (Ỹ = ỹ)dỹ. (B24)

The martingale central limit theorem for Ỹ states that
P (Ỹ = ỹ) tends asymptotically to a Gaussian with standard
deviation σ =

√
Var(Ỹ ). Also, due to isotropy associated

with the scattering process E(ZNseg |Ỹ = ỹ) ∼ E(ZNseg ) =
O(〈Kn〉). Hence,

Cov
(
Ỹ ,ZNseg

) = O
[
〈Kn〉

∫
ỹ

|ỹ| 1√
2πσ

exp

(−ỹ2

2σ 2

)
dỹ

]
,

(B25)

Cov
(
Ỹ ,ZNseg

) = O(〈Kn〉σ ), (B26)

Cov
(
Ỹ ,ZNseg

) = O(〈Kn〉2). (B27)

(v) Covariance of Ỹ and ζ : We note that the value of ζ is
obtained using the same random numbers as Ỹ . We may still
obtain an upper bound for the covariance using

Cov(Ỹ ,ζ ) = E(Ỹ ζ ) − E(Ỹ )E(ζ ), (B28)

Cov(Ỹ ,ζ ) = E(Ỹ ζ ), (B29)

Cov(Ỹ ,ζ ) =
∫

ỹ

ỹE(ζ |Ỹ = ỹ)P (Ỹ = ỹ)dỹ, (B30)

Cov(Ỹ ,ζ ) = O
[
〈Kn〉

∫
ỹ

|ỹ| 1√
2πσ

exp

(−ỹ2

2σ 2

)
dỹ

]
, (B31)

Cov(Ỹ ,ζ ) = O(〈Kn〉2), (B32)

where, since E(ζ ) ∼ √
Var(ζ ) ∼ O(〈Kn〉), we estimate

E(ζ |Ỹ = ỹ) as of O(〈Kn〉).
(vi) Covariance of ζ and ZNseg :

Cov
(
ZNseg ,ζ

) = E
(
ZNsegζ

)− E
(
ZNseg

)
E(ζ ), (B33)

Cov(ZNseg ,ζ ) = E

⎧⎨
⎩O

⎡
⎣Nseg−1∑

i=1

l2
j lNseg

�3
〈Kn〉4

⎤
⎦
⎫⎬
⎭+ O(〈Kn〉2),

(B34)
Cov

(
ZNseg ,ζ

) = O(〈Kn〉2), (B35)

which is again obtained using Wald’s equation.
In summary, this shows that

Var(Y ) = O(〈Kn〉2), (B36)

which implies that the standard deviation associated with the
estimate I∗

N , σI∗
N

, scales linearly with 〈Kn〉.
We note here the following:
(1) Even in cases where E[Nseg] = O(〈Kn〉−1) [and thus

Var(Ỹ ) = O(〈Kn〉3)], such as in the proximity of a boundary,
the leading-order term in Var(Y ) is still of O(〈Kn〉2), yielding
the same result.

(2) In the above development, ∇2
x′T0 = 0 comes as a

necessary condition for the first-order scaling (σI∗
N

∝ Kn)
to be true. To see this, let us imagine that, in a given
region of space, this condition is not satisfied. Then, in
such a region, Ỹ is no longer a martingale because the
expected value of Z̃i is no longer 0. As a consequence,
the result (B9) can no longer be used. More precisely,
it follows from (B4) that Cov(Z̃i ,Z̃j ) = O[〈Kn〉4(∇2

x′T0)2];
as a result if ∇2

x′T0 �= 0, correlations between Z̃i and Z̃j

will cause Var(
∑

Z̃i) = O(N2
seg〈Kn〉4) �= O(〈Kn〉2) and under

most conditions Var(Y ) = O(〈Kn〉0) (see following for an
example).

To illustrate the second point, let us consider the example
discussed in Sec. VI B, namely, using the adjoint method to
find the x2 component of the heat flux at point (0,0). Figures 11

FIG. 11. (Color online) Evolution of the contributions of particles to the final estimate, when the adjoint method is used with the control (B1)
along with a temperature field which is the solution of Laplace’s equation for 〈Kn〉 = 0.01 (left) and 〈Kn〉 = 0.001 (right). This calculation
was performed using the single free path model.
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FIG. 12. (Color online) Evolution of the contributions of particles to the final estimate, when the adjoint method is used with the control (B1)
along with a temperature field which is not a solution of Laplace’s equation, for 〈Kn〉 = 0.01 (left) and 〈Kn〉 = 0.001 (right). This calculation
was performed using the single free path model.

and 12 show
∑n

i=1 Zi as a function of the index n, where Z

here corresponds to the heat-flux contribution. Figure 11 shows
the result obtained using

T0(x1,x2) = εTeq cos

(
2πx1

3L

)
sinh

( 2πx2
3L

)
sinh

(
2π
3L

) (B37)

as a control which is a solution of Laplace’s equation with
Dirichlet boundary conditions; Fig. 12 shows the result
obtained using

T0(x1,x2) = εTeq cos

(
2πx1

3L

)(
1 − x2

L

)
(B38)

as a control, which is not a solution of Laplace’s equation.
Figure 11 shows that when T0 satisfies the Laplace equation,
very little correlation between each segment of a trajectory
exists and, as a result, the standard deviation of the contri-
butions is proportional to 〈Kn〉, in agreement with (B36).
In contrast, Fig. 12 shows that when T0 does not satisfy
the Laplace equation, correlation between different segments
of the trajectory makes the contribution of each particle
independent of the Knudsen number [proportional to 〈Kn〉0

as discussed in item (2) above], leading to a standard deviation
that also scales as 〈Kn〉0.

APPENDIX C: MATERIAL MODELS

Dispersion relations (and the resulting group velocities) and
scattering rates for the simulations in this paper were calculated
using the material model described in detail in Ref. [9]; the
description is reproduced here for convenience. We note that
since the primary focus of this paper is the development of
a numerical approach, this material model choice represents
a balance between simplicity and fidelity. In other words,
although this material model is sufficiently realistic to capture
a number of important features that have a large influence on
the computational method (e.g., wide range of free paths), it
includes a number of simplifying assumptions (e.g., isotropic
dispersion relation [25]) that may need to be reexamined when
used to model transport in nanostructures. Extension to more

realistic material models of varying complexity, including
the ab initio scattering operator, will be considered in future
work.

In the present model, dispersion relations are adapted from
the experimentally measured dispersion relation in the [100]
direction ([28] for Al, [29] for Si). Note that extension to
more realistic dispersion relations such as the one presented
in Ref. [30] is straightforward, as long as the post-scattering
traveling directions are assumed isotropic, as assumed in
Ref. [30]. From the dispersion relation, the density of states
may be derived using

D(ω,LA) = 1

2

ω2

π2c(ω,LA)2Vg(ω,LA)
, (C1)

D(ω,TA) = ω2

π2c(ω,TA)2Vg(ω,TA)
, (C2)

where c(ω,p) refers to the phase velocity (given by ω/k, k

being the wave number). Note the absence of the factor 1
2 for

the TA modes due to the presence of two such modes which,
in this model, share the same properties.

For aluminum in the TTR calculation, a constant relaxation
time is used; it is chosen to fit the desired lattice thermal
conductivity (as in Ref. [29]) and is given by

τAl = 10−11 s. (C3)

For silicon, the expressions are taken from [31], with
constants from [29]. For acoustic modes, these are

phonon-phonon scattering, LA τ−1
L = ALω2T 1.49 exp

(− θ
T

)
phonon-phonon scattering, TA τ−1

T = AT ω2T 1.65 exp
(− θ

T

)
impurity scattering τ−1

I = AIω
4

boundary scattering τ−1
B = wb
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PÉRAUD AND HADJICONSTANTINOU PHYSICAL REVIEW B 91, 235321 (2015)

where the constants take the following values:

Parameter AL AT θ AI wb

Value (in SI units) 2.09 × 10−19/(2π )2 1.23 × 10−19/(2π )2 80 3 × 10−45 1.2 × 106

For a given polarization we obtain the total relaxation time by applying the Matthiessen rule

τ−1 =
∑

i

τ−1
i . (C4)

For simplicity, we use Einstein’s model to treat optical phonons and consider them as immobile. Their behavior is therefore
purely capacitive. Einstein’s model states that the contribution of optical phonons to the vibrational energy per unit volume in a
crystal is given by [3]

U = NpN ′
�ωE

V [exp(�ωE/kbT ) − 1]
, (C5)

where Np = 3 is the number of polarizations, N ′ = 1 is the number of optical states per lattice point, ωE is the Einstein radial
frequency (ωE = 9.1 × 1013 s−1 [29]), V is the volume of a lattice point (with a lattice constant a = 5.43 Å, V = a3/4 =
4 × 10−29 m3).

For the relaxation time of optical phonons at 300 K, we use the value [32]

τO = 3 × 10−12 s. (C6)
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[10] J.-P. M. Péraud and N. G. Hadjiconstantinou, Deviational
phonons and thermal transport at the nanoscale, ASME Inter-
national Mechanical Engineering Congress and Exposition,
Proceedings (IMECE) (ASME, NY, 2012), Vol. 7, pp. 2751–
2758 .

[11] A. J. Minnich, Determining phonon mean free paths from
observation of quasiballistic thermal transport, Phys. Rev. Lett.
109, 205901 (2012).

[12] A. Schmidt, Pump probe thermoreflectance, in Annual Review
of Heat Transfer (Begell House, New York, 2013), Vol. 16,
pp. 159–181.

[13] A. J. Schmidt, X. Chen, and G. Chen, Pulse accumulation, radial
heat conduction, and anisotropic thermal conductivity in pump-
probe transient thermoreflectance, Rev. Sci. Instrum. 79, 114902
(2008).

[14] F. Yang and C. Dames, Mean free path spectra as a tool to
understand thermal conductivity in bulk and nanostructures,
Phys. Rev. B 87, 035437 (2013).

[15] T. M. M. Homolle and N. G. Hadjiconstantinou, A low-variance
deviational simulation Monte Carlo for the Boltzmann equation,
J. Comput. Phys. 226, 2341 (2007).

[16] G. A. Radtke and N. G. Hadjiconstantinou, Variance-reduced
particle simulation of the Boltzmann transport equation in
the relaxation-time approximation, Phys. Rev. E 79, 056711
(2009).
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