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ABSTRACT
This paper proposes a method that dynamically improves a

statistical model of system degradation by incorporating uncer-
tainty. The method is illustrated by a case example of fouling,
or degradation, in a heat exchanger in a cogeneration desali-
nation plant. The goal of the proposed method is to select the
best model from several representative condenser fouling mod-
els including linear, falling rate, and asymptotic fouling, and to
validate and improve model parameters over the duration of op-
eration. Maximum likelihood estimation (MLE) was applied to
obtain a stochastic distribution of condenser fouling. Akaike’s
Information Criterion (AIC) and the Bayesian Information Cri-
terion (BIC) were then computed at time intervals to assess the
accuracy of the MLE results. The degradation model was fur-
ther evaluated by estimating future prognoses and then cross-
validating with real world fouling data. The results show the ac-
curacy of a prognosis can be improved substantially by continu-
ously updating fouling model parameters. The proposed method
is a step toward facilitating prognosis of engineering systems in
the early design stages by improving the prediction of future com-

∗Address all correspondence to this author, tomonori@mit.edu.

ponent degradation.

Nomenclature
∆ j difference in Information Criterion between model f j

and minimum IC
L likelihood function
µ mean
Φ average log likelihood of samples collected between up-

dates
σ standard deviation
τ time constant in asymptotic fouling model
θ model parameters
{ f1, f2, ..., fm} set of hypothetical models
FU update frequency
IC Information Criterion
k number of free parameters in the model
m number of hypothetical models in a pool of possible

models
N number of data points used in MLE
N f samples per update
Ni initial number of samples
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R f fouling resistance
RPC prognosis criterion
td initial fouling deposition time
ts sample period
U overall heat transfer coefficient of a heat exchanger
Uc overall heat transfer coefficient at clean condition
R f
∗ asymptotic fouling resistance

AICc Akaike’s information criterion
BIC Bayesian information criterion

INTRODUCTION
Large-scale complex systems, such as industrial plants and

space systems, can consist of any number of sub-systems and
components. These components degrade over time, and inade-
quate maintenance of the components can result in high opera-
tional cost, increased environmental impact, as well as concerns
about safety [1, 2].

Traditional maintenance scheduling commonly focus on
both corrective (fix-as-fail) or preventive (regularly timed inter-
val) strategies [1]. A corrective strategy does not schedule main-
tenance until failure has occurred, which can lead to long or in-
convenient downtimes. A preventive strategy schedules mainte-
nance according to the expected lifetime of a component, how-
ever, due to the uncertainty associated with component degra-
dation, maintenance is often performed unnecessarily resulting
in excessive cost. A more cost-effective maintenance strategy
is to perform health monitoring and prognosis [3]. This strat-
egy begins with the continuous monitoring of degradation, or
the gradual reduction in performances of a subsystem or compo-
nent over time. Health monitoring then makes predictions about
future degradation based on past information, and provides dy-
namic scheduling decisions to maximize performance and relia-
bility, while minimizing maintenance cost.

Interests in health monitoring and prognostics extend across
a variety of engineering fields, from monitoring damage in me-
chanical structures [4], estimation of battery life [5], and power
plant condition monitoring [1]. Several challenges are associ-
ated with the development of health monitoring systems. One
is to quantify the amount of degradation using different sensor
technologies, known as condition monitoring. Current research
in this field has mostly been focused on failure-detection, iso-
lation and identification using data-driven and/or model-based
techniques [6, 7].

A second challenge is in degradation modeling, which is the
characterization of the evolution of degradation signals by com-
bining observations and physical understanding of the compo-
nent [8]. A significant amount of research has focused on degra-
dation models. Lu & Meeker [9] have studied numerical methods
for fitting parametric models to degradation measurements and
estimation of time-to-failure distribution. Zuo, Jiang & Yam [10]
introduced three approaches for reliability modeling of continu-

ous state devices, based on the random process model, the gen-
eral path model, and the multiple linear regression model. Zhou,
Serban & Gebraeel [11] presented a study on estimating degrada-
tion models with sparse or incomplete data. Wang & Coit [8] il-
lustrated methods for dealing with uncertain failure thresholds in
degradation modeling. There are also studies on the degradation
models of a specific device. Saha & Goebel [5] describe a tech-
nology for using a particle filtering framework combined with an
empirical model for battery life prediction. Zubair et al. [12, 13]
have studied statistical models to describe heat transfer compo-
nent degradation. Prasad et al. reported an algorithm developed
by GE capable of predicting degradation in heat exchangers [14].

However, current studies on degradation modeling and time-
to-failure estimations do not focus on real-time model estima-
tion, or dynamic assessment of prediction accuracy. Thus, this
study focuses on the development of a prognosis scheme that
combines degradation monitoring and future performance pre-
diction. The proposed scheme is composed of two parts: dy-
namic predictions based on continuously collected operational
data, and continuous assessment of the accuracy of the predic-
tion. A case example of degradation in heat exchangers in a co-
generation desalination plant is used for illustration.

METHOD

The step by step illustration of the prognosis process is
shown in the flow chart in Fig. 1. A pool of m possible degra-
dation models { f1, f2, ..., fm} should first be assembled and the
most appropriate model can be selected based on the collected
degradation data. The monitoring program will record opera-
tion data from the system and compute the degradation at some
sampling period ts. After some initial number of samples Ni has
been obtained, model parameters for each model in the pool can
be inferred based on the data (Ni have to be large enough for
the inference algorithm to avoid over fitting). Then the models
are compared to each other and one that best describes the cur-
rent degradation process is determined. Using the best model,
maintenance prognosis can be made. If maintenance is not re-
quired and operation continues, more operation data is collected
and used in the next prognosis period. The prognoses frequency
is determined by the sampling time ts as well as the number of
samples collected between each prognosis N f , which is typically
equal to or less than Ni. The values of Ni, N f , and ts will af-
fect prognosis process, and will be discussed in detail in the next
section. For typical operation, prognoses will occur at

t = {t1, t2, t3, ...}= {Nits,(Ni +N f )ts,(Ni +2N f )ts, ...} (1)
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and the update frequency FU , which indicate how often prog-
noses is performed, is:

FU =
(
N f ts

)−1 (2)

Statistical inference is used in this study to estimate the
model parameters by fitting to the measured degradation data.
Maximum likelihood estimation (MLE) is proposed for fitting
because of its ability to fit any type of probability distribution,
whereas traditional least-square error curve fitting methods are
limited to normally distributed variations. The maximum likeli-
hood estimation is defined as:

θmle = argmax{log(Li)} (3)

where θmle is the set of model parameters that maximizes the log
likelihood function log(Li) of model fi (argument of the max-
imum). The likelihood function L of model f given the set of
data x̄ = {x1,x2, ...,xN} is defined as:

L (θ |x̄) =
N

∏
j=1

f (x j|θ) (4)

where f (x j|θ) is the probability distribution function of model f
with parameters θ .

An information criterion can be used to select the most
accurate model from the pool. Akaike’s information criterion
(AIC) and the Bayesian information criterion (BIC) are com-
monly used. AIC is an estimated measurement of the information
loss when a model is used to describe reality, and can be calcu-
lated by minimizing Kullback-Leibler information entropy using
the formula:

AICc =−2log(L )+2k
(

N
N− k−1

)
(5)

The lower case c represents the corrected AIC, which takes into
account the number of available data. L is the log likelihood
obtained from MLE, k is the number of free parameters in the
model, and N is the number of data points used in the estimation.
A low AICc number indicates less information loss and thus is
more desirable. The AICc formula suggests that information loss
is closely related to the likelihood value, and inversely related to
the number of parameters in the model to penalize over fitting.

BIC is an estimation of the Bayesian posterior probability
associated with a model. It has a very similar form to AICc with
a more stringent penalty for over fitting.

BIC =−2log(L )+ k log(N) (6)

Comparatively, AIC and BIC take very different approaches
to model selection: AIC selects the model that most adequately
describes reality, and BIC selects the model that most likely rep-
resents reality. For a large sample size, AIC favors complex mod-
els with high number of free parameters and tend to result in over
fitting, while for a small sample size BIC will favor complex
models. The model with the smallest information criterion is the
best among the pool of models. In general, if AIC and BIC are
in agreement, then the most optimal model can be selected. The
probabilities of model f j being the best model can be computed
based on the information criterion using the formula:

p( f j|{ f1, f2, ..., fm}) =
exp

(
− 1

2 ∆ j
)

m
∑

r=1
exp

(
− 1

2 ∆r
) (7)

where ∆ j is the Information Criterion (IC) difference between
model f j and the minimum IC:

∆ j = IC( f j)− ICmin (8)

As more data become available, new model parameters can
be estimated using more data samples, and should converge to
the true model parameters. Thus a second criterion is proposed
to test for the convergence of model parameters. Sample points
from the future can be used to perform cross validation with the
model prognoses by computing the likelihood of the model given
these sample points. In reality, this can be done using data col-
lected in the next monitoring period t = ti+1 then cross-validated
with the model estimated in the current monitoring period t = ti:

Φ(ti) =
1

N f
log

(
L

(
θ(ti)|x̄(ti+1)

))
(9)

where Φ is the average log likelihood value of samples x̄ col-
lected between time period ti and ti+1 given parameters θ esti-
mated at time ti. As the model parameters are refined with more
sample points, the Φ value would level out to a certain value, as
the model parameters converge to an optimal value. If the model
is an inadequate representation of reality, the model parameters
do not converge, and thus Φ value will fail to converge. A pro-
posed convergence criterion that we call a prognosis criterion
(RPC) is defined as:

RPC(ti) = Φ(ti)−Φ(ti−1) (10)

which will approach zero as model parameter values converge.
Different scenarios can occur with the prognosis criterion.

For example, there may be a sudden divergence trend in the prog-
nosis criterion if the operating conditions changed suddenly. The
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FIGURE 1. FLOWCHART OF PROGNOSIS STEPS

prognosis criterion for a bad model could also converge if the bad
model predicts uncertainty very generously. In the next section
different scenarios will be examined to induce the benefits of the
prognosis criterion.

To summarize the prognosis method:

1. Assemble pool of hypothetical degradation models
2. Collect degradation data (Ni samples initially, N f samples

each time after)
3. Perform MLE model fitting using all samples collected
4. Compute model probabilities using AIC and BIC
5. If AIC and BIC results agree, select the model and compute

RPC, otherwise go back to step 2 and repeat
6. (Future work) Combine the selected model and RPC to pro-

duce a prognosis, and make scheduling decisions.

CASE STUDY
This case example is of a cogeneration desalination plant

for treating seawater. Such plants consist of boilers, heat ex-
changers, and other components. This example focuses on a heat
exchanger whose degradation mode is fouling and scaling. The
accumulation of unwanted particles on the heat transfer surfaces
of heat exchangers are referred to as fouling (typically biologi-
cal buildup) and scaling (typical hard salts, we will use the word
”fouling” in this paper when referring to both fouling and scal-
ing). This layer of deposit increases the thermal resistance of a
heat exchanger and degrades its performance [15]. No technol-
ogy currently exists to completely eliminate fouling, and thus pe-
riodic cleaning of a heat exchanger is required [16]. The ability
to accurately predict a fouling trend and schedule optimal main-
tenance is important [12].

The amount of fouling in a heat exchanger is characterized

by its fouling resistance R f with units (m2K/W) [17]:

R f =
1
U
− 1

Uc
(11)

where U is the overall heat transfer coefficient of the heat ex-
changer, usually calculated from hot and cold fluids type, flow
rates, pipe material and dimensions. Uc is the overall heat trans-
fer coefficient of the heat exchanger with clean surfaces. Al-
though heat exchanger fouling is a complex stochastic process
that depends on a variety of conditions, such as water quality,
flow rate, temperature, and geometry, relatively simple statistical
models can be used to approximate the fouling resistance-time
relationship [12].

Typical heat exchanger fouling resistance vs. time curves
observed in industry are shown in Fig. 2. The mathematical mod-
els of these curves were described by Zubair et al. [12] and are
represented as:

Linear rate (curve a): R f (t) = B(t− td) (12)

Falling rate (curve b): R f (t) = B log
(
(t− td)/τ +1

)
(13)

Asymptotic (curve c): R f (t) = R∗f
(

1− e−(t−td)/τ

)
(14)

The initial deposition time td shown in Fig. 2 is a period at the ini-
tial stage when the fouling deposition has not started to develop,
which is a phenomenon occasionally observed in reality [17].
Curve d) in Fig. 2 is a typical representation of fouling in power
plant condensers and cooling towers. The sawtooth shape is a
result of periodic changes in operating conditions, for example
seasonal water temperature change [17–19]. The variation of
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FIGURE 2. TYPICAL FOULING TREND CURVES OVER TIME
[15]

fouling resistance over time can be expressed as a probability
distribution. Sheikh et al. [13] have suggested that the variables
in the fouling models (B and R∗f ) can be considered as normally
distributed random variables with mean µ and standard deviation
σ .

A number of semi-empirical formulae have been developed
to estimate the parameters of a fouling model in a given appli-
cation, but the general applicability of these formulae is limited
because the various constraints or coefficients are plant depen-
dent and difficult to measure [19, 20]. However, statistical in-
ference methods can be used to estimate the model parameters
based on data obtained from real time monitoring of the fouling
process [14].

ANALYSIS
Artificial Fouling Simulation

Monte-Carlo simulations were first performed to test the
proposed technique, to verify the model selection using AIC and
BIC, as well as the effects of the operating parameters. Arti-
ficial fouling resistance data were simulated using the asymp-
totic model described in Eqn. 14, and shown here in non-
dimensionalized form:

R f

R f
∗ = N

(
1,
(

σ

R f
∗

)2
)(

1− e−
t
τ

)
(15)

with σ

R f
∗ equal to 0.06 and τ equal to 1. These values represent a

general asymptotic fouling process with uncertainty discussed in
literature [19].

Two possible fouling models are assembled in the pool, one
is identical to the underlying model (the asymptotic model), and
a falling-rate model is chosen for comparison purposes because
it has a similar shape to the asymptotic model:

Asymptotic model: R f (t) = N (a2,b2) ·
(
1− ec2t) (16)

Falling-rate model: R f (t) = N (a1,b1) log(c1t +1) (17)

A MATLAB R© (version 7.12) script was used to perform the
simulation by generating random fouling resistances from the
underlying model (Eqn. 15) at a user defined sampling time
ts in non-dimensional time units, and compute prognosis at
an update frequency FU with number of samples per update
N f = (FU · ts)−1.

Model Fitting and Selection Figure 3 shows the Maxi-
mum Likelihood Estimation model fitting results using simulated
data at three different times for one set of simulations, with pa-
rameters Ni = N f = 5, FU = 4. The MLE results are compared
with the true underlying model used to generate the fouling data.
After several updates it is observed that the asymptotic model has
converged closely to the true model, while initially both models
are quite different from reality, due to the small sample size.

The probabilities of each model computed at each update
period are shown in Fig. 4. The model probability of the asymp-
totic model starts at around 0.5 and converges to 1 after some
time (falling-rate probability is one minus asymptotic probabil-
ity). The probability calculated using AIC and BIC are identical
for these two models, because both models have the same num-
ber of free parameters.

Figure 5 shows the prognosis criterion RPC for this simu-
lation. Both models show some oscillation in the result. The
asymptotic model converges to zero and stays close to zero,
while the falling-rate model has high oscillation and does not
exhibit any convergence.

Model Selection Criteria Next we would like to study
how the operating parameters, including update frequency FU
and number of samples per update N f , as well as the uncertainty
in the model ( σ

R f
∗ term in Eqn. (15)), affect the model selec-

tion criteria mentioned above. Simulations were performed with
varying values of FU , N f , and model uncertainty one at a time.
100 rounds of simulation were performed at each set of operating
parameters.

To concisely illustrate the result, two critical times were de-
fined to represent the rate of convergence for both the model
probability and the prognosis criterion: 1) the model selection
time tselect , which is the time when the Asymptotic model proba-
bility rises above 0.99. This critical time indicates our confidence
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FIGURE 3. MLE RESULTS OF SIMULATED DATA THREE DIF-
FERENT TIMES. Dashed lines show the 5-95 percentile uncertainty
region. Simulation performed with Ni = N f = 5, FU = 4

in the model we have. 2) the prognosis convergence time tconverge,
which is the time when the RPC of the Asymptotic model has
fallen and remained between ±0.05. This critical time indicates
the estimated model parameters have converged to their optimal
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FIGURE 4. PROBABILITY OF MODELS AT EACH UPDATE.
Simulation performed with Ni = N f = 5, FU = 4
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FIGURE 5. PROGNOSIS CRITERIA AT EACH UPDATE. Simula-
tion performed with Ni = N f = 5, FU = 4

values (if optimal values exist). For both critical times a low
value is desirable, suggesting higher confidence in model selec-
tion and prediction. The results of the simulations are presented
in Fig. 6,7,8 in the form of critical times vs operating parameters.

As expected, higher updated frequency and higher number
of samples per update decreases with both the model selection
time tselect and the prognosis convergence time tconverge, indicat-
ing more accurate prognosis results. However, the rates of decay
for tselect and tconverge are different, resulting in diminishing re-
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FIGURE 7. DECISION TIME VS UPDATE FREQUENCY, N f = 10.
Plots showing average and 5-95 percentile region of 100 simulations,
and least square fitting of power law curves

turns at very high sampling and update frequency. The model
uncertainty seems to affect only the model selection time, which
suggests that if the form of the uncertainty is correctly modeled,
then the relative accuracy of the prognosis is not affected by the
variance of the uncertainty. The error bars on the convergence
time are generally much wider compared to the selection time,
suggesting that large variations are usually observed in the prog-
nosis criterion. Thus time averaged values of RPC would be a
better measurement than individual values.
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FIGURE 8. DECISION TIME VS UNCERTAINTY, FU = 8,N f =

50. Plots showing average and 5-95 percentile region of 100 simula-
tions, and least square fitting of power law curves

The above analysis shows the ideal operating situation,
where one hypothetical model matches the data very well, and
thus both the model probability and the prognosis criterion in-
dicate the same result. Next, two non-ideal scenarios are simu-
lated. First is when no good model is available in the pool, and
second when the model probability and the prognosis criterion
show contradicting results. Studying these scenarios will help
induce how the different criteria can be used for making progno-
sis.

Scenario when pool contains only poor models It
is possible to have a scenario where all hypothetical models in
the pool are poor representations of the reality. This scenario is
simulated by generating artificial fouling resistance using a linear
model shown below:

R f

R f
∗ = N (0,0.06)t (18)

and performing model fitting with the model pool consisting of
an asymptotic model and a falling-rate model (Eqn. (16) and
(17)) used in the previous sub-section. The operating parameters
involved are Ni = N f = 5, FU = 5. These two models are very
similar, both have the same number of free parameters, and both
have an initial linear slope. The model probabilities are shown in
Fig. 9.

The model probabilities show that both models are equally
good at representing the data as the probability fluctuates slightly
around 0.5. This scenario shows that when there is no good
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FIGURE 9. AVERAGE MODEL PROBABILITY COMPUTED
FROM AICC. Poor model pool scenario, average of 100 rounds of sim-
ulation. Dashed lines show 5-95 percentile region

model within the pool, this could lead to several models hav-
ing the same probability. Conversely, if the model probability
criterion does not indicate the selection of a single model with
close to 100% probability even when many data points become
available, it is likely that a better model is needed.

Scenario with contradicting criteria If a model sig-
nificantly overestimates the uncertainty distribution of the degra-
dation process, then the prognosis criterion may show a converg-
ing trend even if the model is inaccurate. A scenario similar
to this is set up by generating artificial fouling resistance using
Eqn. (19) below:

R f

R f
∗ = (1− e−t)+N (0,0.06) (19)

and the model pool:

True model: R f (t) = a1
(
1− ec1t)+N (0,b1) (20)

False model: R f (t) = N (a2,b2) ·
(
1− ec2t) (21)

with Ni = 5, N f = 3, FU = 5. The only difference between the
models is that the false model assumes model uncertainty in-
creases with time. The model probability and prognosis crite-
rion of one hundred rounds of simulation is shown in Fig. 10 and
Fig. 11.

The model probability points out the true model very early
on, however the the ratios of prognosis criterion RPC show sig-
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FIGURE 10. AVERAGE MODEL PROBABILITY COMPUTED
FROM AICC. Contradicting criteria scenario: average of 100 rounds
of simulation. Dashed lines show 5-95 percentile region
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FIGURE 11. AVERAGE PROGNOSIS CRITERION. Contradicting
criteria scenario: average of 100 rounds of simulation. Dashed lines
show 5-95 percentile region

nificant oscillation for the true model (one instance of the simu-
lation shown in Fig. 12), while showing a very smooth and con-
verging trend for the false model. The average value of RPC of
the true model also stays further away from zero compared to the
false model from zero. The high oscillation indicates that model
parameters can change significantly at each update and that pre-
dicting into the future using this model is unreliable until more
data is gathered and RPC converged close to zero.

The analyses done on the model selection method and the
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criteria results in the following observations:

1. High prediction update frequency (FU ) and the number of
data points per update (N f ) should be used to ensure accu-
rate predictions can be made quickly, but increasing the up-
date and sampling frequencies too high diminishes the the
improvement.

2. Noise removal in the fouling resistance monitoring process
is critical.

3. The model probability based on information criterion gives
a reliable indication of the optimal model in the pool of hy-
pothetical models.

4. The prognosis criterion RPC will have high fluctuation even
when the model probability criterion has selected the best
model. This fluctuation is an indication of the accuracy of
prediction.

Prognosis Using Power Plant Condenser Data
Little data on fouling in desalination plants is publicly avail-

able in the literature. However, Tennessee Valley Authority col-
lected significant amount of fouling data at their power-plant
condensers from fresh water river in the 1970s [18]. Fig. 13
shows the data that were available in one of their published stud-
ies. We have drawn on this data to test the performance of the
proposed prognosis procedure.

The pool of possible fouling models is assembled to con-
tain the linear, falling-rate, and asymptotic models described in
the introduction. The initial deposition time td is ignored, and
an extra free parameter is added at the end as a constant since
the condenser fouling data does not start at zero. The model
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FIGURE 13. FOULING RESISTANCE OF GALLATIN STATION
UNIT 1 CONDENSER [18]. The data shows that the condenser began
operation in April 1975 after being cleaned to restore its condition, and
taken off-line two years later in August 1978. Significant fluctuation
in the fouling resistance is present, and is believed to be the result of
seasonal variation of river water temperature. Negative fouling resis-
tances are observed. This could be the result of sensor noise, and that
small amount of fouling actually improves tube smoothness and its heat
transfer rate [17].

uncertainty is assumed to be a normally distributed random vari-
able. An extra hypothetical model f4 is included which has the
form of a linear function multiplied by a sinusoid of period 12
months. The reason for including a sinusoid is the apparent sea-
sonal dependence observed in the condenser unit, evident by the
distinguishable peaks and troughs in the fouling curve at Febru-
ary and August of each year [18], and the combination of a linear
function multiplied by sinusoid plus constant uncertainty seem
to match the data well compared to other combinations of sinu-
soidal models.

f1 : R f (t) = N (a1,b1)(t)+ c1 (22)
f2 : R f (t) = N (a2,b2) log(c2t +1)+d2 (23)

f3 : R f (t) = N (a3,b3)(1− e−c3t)+d3 (24)

f4 : R f (t) =
[

a4 +b4 sin
(

2π

12
t + c4

)]
t +N (d4,e4) (25)

In total, there are 29 fouling resistance data points sampled
at a frequency of roughly once per month. A minimum of 6 ini-
tial sample points (Ni = 6) are needed to calculate meaningful
AICc values using Eqn. 5. The number of samples per update N f
is chosen to be 3, this will result in about 8 prognosis updates in
the two year period. An N f value that is too high results in too
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FIGURE 14. MAXIMUM LIKELIHOOD ESTIMATION OF CON-
DENSER FOULING MODELS AT THREE DIFFERENT TIMES.
Dashed lines show the 5-95 percentile uncertainty region.

few prognosis updates, while N f too low can result in fluctuat-
ing prognoses. Fig. 14 shows the model estimation at different
times. At the beginning with a small sample, the linear×sine
model seem to over fit the data. The other three models all have
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FIGURE 15. Model Probability at each prognosis updates, comparing
between probability computed using AICc and BIC
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FIGURE 16. Prognosis criterion at each prognosis updates

time-dependent uncertainty and thus predicted with a very wide
uncertainty region. The model plots also suggest that falling-rate
and asymptotic models are not good representations of the data
because they are nearly identical and very similar to the linear
model in shape.

Figure 15 shows the model probabilities calculated from the
information criteria at each prognosis update. The probabilities
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computed from AICc and BIC generally agree but have some
discrepancies initially with time less than 10 months. When the
sample size is small, AICc has a higher penalty for free param-
eters compared to BIC, and thus tends to pick the linear model
that has fewer free parameters. The disagreement between AICc
and BIC is a good indication that the confidence of prognosis is
low for this set of data. The probabilities of the asymptotic model
and the falling-rate model are very low for all times, suggesting
they are not good representations of the data.

The prognosis criterion RPC at each update are shown in
Fig. 16. Of the four models, only the linear model ( f1) showed a
steady decline in its prognosis criterion, while the linear×sine
model has a fluctuating RPC despite the high model probabil-
ity. This situation is very similar to the scenario of contradict-
ing criteria, and thus suggesting that making a prediction using
the linear×sine model under this circumstances may be unreli-
able. More data points would be necessary to result in a reliable
prediction of future degradation.

CONCLUSIONS AND FUTURE WORK
In this work we proposed and studied a prognosis scheme for

predicting future degradation in an engineering system by con-
tinuously monitoring of current degradation. We introduced the
notion of a pool of hypothetical degradation models, a model
selection criterion based on Akaike’s and Bayesian Information
Criteria, and a measure of the prognosis accuracy by computing
the prognosis criterion. The performances of the method was an-
alyzed with different operating parameters for a heat exchanger,
and under non-ideal conditions. The process is also tested using
condenser fouling data obtained from a real power plant. The
results show that degradation prediction can be improved over
continuous monitoring, and that increasing update frequency and
samples per update will improve prediction confidence.

This study is the first step to the development of a moni-
toring and prognostic paradigm. Future degradation predicted
using this scheme can be incorporated into a performance ob-
jective function, along with the model probabilities and progno-
sis criterion, to be optimized by strategic scheduling of mainte-
nance. Extensions to this work would first focus on obtaining a
performance objective function based on deterministic degrada-
tion only, and later optimize the objective function to include the
accuracy criteria.
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