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Abstract— Autonomous agents that can communicate and
make relative measurements of each other can improve their
collective localization accuracies. This is referred to as cooper-
ative localization (CL). Autonomous underwater vehicle (AUV)
CL is constrained by the low throughput, high latency, and
unreliability of of the acoustic channel used to communicate
when submerged. Here we propose a CL algorithm specifically
designed for full trajectory, or maximum a posteriori, estimation
for AUVs. The method is exact and has the advantage that the
broadcast packet sizes increase only linearly with the number
of AUVs in the collective and do not grow at all in the case
of packet loss. The approach allows for AUV missions to be
achieved more efficiently since: 1) vehicles waste less time
surfacing for GPS fixes, and 2) payload data is more accurately
localized through the smoothing approach.

I. INTRODUCTION

Accurate self-localization in underwater environments is
notoriously challenging. Typical underwater vehicles mis-
sions such as ship hull inspections [1], under-ice exploration
[2], and mine countermeasures [3] all benefit from improved
localization. In many cases surfacing for a GPS fix is
either dangerous or impractical. Without access to GPS and
in the absence of pre-installed infrastructure such as long
baseline (LBL) beacons, underwater localization is generally
achieved through a combination of Doppler velocity log
(DVL), inertial sensors, and compasses [4]. Integration of
velocity, acceleration, or angular rate sensor data to estimate
position will always result in unbounded growth in error
(referred to as dead reckoning).

Multi-AUV deployments are becoming common as ve-
hicles become cheaper and more autonomously capable. If
vehicles in a team have the ability to communicate and make
relative measurements of each other, then they can slow their
rate of position uncertainty growth [5]. In the literature this
is often referred to as cooperative localization [6].

CL will reduce the rate of position uncertainty growth for
the vehicles in the team (as compared with dead reckoning).
The rate of uncertainty growth decreases as the size of the
robot team increases, but is subject to the law of diminishing
returns [7]. In addition, the rate of uncertainty growth is
independent of the accuracy or frequency of the inter-vehicle
measurements [8].
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Fig. 1. Conceptual figure showing acoustic communications amongst three
AUVs in a time division multiple access scheme. Green AUV transmits
at time t1, followed by the blue one at time t2, and finally the red one
at time t3. Each reception enables the receiver to obtain a relative range
measurement of the sender based on the travel time of the packet and reduce
its location uncertainty in the direction of the sender (gray ellipse to black
ellipse).

Exact methods require that vehicles must either share their
filtered estimates and full covariances [9] or all raw propri-
oceptive and exteroceptive data [10] to the other members
of the team. For AUV CL this can be problematic since
communicating over any appreciable distance underwater
requires the use of the acoustic channel, which has severe
inherent challenges:

1) High latency: The speed of sound (SoS) in water is
roughly 2 × 105 times slower than the speed of light
in air.

2) Reduced bandwidth: On the order of 10-100 bytes/s
and there is an inherent tradeoff between packet size
and reliability.

3) Unacknowledged: Only one node (vehicle) can trans-
mit at a time. Channel is shared using time-division
multiple access (TDMA). Packet reception is not
known to the sender unless an acknowledgement is
sent in the next transmission.

4) Low Reliability: Packet drop rates from 20-50% or
more depending on the environmental conditions are
common.

In CL, vehicles must also make relative observations of
one another. Since transmission on the acoustic channel
propagates at the SoS in water (≈ 1500m/s), then relative
ranges between sender and receiver can be calculated by
measuring the time-of-flight (ToF) of the transmission and
the known SoS:

Relative Range = ToF× SoS. (1)
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If vehicles can precisely synchronize their onboard clocks,
for example by aligning with the GPS time signal at the
surface and maintaining the time with a precise oscillator
while submerged, then they can calculate these relative
ranges through one-way travel ToF [11]. For a team of
N AUVs, a broadcast acoustic packet can possibly re-
sult in N − 1 range measurements relative to the sender.
Consequently, and unique to the underwater CL case, the
relative measurements and the inter-vehicle communications
are necessarily concurrent. A conceptual representation of
AUV CL is shown in Fig. 1 where the colored arrows
represent acoustic communications that result in relative
measurements.

The key consideration in AUV CL is how to utilize the
acoustic channel. However, design decisions made upstream,
such as the choice of state estimator necessarily have a
significant impact.

We proposed a method that draws inspiration from previ-
ous “multi-centralized” approaches where the full centralized
state of the team is estimated onboard each robot [12],
[13], [14]. However, in our case, the joint states estimated
onboard each vehicle vary across the team. This is a result
of the insight that agents need not estimate the poses of
the others in between measurement/communication times
nor their headings at any time since relative range are
independent of heading. Additionally, using an approach
similar to the “anti-factor” idea proposed in [15], our sys-
tem is robust to communications failures without having to
resend data by defaulting to send proprioceptive constraints
that connect the current vehicle pose to the point of last
known confirmed successful communication. In the case that
the receiving vehicle already has some of the information
contained within the factor that is transmitted, then a new
correct and consistent factor can be generated through local
subtraction. This is related to the “origin-state” method
proposed in [16], but extends it by removing the need for
relative measurements/communications to be unidirectional.

These design choices result in a CL scheme that has
the following contributions, some of which are achieved by
previous works, but none to our knowledge are able to claim
in combination:
• Provides full multi-robot trajectory estimation
• Data packet size scales linearly with size of robot team
• Data packet size is constant in the case of communica-

tions failures
• Adaptive to the performance of the communications

channel
• Provides consistent estimates (avoids overconfidence)
• Does not discard any measurement data and is therefore

exact
Multi-AUV deployments can be beneficial in terms of

being able to parallelize missions. Our proposed approach
provides further benefits:

1) The need to surface to bound localization error is
reduced since:

a) Any vehicle surfacing will transfer the benefit to

the entire team,
b) Localization error grows more slowly when

agents can cooperatively localize,
2) Payload data collection is more efficient by combining

a trajectory estimation approach with adaptive planning
[17].

In Sec. II, we provide a non-exhaustive review of CL
literature with a particular focus on the underwater case. In
Sec. III we formulate the centralized cooperative trajectory
estimation problem as a non-linear least squares optimiza-
tion. We show that the data transmission requirements to
recover this fully centralized estimate vastly exceed the
capabilities of the acoustic channel. In Sec. IV, we propose
a decentralized version of the trajectory estimation problem
and detail exactly what data should be transmitted and
how the appropriate factors in the factor graph should be
computed from the incoming packets. Experimental results
are presented in Sec. V using real AUV navigation data
from multiple AUVs and simulated acoustic communications
under various conditions. We conclude in Sec. VI.

II. COOPERATIVE LOCALIZATION LITERATURE

Perhaps the first work to exploit relative measurements be-
tween robots for localization was [5] where members of the
team are divided into two groups which take turns remaining
stationary as landmarks for the other. The term cooperative
localization was coined in [6], where the necessity for some
robots to be stationary was also removed. Subsequently,
many have suggested different estimation algorithms such
as distributed EKF [9], maximum likelihood [18], maximum
a posteriori (MAP) [19], and particle filter [20]. Although
many of these works cite the underwater case as a possible
application domain, they all require communication capabil-
ities that are infeasible underwater.

Recently, some works have specifically addressed the
communications bandwidth issue through quantization of
measurement data [21], [14], [13], or estimation of un-
known correlations through covariance intersection [22].
The quantization-based approach is based on the sign-of-
innovation Kalman filter and still requires transmission of
at least 1 bit for every real-valued measurement. In addition,
these approaches are not robust to unknown communications
failures. The covariance intersection method in [22] can
claim the same linear scalability of data throughput with the
size of the robot team, however this method is approximate.

Several methods are capable of handling asynchronous
communications such as [23], [12], [22]. For example, [23],
provides a framework for deciding under what conditions
raw data can be replaced by filtered estimates. Similarly in
[12] a delayed-state filter is proposed. These works have two
notably shortcomings for implementation underwater: first,
filtering approaches will always require the transmission of
the joint state covariance matrix which scales O(N2) where
N is the size of the robot team, and secondly, data backlog
over extended periods of disconnectivity between nodes is
problematic.
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Fig. 2. Factor graph representation of multi-AUV cooperative trajectory
estimation between two AUVs. Each vehicle estimates its own position
through compass measurements θ̂, DVL-derived odometry, u, and occa-
sional GPS measurements g. Vehicles can additionally improve their pose
estimates through relative range observations r.

A. The Underwater Case

For AUV CL the communications channel is the funda-
mental limitation. There are two basic approaches: either
vehicles transmit pose estimates (distributions) or raw mea-
surements. In the former, a key consideration is accounting
for the correlations that are induced between vehicles as
neglecting these will inevitably result in inconsistency and
divergence. A hierarchical approach sidesteps this problem
by restricting communication and relative ranging to be
one-way. For example, [24], where one or more support
vehicles are referred to as communications and navigation
aids (CNA), and [25], [16] where vehicles are separated into
“servers” and “clients”. The necessity to transmit a full joint
covariance matrix can also be avoided through the interleaved
update approach in [26], however the estimates from this
approach are overly conservative. In the case of transmission
of raw data, the issue becomes how to selectively trans-
mit data since sensor frequencies are generally orders of
magnitude higher than the communication frequencies. In
[10], a keyframe-style approach is used, where only a subset
of the relative measurements are used and the remaining
communication slots are used to marshal data. The keyframe
rate is chosen a priori based on the expected performance
of the communication channel. Unexpectedly poor commu-
nication performance or long periods of disconnectivity will
always result in data backlogging and algorithm failure.
In our approach we transmit raw data but we combine
measurements together to avoid this backlogging problem.

III. CENTRALIZED COOPERATIVE TRAJECTORY
ESTIMATION

We begin by formulating the centralized trajectory esti-
mation problem. Specifically we consider a 2D kinematic
motion model for a torpedo-style AUV since depth can be ac-
curately observed with a pressure sensor. When submerged,
AUVs dead reckon using a DVL sensor that measures the

velocity relative to the seabed and a compass.
Let the pose of vehicle i at time t be represented by: xit =

[xit, y
i
t, θ

i
t]

T. The centralized trajectory estimator state is xc ,
x1:N

1:T where N is the number of vehicles in the collective and
T is the present time. Each vehicle propagates an estimate
of its own pose using velocity data, uit = [vit, w

i
t]

T, where v
and w are the forward and starboard returns from the DVL:

xit = f(xit−1,u
i
t) + ζit , ζit ∼ N (0,Σit)

= xit−1 +

[
∆tR(θit−1)uit

0

]
+ ζit

(2)

where ∆t is the reciprocal of the frequency of the DVL
sensor, R(θit−1) is the standard 2x2 rotation matrix, and the
additive noise covariance, Σit, is calculated as:

Σit =

∆t2R(θit−1)

[
σ2
vv 0
0 σ2

ww

]
R(θit−1)T 02×1

01×2 0


where σvv and σww are the RMS error values of the DVL
sensor in the forward and starboard directions respectively.

The heading is assumed directly observable through com-
pass measurements θ̂it:

θ̂it = θit + γ , γ ∼ N (0, σ2
θ̂θ̂

) (3)

When an AUV is at the surface, position is directly
observable through GPS measurements git

git = [xit, y
i
t]

T + ξ , ξ ∼ N (0,Ξ) (4)

where Ξ is the diagonal matrix of RMS squared values for
the error of the GPS sensor.

Vehicles communicate with each other using the acoustic
modem and share the channel through time division multiple
access (TDMA). In our implementation the TDMA sequence
is decided beforehand. However, it is possible to devise
flexible schemes whereby slots can be chosen dynamically. In
the fixed case that we are using there is no need to send any
vehicle identifier since the packet origin can be inferred from
the TDMA sequence. Vehicles synchronize their onboard
clocks to the GPS time signal before submerging and then
maintain the time onboard with precise clocks [27]. AUV j
sends acoustic transmission k = 1..K at time tk , tjk and
it is received on vehicle i at time tk + ∆i,j

k , tik where
∆i,j
k is the TOF of the acoustic packet. The resulting range

measurement is represented by the RV ri,jtk . It should be noted
that in reality the acoustic transmission is sent from point to
point in 3D space. We project the range onto the 2D plane
which requires knowledge of both vehicles’ depths, di and
dj :

ri,jtk , r2D = (r2
3D − (di − dj)2)

1
2

The range measurement model is given by:

ri,jtk = h(xitik
,xj
tjk

) + δi,jtk , δi,jtk ∼ N (0, σ2
rr)

= ||[xitik , y
i
tik

]T − [xj
tjk
, yj
tjk

]T||2 + δi,jtk
(5)

where σ2
rr is the covariance of the range measurement and is

assumed to be constant with time and independent of range,
a claim experimentally validated in [11].



By moving all non-noise terms onto the left hand side
of equations (2)-(5) and following the method in [28] we
can factorize the joint probability over vehicle trajectories,
inputs, and measurements, as a product of conditionals:

p(xc,u
1:N
1:t ,g

1:N
1:t , θ̂

1:N
1:t , r

1:N,1:N
t1:tk

) ∝
T∏
t=1

N∏
i=1

p(xit|xit−1,u
i
t)

T∏
t=1

N∏
i=1

p(git|xit)
T∏
t=1

N∏
i=1

p(θ̂it|θit)
K∏
k=1

N∏
i=1

N∏
j=1
i6=j

p(ri,jtk |x
i
tik
,xj
tjk

)

(6)

Note that for convenience we have omitted the priors since
in the field the AUV prior location is initialized with GPS
on the surface and is encapsulated by g.

We represent the joint probability given in (6) as a Gaus-
sian factor graph as shown in Fig. 2 and follow the procedure
in [28] to represent the problem as a non-linear least squares
optimization problem and solve for x∗c , the MAP estimate of
all vehicle trajectories:

x∗c = argmin
xc

{
T∑
t=1

N∑
i=1

1

2
||f(xit−1,u

i
t)− xit||2Σit+

T∑
t=1

N∑
i=1

1

2
||[xit, yit]T − git||2Ξ +

T∑
t=1

N∑
i=1

1

2
||θit − θ̂it||2σ2

θ̂θ̂

+

K∑
k=1

N∑
i=1

N∑
j=1
i 6=j

1

2
||h(xitik

,xj
tjk

)− ri,jtk ||
2
σ2
rr
},

(7)

where the standard squared Mahalanobis distance notation
||e||2Σ = eΣ−1eT is used. In the implementation, (7) can
solved incrementally [29].

A. Data Throughput Required for Centralized Trajectory
Estimate

The centralized multi-vehicle MAP estimate is obtained
by solving (7). This requires knowledge of all proprioceptive
and exteroceptive measurement data from all vehicles for all
time.

1) No Comms Dropouts: If the DVL and compass fre-
quencies are 10Hz and each piece of data can be encoded
with 1byte (8 bits) and the TDMA slot length is 10s
and the number of vehicles in the team is N , then each
vehicle would potentially need to transmit (8bits/piece of
data*30 pieces of data /second * 10seconds/slot * N slots)*N
vehicles=21.6Kbits of data per transmission for a modest
team size of N = 3. Even in the case of further one-bit
quantization as proposed in [21], the amount of data per
transmission is still 2.7Kbits of data. Such throughput rates
are unachievable in water.

2) With Comms Dropouts: In the inevitable case that
there are communications dropouts, the data required to be
transmitted is unbounded and grows linearly with time. In
the worst case all vehicles would need to transmit all their
sensor data from the start of the mission.
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Fig. 3. Factor graph representation of decentralized multi-AUV trajectory
estimation. Vehicle 1 now maintains 2 factor graphs. Top: The new local
multi-AUV factor graph. Bottom: The dead-reckoning (DR) position graph.
Marginalization is performed on the DR position graph to compute the
factors that other members of the team require in order to generate their
own local multi-AUV trajectory estimates.

IV. PROPOSED DECENTRALIZED MULTI-AUV
TRAJECTORY ESTIMATION

Here we propose a modified version of (7) where the
amount of data required to be passed between vehicles is
feasible within the restrictive acoustic channel and accounts
for the challenges enumerated in Sec. I. The key to the
approach is that each vehicle can treat the others as mov-
ing beacons and only needs to estimate their positions at
communication/measurement times in order to obtain all of
the benefits of cooperative trajectory estimation locally.

We begin with a few shorthand notation definitions. The
position of vehicle i at time t is given by x̄it , [xit, y

i
t]

T.
With a slight abuse of notation let the position of vehicle i
at transmission time tk be given by x̄ik , [xi

tik
, yi
tik

]T

Each vehicle j locally maintains two factor graphs as
shown in Fig. 3. The first consists of own-vehicle poses
for all time and other vehicle positions for all communi-
cations/measurement times:

xjd , [x̄1:j−1
1:K ,xj1:T , x̄

j+1:N
1:K ]T (8)

The second is a dead-reckoning (DR) position graph
that is used to estimate only own-vehicle position: x̄j1:T

using compass and DVL sensor data directly (as opposed
to estimating heading):

x̄jt = x̄jt−1 + ∆x̄jt + ζ̄jt , ζ̄jt ∼ N (0, Σ̄jt ) (9)

where ∆x̄jt , ∆tR(θ̂jt )u
j
t and:

Σ̄jt = ∆t2
[
R(θ̂jt ) R′(θ̂jt )u

j
t

]
Q
[
R(θ̂jt ) R′(θ̂jt )u

j
t

]T

(10)
where Q is diagonal matrix with diagonal elements
σuu, σvv, σθ̂θ̂.



This DR position graph is used to generate the factors that
will be transmitted to other vehicles. From the DR position
graph we can generate a change in position factor (esti-
mate and associated covariance) from any start time to any
end time by marginalizing out intermediate position nodes.
In this case marginalization is equivalent to performing a
compounding operation, and since we are only considering
positions and not orientations, this operation is equivalent
to simple addition. For example to combine position factors
from time t1 to t2:

x̄jt1 = x̄jt2 + ∆x̄jt1→t2 + ζ̄jt1→t2 (11)

where:

∆x̄jt1→t2 ,
t2∑
t=t1

∆x̄jt (12)

and

ζ̄jt1→t2 ,
t2∑
t=t1

ζ̄jt ∼ N (0, Σ̄jt1→t2) (13)

with:

Σ̄jt1→t2 =

t2∑
t=t1

Σ̄jt (14)

Each vehicle uses its own local DR position graph com-
bined with the bookkeeping algorithm described below to
determine which set of factors should be transmitted such
that other vehicles in the team will be able to generate a
local estimate of the multi-vehicle trajectory.

A. Bookkeeping

Bookkeeping is required for vehicles to know which local
factors should be generated to guarantee consistency of the
multi-vehicle estimates maintained by others. Each vehicle i
maintains a set of N−1 incoming (Ciin) and outgoing (Ciout)
confirmed contact points. These contact points are the times
of most recent confirmed successful communications to and
from each other vehicle in the team.

Incoming contact points are easily detectable based on
the times at which communications are received. Outgoing
contact points necessitate the use of communicated acknowl-
edgment bits that are sent in subsequent data packet transmis-
sions. In the case that an acknowledgement communication
also fails, the contact point time will not be updated, in
essence assuming that the previous outgoing communication
had failed. However, in the case that this implied assumption
is incorrect, the receiving vehicle will still be able to recover
the appropriate factor from the data sent using the subtraction
property for change in position factors (see Sec. IV-C).

As an example, for the case of fully successful transmis-
sions for an entire cycle depicted in Fig. 1, the incoming
contact point time sets after the communication at time t3
are given by:

C1
in = {−, t12, t13}
C2
in = {t21,−, t23}
C3
in = {t31, t32,−}

(15)

Algorithm 1 Generating data packet for acoustic transmis-
sion on-board vehicle i at time tiK

1: Transmission queue is empty
2: for all j = 1..N, j 6= i do
3: Calculate ∆x̄iCiin[j]→tiK

and ∆x̄iCiout[j]→tiK
and associ-

ated covariances Σ̄iCiin[j]→tiK
and Σ̄iCiout[j]→tiK

and add
them to transmission queue.

4: Add range measurement ri,jCiin[j]
to transmission queue.

5: end for
6: if have GPS update, gitg with (tg > min{Ciin, Ciout})

then
7: Add gitg , ∆x̄i

tg→tiK
, and Σ̄i

tg→tiK
to the transmission

queue.
8: end if
9: Add acknowledgment bits to the transmission queue.

10: Push data to the modem hardware for transmission.

and the outgoing contact point times sets are given by:

C1
out = {−, t11, t11}
C2
out = {t20,−, t22}
C3
out = {t30, t30,−}

(16)

where a ‘−’ represents the entry in the set that corresponds
to the vehicle on which it resides (Ciin[i] = Ciout[i] = ‘−′).
All contact points in this case were initialized to t0. Note
that the outgoing contact point times for C3

out are still t0
because AUV 3 (red) has no knowledge about whether the
communications that it sent at time t3 were successful until
it gets a confirmation through the acknowledgement bits.

B. Acoustic Packet Transmission

Consider the case where vehicle i makes an acoustic
transmission at time tK . The following data should be
included in the data packet:
• The change in position factors from incoming and

outgoing contact point times to the present time (line
3),

• Range data associated with each of the incoming contact
point times (line 4) as well as corresponding vehicle
depth,

• A local GPS measurement if one has been made since
the oldest contact point and a change in position to the
time of the GPS measurement, tg (line 7),

• A set of N − 1 acknowledgment bits (line 9),
The packet generation is described in Algorithm 1.

C. Acoustic Packet Reception

Upon reception of an acoustic packet on vehicle j sent
from vehicle i, the receiver must generate the correct factors
to compute the MAP estimate of xjd. Generating the correct
change in position factors that relate the positions of other ve-
hicles to own-vehicle poses can possibly require performing
a subtraction operation on the the change in position factor.
For example, consider the case where AUV j receives two



Algorithm 2 Reception of acoustic data packet K on AUV
j sent from AUV i at time tK

1: Calculate new range factor ri,jtK from TOF and synchro-
nized clocks

2: for all new range factors ri,ptk received or calculated do
3: if x̄i

tik
or x̄p

tpk
not in state space then

4: Add to state space
5: end if
6: Add range factor
7: end for
8: if GPS factor gitg received then
9: if xitg not in state space then

10: Add to state space
11: end if
12: Add GPS factor
13: end if
14: for all Change in position factors do
15: if Factor can be decomposed using subtraction prop-

erty then
16: Decompose
17: end if
18: Add change in position factor
19: end for
20: Ciin[j]← tK
21: if acknowledgment bit ‘1’ received for last transmission

time tk then
22: Ciout[j]← tk
23: end if

x̄j
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x̄j
t

∆x̄j
t1→t
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x̄j
t2

x̄j
tx̄j

t1

x̄j
t1

x̄j
t2
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Fig. 4. The subtraction property illustrated on the change of position
factors. The top two change in position factors are received and are
decomposed into the single bottom position chain.

change in position factors from vehicle i at time t, ∆x̄it1→t
and ∆x̄it2→t with t1 < t2. Then ∆x̄it1→t2 can be recovered
using:

∆x̄jt1→t2 = ∆x̄jt1→t −∆x̄jt2→t (17)

This is a valid operation since the factors are built using
simple addition in (12) and (14). For a visual depiction refer
to Fig. 4. This is required when a previous transmission that
was assumed to have failed was actually successful.

An overview of the method for processing the received
data is given in Algorithm 2. The key is that vehicle j can
recover the appropriate range, GPS, and changes in position

needed for its own local multi-vehicle factor graph. The
multi-vehicle factor graph is guaranteed to remain connected
and consistent at all times because change in position factors
originate from times of known communication and therefore
relative measurement.

D. Centralized → Decentralized

To obtain a decentralized multi-vehicle trajectory estimate,
each AUV, j locally solves the following non-linear least
squares problem:

xjd
∗

= argmin
xjd

{
T∑
t=1

1

2
||f(xjt−1,u

j
t )− xjt ||2Σjt+

K∑
k1=1

K∑
k2=k1

∑
i=1..N
i6=j

1

2
||x̄itk1 + ∆x̄itk1→tk2

− x̄itk2
||2Σ̄itk1→tk2

+

T∑
t=1

N∑
i=1

1

2
||x̄it − git||2Ξ +

T∑
t=1

1

2
||θit − θ̂it||2σ2

θ̂θ̂

+

k∑
k=1

N∑
i1=1

N∑
i2=1
i2 6=i1

1

2
||||x̄i1k − x̄i2k ||2 − r

i1,i2
tk
||2σ2

rr
}.

(18)

which is identical to (7) except that the odometry factors have
been re-organized into own-vehicle odometry (first term) and
other-vehicle changes in position (second term) and that the
compass factors have been removed for all other vehicles
(fourth term).

E. Data Throughput Required for Decentralized Trajectory
Estimate

Data to be transmitted is at most:
• 2(N − 1) change in position factors (comprising value

and associated covariance),
• N − 1 range factors and depths,
• one GPS factor with associated change in position,
• N − 1 acknowledgment bits.

Scaling is linear with respect to the size of the AUV team
N and constant with respect to time t even in the worst case
of communications dropouts.

V. EXPERIMENTS

A. Setup

Navigation data was collected over several days in October
2012 at our test site in Nova Scotia, Canada. The Iver2 AUV
shown in Fig. 5 is equipped with a SonTek DVL, a 3-axis
compass, and a WHOI micromodem for acoustic commu-
nications [30]. The vehicle operates in a frontseat/backseat
configuration where our cooperative trajectory estimation al-
gorithm runs on a backseat 1.6GHz Atom processor running
the MOOS-IvP middleware [31] and communicating with the
frontseat via the iOceanServerComms application [32]. The
cooperative trajectory optimization algorithm uses the open
source iSAM [29] and Goby software [33]. We used the data



Fig. 5. The Iver2 AUV in the water at the field site near Dartmouth, Nova
Scotia, Canada.

gathered from the multiple runs to simulate a large multi-
vehicle experiment by synchronizing the data and playing
it all back at once and simulating inter-vehicle ranging
and communications. As such, we can directly control the
performance of the acoustic communications channel and
evaluate the performance of our algorithms under different
conditions.

B. Results

Recall the originally stated benefits of the proposed algo-
rithm which were:

1) AUVs minimize surfacing for GPS fixes,
2) Uncertainty is reduced over the entire AUV trajectory.
Here we demonstrate how each of these two objectives

have been achieved notwithstanding the challenges of acous-
tic communications.

1) Objective 1 - Less Frequent Surfacing for GPS Fixes:
This objective is achieved in the proposed method in two
ways that compound. First, the fact that vehicles are com-
municating and making relative measurements causes their
instantaneous location uncertainty to grow more slowly.
Consider Fig. 6 which shows the local filtered location
estimate uncertainties for one vehicle using the proposed
algorithm. From the figure, even for a 20% success rate
of data communications (red plot) there is a significant
advantage over no communication (100% failure). The algo-
rithm opportunistically exploits the few successfully received
packets without any backlogging of data resulting from all
the failed ones.

Second, the surfacing of one vehicle for a GPS fix can
bound the localization error of all vehicles in the team.
In Fig. 7, both the instantaneous, or filtered, covariances
and the smoothed covariances obtained by re-optimizing the
trajectory at time t = 500s are shown. The uncertainty on
the vertical axis of Fig. 7 is represented as the sum of the
autocovariances: σ2

xtxt + σ2
ytyt . AUV 1 surfaces for GPS

twice at which point the instantaneous location uncertainty is
reduced to ≈ 3m. In between the GPS fixes, the uncertainties
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Fig. 6. The instantaneous (filtered) location uncertainty of AUV 1 using
the proposed method for different dropout rates.
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Fig. 7. The instantaneous (filtered) and smoothed uncertainties of two ve-
hicles cooperatively localizing using the proposed method. AUV 1 surfaces
for GPS twice thus bounding the uncertainty for both vehicles.

of the two vehicles are similar, meaning that AUV 2 obtained
most of the benefit of surfacing without ever having to do
so.

2) Objective 2 - Uncertainty Reduced over Entire Trajec-
tory: The benefit of full trajectory estimation is shown in Fig.
7 by comparing the instantaneous location uncertainty (solid
lines) with the smoothed estimate uncertainty (broken lines).
In this case, since inter-AUV measurements are intermittent
and provide information about the AUV location directly,
smoothing has a large effect.

Fig. 8 shows the smoothed estimate uncertainties for the
cases from Fig. 6 that are computed at time t = 500s.
Even for a success rate of only 50%, the smoothed estimate
uncertainties are very close to the optimal case (100%
success).

VI. CONCLUSION

We have presented a cooperative trajectory estimation
scheme for teams of autonomous underwater vehicles which
is able to opportunistically exploit the underwater acoustic
communications channel. Normally, mission planners require
AUVs to surface when their location uncertainty reaches a
threshold. Therefore, the longer an AUV’s location uncer-
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Fig. 8. The location uncertainty of the smoothed estimate at time t = 500s
of AUV 1 using the proposed method for different dropout rates.

tainty is maintained below the threshold, the less frequently
it needs to surface. In addition, gathered sensor data will be
more accurately localized through full trajectory estimation.

Future work in this direction includes a large multi-
vehicle deployment and extension to the full cooperative
simultaneous localization and mapping scenario.
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