
Concurrent Filtering and Smoothing:
A Parallel Architecture for Real-Time Navigation

and Full Smoothing
Stephen Williams*, Vadim Indelman*, Michael Kaess†, Richard Roberts*,

John J. Leonard¶, and Frank Dellaert*

Abstract
We present a parallelized navigation architecture that is capable of

running in real-time and incorporating long-term loop closure constraints
while producing the optimal Bayesian solution. This architecture splits
the inference problem into a low-latency update that incorporates new
measurements using just the most recent states (filter), and a high-latency
update that is capable of closing long loops and smooths using all past
states (smoother). This architecture employs the probabilistic graphical
models of Factor Graphs, which allows the low-latency inference and high-
latency inference to be viewed as sub-operations of a single optimization
performed within a single graphical model. A specific factorization of the
full joint density is employed that allows the different inference operations
to be performed asynchronously while still recovering the optimal solution
produced by a full batch optimization. Due to the real-time, asynchronous
nature of this algorithm, updates to the state estimates from the high-
latency smoother will naturally be delayed until the smoother calculations
have completed. This architecture has been tested within a simulated
aerial environment and on real data collected from an autonomous ground
vehicle. In all cases, the concurrent architecture is shown to recover the
full batch solution, even while updated state estimates are produced in
real-time.

1 Introduction
A high-quality estimate of a vehicle’s position, orientation, velocity, and other
state variables is essential for the success of autonomous robotic deployments.

* Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta,
GA 30332, USA.

†Field Robotics Center, Robotics Institute, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213, USA.

¶Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139,
USA.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/78062785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Common low-level control objectives (e.g. maintaining a target speed or follow-
ing a specified trajectory) are dependent on the system’s estimated state. This
is particularly true for aerial vehicles where the unstable dynamics of the system
requires constant adjustment of the vehicle’s orientation and thrust simply to
stay aloft, necessitating high rate and high quality state estimates. Additionally,
planning objectives and future control plans are often affected by the current
state of the robot. Determining the shortest path to a goal location or planning
obstacle-free trajectories are influenced by the global position of the vehicle.
Further, additional robot objectives, such as mapping the environment, benefit
from the availability of accurate, low-latency navigation estimates. To achieve
high-quality global position estimates, either sources of global measurements
are required (e.g. GPS) or loop closure constraints must be introduced. Loop
closures constraints are generated whenever the robot identifies it is revisiting a
previous location. Such constraints allow the estimator to correct accumulated
drift, resulting in better global position estimates.

Conventional navigation systems are able to provide either constant-time
updates or the ability to incorporate loop closures, but not both. Filtering
techniques, such as the extended Kalman filter (EKF), maintain constant-time
updates by marginalizing out all past variables. Variations on the EKF, such
as augmented state filters or fixed-lag smoothers, maintain only a subset of the
past states to improve estimation accuracy and allow the incorporation of mea-
surements involving these additional states. This is commonly done in vision-
aided systems, where several sightings of a distinctive environmental feature
are required to properly triangulate the feature location. To maintain real-time
performance, the number of additional states must remain small, making the
incorporation of loop closures to arbitrary states in the past impossible. In con-
trast, full smoothing methods, also commonly referred to as full simultaneous
localization and mapping (SLAM) or bundle adjustment (BA), seek to estimate
the value of all past states within the optimization. This allows the simple
incorporation of loop closure constraints that reference any past state, but at
the expense of computational complexity. Even while leveraging the inherent
sparsity of the problem and utilizing the latest algorithms for performing incre-
mental inference, constant-time updates in the presence of loop closures cannot
be achieved.

Parallelization is the key to providing both real-time state updates with
the ability to incorporate arbitrary loop closures. The basic idea is to have a
low-latency process update the current state at a high rate while a slower back-
ground process performs full bundle adjustment. The challenge to such systems
lies in the information exchange or synchronization of the two processes in a
probabilistically sound way. Several systems have explored this type of paral-
lel processing recently, such as the parallel tracking and mapping architecture
(PTAM) Klein and Murray (2007) and the dual-layer estimator Mourikis and
Roumeliotis (2008). However, neither of these system successfully explored the
synchronization issue. Within PTAM, the synchronization problem is avoided
by simply replacing the current tracking state with information from the bundle
adjustment, while the synchronization method used in the dual-layer estimator

2

is unclear as presented. Further, both systems were developed specifically for
vision applications and may not be easily generalized to other sensor combina-
tions.

In this paper, we propose a general inference framework, first presented in
Kaess et al. (2012b), for performing concurrent filtering and smoothing (CFS).
Similar to full smoothing approaches, an estimate is generated for all past states,
allowing the easy incorporation of arbitrary loop closure constraints. However,
unlike conventional smoothing, the problem is partitioned into two sets: a small
set of the most recent states that is updated in real-time, and a large set of
the remaining states that is updated at a much slower rate. This partitioning
supports independent updates of the two variable sets, thus enabling parallel
processing. Additionally, methods for performing the synchronization of the two
partitions in a probabilistically sound manner are defined, as are methods for
changing the current partitioning. By viewing filtering and smoothing simply
as inference operations performed within a single graphical model of the entire
smoothing problem, the CFS system is able to recover the exact full smoothing
solution while providing updated state estimates in real-time. The cost of this
parallelization is only an additional delay between the time a loop closure con-
straint is identified and the time the effects of the loop closure are propagated
to the current filtering solution.

In Section 2, we review existing algorithms for estimating the navigation
state, including existing methods of parallel inference. In Section 3, we formu-
late the addressed problem. In Section 4, we provide a brief review to the factor
graphs, a graphical framework for probabilistic inference. In Section 5, we in-
troduce the basic concurrent filtering and smoothing architecture, examining
the different operations and sources of delays. In Section 6, we present imple-
mentation specifics of the concurrent filtering and smoothing system, including
the nonlinear optimization methods and additional techniques that guarantee
constant-time updates and synchronizations. In Section 7, we compare results
from the concurrent system with a similar quality fixed-lag smoother and full
batch optimization. The system is tested using both a simulated aerial environ-
ment and with data collected from an autonomous ground vehicle. Finally, in
Section 8, we present our general conclusions about the concurrent architecture
and propose future work.

2 Related Work
Many filtering-based solutions to the navigation problem exist that are capable
of integrating multiple sensors (Bar-Shalom and Li, 1995). Examples include
GPS-aided (Farrell, 2008) and vision-aided (Mourikis and Roumeliotis, 2007;
Zhu et al., 2007; Jones and Soatto, 2011) inertial navigation. A recent overview
of filtering and related methods to multi-sensor fusion can be found in (Smith
and Singh, 2006). In addition to the extended Kalman filter (EKF) and variants
such as the unscented Kalman filter, solutions also include fixed-lag smoothing
(Maybeck, 1979). While delayed and/or out-of-sequence data can also be han-

3

dled by filters (Bar-Shalom, 2002; Shen et al., 2009; Zahng and Bar-Shalom,
2011), fixed-lag smoothing additionally allows re-linearization (Ranganathan
et al., 2007; Lupton and Sukkarieh, 2012). However, filtering and fixed-lag
smoothing based navigation solutions are not able to probabilistically include
loop closure constraints derived from camera, laser or sonar data; the most use-
ful loop closures reach far back in time to states that are no longer represented
by such methods.

Integration of loop closures requires keeping past states in the estimation
and can be solved efficiently by smoothing. Originally in the context of the
simultaneous localization and mapping (SLAM) problem, a set of landmarks
has been estimated using the EKF (Smith et al., 1988, 1990; Moutarlier and
Chatila, 1989). However, the EKF solution quickly becomes expensive because
the covariance matrix is dense, and the number of entries grows quadratically
in the size of the state. It has been recognized that the dense correlations
are caused by elimination of the trajectory (Eustice et al., 2006; Dellaert and
Kaess, 2006). The problem can be overcome by keeping past robot poses in the
estimation instead of just the most recent one, which is typically referred to
as full SLAM or view-based SLAM. Such a solution was first proposed by Lu
and Milios (1997) and further developed by many researchers including Thrun
et al. (2005); Eustice et al. (2006); Dellaert and Kaess (2006); Mahon et al.
(2008); Konolige et al. (2010); Grisetti et al. (2007). Even though the state
space becomes larger by including the trajectory, the problem structure remains
sparse and can be solved very efficiently by smoothing Dellaert and Kaess (2006);
Kaess et al. (2012a).

View-based SLAM solutions typically only retain a sparse set of previous
states and summarize the remaining information. For high rate inertial data,
summarization is typically done by a separate filter, often performed on an iner-
tial measurement unit (IMU). Marginalization is used to remove unneeded poses
and landmarks, good examples are given in (Folkesson and Christensen, 2004;
Konolige and Agrawal, 2008). And finally, the so-called pose graph formulation
omits explicit estimation of landmark locations, and instead integrates relative
constraints between pairs of poses. Despite all the reductions in complexity,
smoothing solutions are not constant time when closing large loops and are
therefore not directly suitable for navigation purposes.

Constant time operation in presence of loop closure observations has been ex-
perimentally demonstrated in adaptive relative bundle adjustment Sibley et al.
(2009); Mei et al. (2011). By resorting to a relative formulation and adaptively
identifying which camera poses to optimize, the authors have been able to re-
duce the number of optimized variables. However, this method results in an
approximate solution to the overall least-squares problem and leverages specific
properties of the structure-from-motion problem. In contrast, we propose a
general approach for fusing information from any available sensors, that uses
parallelization to guarantee constant time operation and produces the exact so-
lution, with a certain time delay, as would have been obtained by a full nonlinear
optimization.

Similar to our work, filtering and smoothing has been combined in a single

4

optimization by Eustice et al. (2006). Their exactly sparse delayed state filter
retains select states as part of the state estimate, allowing loop closures to be
incorporated. The most recent state is updated in filter form, allowing inte-
gration of sensor data at 10Hz. Their key realization was the sparsity of the
information form, and an approximate solution was used to provide real-time
updates. Our solution instead provides an exact smoothing solution incorporat-
ing large numbers of states, while being able to process high rate sensor data on
the filtering side with minimum delay. Simplification algorithms such as Vial
et al. (2011) are orthogonal to this work and can be used to further improve
performance of the smoother.

A navigation solution requires constant processing time, while loop closures
require at least linear time in the size of the loop; hence parallelization is needed.
Klein and Murray (2007) proposed parallel tracking and mapping (PTAM) of
a single camera, where localization and map updates are performed in parallel.
This differs from the navigation problem because filtering is replaced by repeated
re-localization of the camera with respect to the current map. Still, the key idea
of performing slower map updates in parallel is directly applicable to navigation.
In addition, the bundle adjustment (BA) (Triggs et al., 2000) used to optimize
the map is mathematically equivalent to the smoothing solution deployed in our
work: the only difference is the specific structure of the problem, which is more
sparse in our navigation case. The same parallelization is also used in more
recent dense solutions such as dense tracking and mapping by Newcombe et al.
(2011b) and KinectFusion by Newcombe et al. (2011a). However, while this
separation into relocalization and mapping works well for tracking a camera, it
does not allow probabilistic integration of inertial sensor data as achieved by
our work.

Probably the closest work in navigation is the dual-layer estimator by Mourikis
and Roumeliotis (2008) for combined camera and inertial estimation that uses
an EKF for fast processing and BA for limiting linearization errors. However,
they do not sufficiently explain how the BA result is fed back into the filter,
in particular how consistent feedback is performed without rolling back the fil-
ter. Rolling back measurements is made unnecessary in our formulation, which
casts the concurrent filtering and smoothing processes as a single, parallelized
optimization problem.

Our novel solution combines filtering and smoothing within a single estima-
tion framework, while formulating it in such a way that both are performed
concurrently. Hence the filter operates at constant time when integrating new
sensor data, while updates from the slower smoother are integrated on the fly
once they become available.

3 Problem Formulation
Our goal, in the context of navigation problem, is to produce the best possible
estimate of the current state θt given all of the available sensor measurements, Z

5

θ∗t = arg max
θt

p(θt | Z). (1)

This optimization is typically performed using a recursive filtering approach,
such as the extended Kalman filter, where past states are marginalized out each
time new states arrive:

p (θt+1 | Z) =
ˆ
θt

p (θt, θt+1 | Z) . (2)

Filtering methods have the advantage of providing constant time updates, and
can therefore process sensor data at a high rate. However, measurements from
navigation aiding sensors, such as cameras or laser scanners, often involve past
states that are no longer available inside the filter. Incorporating measurements
from these sensors therefore requires maintaining the distribution also over the
involved past states, leading to a fix-lag smoother (or augmented-state filter)
formulation. Calculating the best estimate of the current state θt then involves
first calculating the posterior over the states within the smoothing lag and then
marginalizing out the past states.

In the general case, however, some of the incoming measurements may in-
volve arbitrary states from the past. These measurements, typically referred
to as loop closures, encode essential information but cannot be incorporated
into the posterior if some of the involved states are not within the smoothing
lag. Recovering the maximum a posteriori (MAP) estimate requires therefore
maintaining the distribution over all past variables, leading to full smoothing
or full SLAM formulations.

In the full SLAM problem, the joint probability distribution, p (Θ | Z), over
all variables Θ is maintained, and the MAP estimate of these states is given by

Θ∗ = arg max
Θ

p (Θ | Z) . (3)

The MAP estimate of the current state θt can be directly taken from Θ∗. While
full smoothing approaches are capable in producing a MAP estimate also in the
presence of loop closure observations, the involved computational complexity
increases as more states are added to the above optimization. Even when using
efficient incremental smoothing approaches constant-time high-rate performance
quickly becomes infeasible.

Our goal in this work is to develop an approach that is capable of both recov-
ering the MAP estimate of the navigation state at constant-time and high-rate,
and being able to incorporate measurements involving arbitrary past states.
Our general approach to address this problem is to factorize the full joint pdf,
p (Θ | Z), into two conditionally independent components, one of which is de-
signed to process high-rate observations, and the other to perform full smooth-
ing in a parallel process. We therefore refer to these components as filter and
smoother, respectively, and show in the sequel how operations between these
components can be parallelized.

6

4 Graphical Inference Models
The concept of concurrent filtering and smoothing is most easily understood
using graphical models. For probabilistic inference, the language of factor graphs
has been shown to be convenient and appropriate Kschischang et al. (2001). The
following section offers a brief review of using factor graphs for probabilistic
inference, including the closely related data structures of Bayes nets and Bayes
trees. For further reading, see Kaess et al. (2010a).

4.1 Factor Graphs
The full joint probability, p (Θ | Z), can be represented graphically using a factor
graph. A factor graph is a bipartite graph G = (F ,Θ, E) with two node types:
factor nodes fi ∈ F and variable nodes θj ∈ Θ. An edge eij ∈ E exists if
and only if factor fi involves state variable θj . The factor graph G defines the
factorization of a function f(Θ) as:

G = f (Θ) =
∏
i

fi (Θi) (4)

where Θi is the set of all state variables θj involved in factor fi, and independent
relationships are encoded by edges eij . Clearly, a factor graph, G, can be used
to represent the full joint density by representing each measurement likelihood,
p (zi | Θi), by a factor, fi. Figure 1 illustrates an example factor graph consist-
ing of five robot states and one landmark. Prior information on the first state
is provided by factor p1, odometry constraints between consecutive poses are
encoded in factors ui, camera projection factors vi connect between the land-
mark and the states that observed it, and a loop closure constraint c1 has been
added between state x1 and x4. The graphical model captures the structure of
the problem while abstracting away the details of the individual measurement
equations. For example, if an inertial strapdown system was used to calculate
sequential pose changes instead of wheel odometry, the measurement functions
represented by the factors ui would be considerably more complicated, but the
factor graph representation of the full joint would be identical.

4.2 Inference
Finding the maximum a posteriori (MAP) estimate, Θ∗, from a factor graph
proceeds in two phases: elimination and back-substitution Heggernes and Mat-
stoms (1996). In the first step, Gaussian variable elimination is performed,
whereby each variable is rewritten as a function of the remaining variables and
then removed from the graph. To eliminate a variable θj from the factor graph,
we first form the joint density fjoint (θj , N (θj)), where N (θj) is defined as the
open neighborhood of θj . This neighborhood consists of all factors adjacent to
θj (connected by an edge), not including the variable θj itself. The variable
θj is known as the frontal variable and the variables N (θj) are referred to as
separator variables. Applying the chain rule, we obtain a conditional density

7

p1 u1 u2 u3 u4

c1

x1 x2 x3 x4 x5

l1

v1 v2

Figure 1: An example factor graph consisting of multiple robot states and two
landmarks. Initial conditions on the first state are represented by p1. Odometry
factors, ui, connect sequential robot states, while camera projection factors, vi,
connect between landmarks and the states that observed them. Finally, a loop
closure constraint, c1, exists between x1 and x4.

p (θj | N (θj)) and a new factor fnew (N (θj)) that represents the marginal den-
sity on the separator variables N (θj) provided by the adjacent factors. After all
variables are eliminated, the produced conditional densities form a new factored
joint density, (5), known as a Bayes net.

p (Θ) =
∏
j

p (θj | N (θj)) (5)

For the example in Figure 1, if we wish to eliminate variable x3, we first form the
joint density from all factors adjacent to x3. In this case, the adjacent factors
are u2, u3, and v2. The separator variables are all variables adjacent to these
factors, except for x3: N (x3) = {x2, x4, l1}. After elimination, the variable x3
and adjacent factors {u2, u3, v2} are removed from the graph, the calculated
conditional density p (x3 | x2, x4, l1) is stored in the Bayes net, and a new factor
on the separator fnew (x2, x4, l1) is added to the remaining factor graph.

Before performing the elimination, an elimination order must be selected.
While any order will ultimately produce an identical MAP estimate, the par-
ticular ordering selected affects the number of separator variables in each joint
density and hence affects the computational complexity of the elimination step.
Finding the best elimination order is NP-complete, but many heuristics exist
for selecting good variable orderings, such as those based on minimum degree
Heggernes and Matstoms (1996); Davis et al. (2004). It should be noted that
the elimination order also affects the graph structure of the Bayes net. Figure
2 illustrates two possible structures produced by eliminating the factor graph
from Figure 1 using different orderings.

After the elimination step is complete, back-substitution is used to obtain the
MAP estimate of each variable. As seen in Figure 2, the last variable eliminated
does not depend on any other variables. Thus, the MAP estimate of the last
variable can be directly extracted from the Bayes net. By proceeding in reverse
elimination order, the values of all the separator variables for each conditional

8

x1 x2 x3 x4 x5

l1

Order: l1 x1 x2 x3 x4 x5

Bayes Net: p(l1|x2,x3)p(x1|x2,x4)p(x2|x3,x4)p(x3|x4)p(x4|x5)p(x5)

(a)

x1 x2 x3 x4 x5

l1

Order: x2 x3 x1 x4 x5 l1
Bayes Net: p(x2|x1,x3,l1)p(x3|x1,x4,l1)p(x1|x4,l1)p(x4|x5,l1)p(x5|l1)p(l1)

(b)

Figure 2: Example Bayes net structures produced by eliminating the same factor
graph from Figure 1 using different variable orderings.

will always be available from the previous steps, allowing the estimate for the
current frontal variable to be computed.

Topologically, the Bayes net is a chordal directed acyclic graph. By identify-
ing cliques (groups of fully connected variables), the Bayes net may be rewritten
as a Bayes tree. For full details on of the clique-finding algorithm, see Kaess
et al. (2010a,b). Within the Bayes tree, each node represents the conditional
density of the clique variables, Θj , given all of the separators, N (Θj):

p (Θ) =
∏
j

p (Θj | N (Θj)) . (6)

During elimination, the leaves of the tree are built first, and factors on the sep-
arator variables are passed up the tree to their parents. Back-substitution then
proceeds top-down from the root clique, which is eliminated last, as it has no
external dependencies. The solution of the frontal variables of the parent clique
are passed down the tree to the children, which are guaranteed to depend only

9

on the frontal variables of their ancestors. Figure 3 shows the Bayes tree repre-
sentation of the Bayes nets shown in Figure 2. Like the Bayes net, the structure
of the Bayes tree is affected by the selected variable ordering. While the Bayes
net and Bayes tree representations are interchangeable, modeling the inference
using a tree structure is often more convenient and intuitive: elimination passes
information up the tree, while back-substitution propagates information down
the tree.

5 Concurrent Filtering and Smoothing
The CFS algorithm provides a parallel architecture that enables both fast up-
dates of the current solution while recovering the optimal solution of the full
joint density even in the presence of loop closures. This is accomplished by ap-
plying a specific factorization of the full joint density that segments the problem
into a small inference operation over the most recent states (i.e. a filter) and a
larger inference problem over the remaining states (i.e. full smoothing). In the
following sections, we explain this factorization in detail, showing how this fac-
torization allows independent asynchronous updates of the filter and smoother
segments. Methods for periodically synchronizing the two segments in a proba-
bilistically consistent way are explained, and methods for changing the current
segmentation are presented. The cost of exploiting this factorization for parallel
processing are delays between the time a loop closure constraint is added to the
smoother and the time this constraint impacts the current filtering solution.
The source and nature of these delays are also discussed in the following.

The entire algorithm is summarized in Algorithm 1, and explained in this
section in detail.

5.1 Factorization
The CFS architecture chooses to factorize the full joint density into three groups:
a small number of the most recent states referred to as the filter states, a large
group of past states referred to as smoother states, and a small number of
separator states that make the filter and smoother conditionally independent.
This factorization is shown in (7).

p (Θ) = p (ΘS | Θsep) p (Θsep) p (ΘF | Θsep) (7)

where Θ is the set of all state variables, ΘF is the set of filter states, ΘS is the
set of smoother states, and Θsep is the set of separator states. This factorization
accounts for all states such that Θ = {ΘS ,Θsep,ΘF }. This factorization may be
viewed as a generalized Bayes tree, as shown in Figure 4, where the large nodes
depicted in the figure may themselves contain subtrees. Since the elimination
step proceeds from the leaves of the tree to the root, as discussed in Section 4,

10

x2 x3 | x4

x4 x5

Bayes Tree: p(x4,x5)p(x2,x3|x4)p(x1|x2,x4)p(l1|x2,x3)

x1 | x2 x4 l1 | x2 x3

(a)

x3 | x1 x4 l1

x4 x5 l1

Bayes Tree: p(x4,x5,l1)p(x1|x4 l1)p(x3|x1,x4,l1)p(x2|x1,x3,l1)

x1 | x4 l1

x2 | x1 x3 l1

(b)

Figure 3: Example Bayes tree structures produced by eliminating the same
factor graph from Figure 1 using the two different variable orderings from Figure
2.

11

1 while true do
2 Input: New filter measurements Z ′F and smoother measurements Z ′S
3 concurrently:
4 update filter:

/* Continuously update filter in real-time while
smoother computes a loop closure update: */

5 while Smoother is busy do
6 Input: Incoming filter measurements Z ′F and

measurement density p̃(Z ′F |Θsep,ΘF)
7 Input: Separator information p̃(ZF |Θsep) from previous

filter updates
8 Input: Filter density p(ΘF |Θsep, ZF)
9 Factor p̃(ZF |Θsep)p(ΘF |Θsep, ZF)p̃(Z ′F |Θsep,ΘF) into

p̃(ZF , Z ′F |Θsep)p(ΘF |Θsep, ZF , Z
′
F).

10 Output: p̃(ZF |Θsep)← p̃(ZF , Z ′F |Θsep)
11 Output: p(ΘF |Θsep, ZF)← p(ΘF |Θsep, ZF , Z

′
F)

12 end
13 end update filter
14 update smoother:

/* Computationally-intensive smoother update, e.g.
from visual loop closures */

15 Input: Incoming smoother measurements Z ′S and
measurement density p̃(Z ′S |Θsep,ΘS)

16 Input: Separator information p̃(ZS |Θsep) from previous
smoother updates

17 Input: Smoother density p(ΘS |Θsep, ZS)
18 Factor p̃(ZS |Θsep)p(ΘS |Θsep, ZS)p̃(Z ′S |Θsep,ΘS) into

p̃(ZS , Z ′S |Θsep)p(ΘS |Θsep, ZS , Z
′
S).

19 Output: p̃(ZS |Θsep)← p̃(ZS , Z ′S |Θsep)
20 Output: p(ΘS |Θsep, ZS)← p(ΘS |Θsep, ZS , Z

′
S)

21 end update smoother
22 end concurrently
23

/* Synchronize filter and smoother: */
24 Filter sends p̃(ZF |Θsep) to smoother.
25 Smoother sends p̃(ZS |Θsep) to filter.
26

/* Advance separator: */
27 Factor p(ΘS |Θsep, Z)p(Θsep|Z)p(ΘF |Θsep, Z) into

p(Θ′S |Θ′sep, Z)p(Θ′sep|Z)p(Θ′F |Θ′sep, Z), where Θ′S , Θ′sep, and Θ′F are
the modified variables due to separator advancement.

28 end
Algorithm 1: Concurrent filtering and smoothing

12

p(ΘS|Θsep)

p(ΘF|Θsep)

p(Θsep)

Figure 4: The CFS factorization illustrated as a Bayes tree. The tree structure
illustrates the conditional independence of the filter and smoother states, given
the separator. The large nodes in the figure indicate that the filter and smoother
may themselves contain significant sub-trees.

the tree representation clearly illustrates the independence of the filter on the
smoother variables. This will be further discussed in Section 5.2.

The proposed factorization is general and can be applied to any system. The
separator is defined as any set of states that effectively disconnects the filter
states from the rest of the system. For any system, a minimal set of separator
states can be identified based on the graph connectivity. Assuming the set of
desired filter states is a design parameter and is therefore known, the set of
separator states is simply the open neighborhood of the filter states, N (ΘF),
where an open neighborhood is defined as the set of variables adjacent to any
variable in ΘF , not including the variables in the set ΘF . The smoother states
are then the remaining states, ΘS = Θ \ {Θsep ∪ ΘF }. As a small example,
consider the sample factor graph from Figure 1. If it is desired that the filter
consists of the last two states, ΘF = {x4, x5}, then the open neighborhood of
ΘF is Θsep = {x1, x3}. This is demonstrated in Figure 5, where the desired filter
nodes are colored in red. Any edge touching at least one filter node has been
drawn using a dashed line. The open neighborhood of ΘF is any node connected
to a dashed edge, not including the ΘF nodes themselves, i.e. {x1, x3}. This
same set may also be discovered using the adjacency matrix from graph theory.
The adjacency matrix is an n × n matrix, where each row and each column
represents one of the n system variables. The adjacency matrix is constructed
by placing non-zero entries in the elements corresponding to variables connected
by edges. For undirected graphs, such as factor graphs, the adjacency matrix
is symmetric. The adjacency matrix for the example factor graph from Figure
1 is shown in Figure 6. The filter variables {x4, x5} correspond to the right-
most and bottom-most rows, as indicated. The 2 × 2 block in the lower-right
describes the inter-connections of the variables within the filter set, while the
entries to the left (or above) this block describe the connections to variables
outside the filter set. The indicated variables in this left (or upper) block are
the neighbors of the filter set, N (x4, x5) = {x1, x3}. This is the same separator

13

p1 u1 u2 u3 u4

c1

x1 x2 x3 x4 x5

l1

v1 v2

Figure 5: An illustration of the neighborhood of {x4, x5}. All adjacent edges
are drawn using red dashed lines. The neighbors include any node connected to
a dashed edge, not including the variable set itself. In this case, {x1, x3}.

x1

x2

x3

x4

x5

l1

x1 x2 x3 x4 x5l1

Figure 6: The adjacency matrix for the example factor graph from Figure 1.
If the filter consists of variables {x4, x5} (green), then the separator will be
{x1, x3} (red).

set found through the graphical method described in Figure 5.
A specific factorization may alternatively be viewed as a particular elim-

ination order. As discussed in Section 4.2, any elimination order ultimately
produces identical MAP estimates, but the selection of the elimination order
affects the topology of the resulting Bayes net and Bayes tree, which indirectly
impacts the computational performance of the inference operations. In order to
produce the desired topology, shown in Figure 4, the separator states must be
eliminated last, placing them at the root of the Bayes tree. The computational
complexity of sparse elimination is bounded by the size of the largest clique in
the Bayes tree, which is often the root clique. Since the proposed factorization
in essence defines the root clique to be the separator, an investigation of the
separator size is warranted. In the general case, the induced separator between
an arbitrary set of states may be any size. Instead, we will examine two common
cases in navigation.

14

Relative-Pose Aided Inertial Navigation An IMU is used to predict
the next state given the previous state and a set of IMU measurements. The
IMU factors are augmented with a set of factors from aiding sensors. These
sensor factors are generally in the form of direct measurements on some of the
state variables (i.e. GPS, compass, altimeter) or relative measurements between
consecutive time instances (i.e. lidar scan matching, stereo visual odometry).
An example of such a factor graph is shown in Figure 7, with the desired filter
states of {x6, x7, x8}. Menger’s Theorem Menger (1927); Aharoni and Berger
(2009) in graph theory states that the minimum size of a separator dividing a
graph into two disconnected sets is equal to the maximum number of vertex-
disjoint paths between the two sets. The decomposition of the factor graph
into disjoint paths by sensor is also shown in Figure 7. The path from the
older smoother states to the newer filter states using the IMU factors clearly
involves variable nodes from the other sensor measurements and, hence, does not
produce a vertex-disjoint path. Also, the absolute measurements, represented
as unary factors on single states, do not induce any paths between the variable
sets. Thus, assuming that the filter set is defined to be a continuous set of the
most recent states, the number of disjoint paths is equal to the number of non-
IMU relative measurement sensors. Therefore, in the example shown in Figure
7 the minimum size of the separator is 2: Θsep = {x4, x5}.

Vision-Aided Inertial Navigation In the particular case of vision, it is
also common that additional landmark variables are added to the system with
individual factors connecting a single landmark to a single state. Figure 8
shows a simple example factor graph with IMU measurements and two landmark
states. The desired filter states are again {x6, x7, x8}. When landmark states are
incorporated, the decomposition of the graph into disjoint paths is complicated,
but it is bounded by the number of tracked landmarks plus the number of
relative-pose sensors. In the example shown in Figure 8 the minimum size of
the separator is 3: Θsep = {x5, l1, l2}.

5.2 Concurrent Incremental Filter and Smoother Updates
Using the suggested factorization it is possible to update the filter branch and
the smoother branch concurrently and still recover a MAP state estimate. First,
let us define the joint densities represented by each branch of the full joint
density factored using the suggested concurrent factorization:

pfilter (Θsep,ΘF |Z) = p (Θsep|Z) p (ΘF | Θsep, Z)
psmoother (ΘS ,Θsep|Z) = p (ΘS | Θsep, Z) p (Θsep|Z) , (8)

where Z represents all the available measurements.

15

imu

vo

x1 x2 x3 x4 x5 x6 x7 x8
imu imu imu imu imu imu

vo

lidar lidar

gps gps

x4 x7

lidar

x5 x8

vo

x5 x6
imu

x3 x6

gps gps

Graph:

Lidar Path:

VO Path:

IMU Path:

GPS Path:

Figure 7: An example factor graph consisting of relative pose measurements
(Lidar, VO, IMU) and direct state measurements (GPS). The desired filter
states are {x6, x7, x8}. The individual paths to one of the filter states are then
shown per sensor. The Lidar and VO paths are shown to be disjoint (no variables
in common). However, the IMU path shares variables with the other sensors,
and the GPS sensor measurements do not form a path at all.

16

Graph:

Landmark1 Path:

Landmark2 Path:

IMU Path:

imu
x1 x2 x3 x4 x5 x6 x7 x8

imu imu imu imu imu imu

l1 l2

x2 x6

l1

x4 x8

l2

x5 x6

imu

Figure 8: An example factor graph consisting of IMU measurements and obser-
vations of two landmarks. The desired filter states are {x6, x7, x8}. Individual
paths to one of the filter states are shown per landmark. In this case, there are
many possible paths through each landmark, but all possible paths share the
landmark variable.

17

Note that the joint density of both branches involve the marginal density
p (Θsep|Z). This is the common separator, or the root of the Bayes tree shown
in Figure 4, that is shared by both branches. During a full batch optimization,
the separator would normally be updated with new information propagated
upward from both branches. In order to enable parallel operation, both the filter
and the smoother must maintain a local copy of the separator that is updated
independently. A method is needed to separate the updates by source (filter
or smoother) so that the proper updated information may later be exchanged
between branches.

We can break up the definition of p (Θsep|Z) by separating the measurements
Z into two groups: smoother measurements ZS and filter measurements ZF such
that Z = {ZS , ZF }. Under this measurement segmentation, the joint density
on the separator variables Θsep can itself be factored as:

p (Θsep | Z) = p (ZS | Θsep) p (ZF | Θsep) p (Θsep) (9)

where each term in the separator factorization is obtained by marginalizing out
all of the variables not included in Θsep from the smoother measurements or filter
measurements respectively. Additionally, in the above equation we make the
standard assumption of any two measurements being statistically independent
of each other.

For simplicity we include the prior information p (Θsep) within the first two
terms in Eq. (9) by appropriately splitting up p (Θsep) between these two terms.
Introducing the notation p̃ (.) to represent these updated terms, we rewrite
Eq. (9) as

p (Θsep | Z) = p̃ (ZS | Θsep) p̃ (ZF | Θsep) . (10)
If we assume these marginal densities are available to both the smoother and
the filter, then we can rewrite the joint density encoded by each branch as:

pfilter (Θsep,ΘF | ZS , ZF) = p̃ (ZS | Θsep) p̃ (ZF | Θsep) p (ΘF | Θsep, ZF)
psmoother (ΘS ,Θsep | ZS , ZF) = p (ΘS | Θsep, ZS) p̃ (ZS | Θsep) p̃ (ZF | Θsep)

(11)

This factorization divides the terms into a set that only depends on the measure-
ments assigned to the local branch (e.g. p̃ (ZF | Θsep) and p (ΘF | Θsep, ZF) only
involve filter measurements ZF) and a set of terms that are assumed to be pro-
vided (e.g. p̃ (ZS | Θsep) was provided to the filter branch from the smoother).
Thus, updating a single branch with a new factor is a local operation, indepen-
dent of the other branch.

For example, if new measurements ZF ′ arrive involving the filter variables,
then the set of filter measurements are augmented with these new measurements.
To recompute the full joint, we only need to update the terms involving ZF ,
namely p (ΘF | Θsep, ZF) and p̃ (ZF | Θsep), with the new measurements (line 9
in Algorithm 1). Once complete, the filter and the full density can be assembled
by reusing the previously calculated densities provided by the smoother branch,
as in:

18

pfilter (Θsep,ΘF | ZS , ZF , ZF ′) =
p̃ (ZS | Θsep) p̃ (ZF , ZF ′ | Θsep) p (ΘF | Θsep, ZF , ZF ′)

pjoint (ΘS ,Θsep,ΘF | ZS , ZF , ZF ′) =
p (ΘS | Θsep, ZS) p̃ (ZS | Θsep) p̃ (ZF , ZF ′ | Θsep) p (ΘF | Θsep, ZF , ZF ′) (12)

The product p̃ (ZS | Θsep) p̃ (ZF , ZF ′ | Θsep) is equivalent to the p (Θsep) term
in the original CFS factorization (7) as it defines the marginal on the separator
given all of the measurements, Z = {ZS , ZF , ZF ′}. Despite the fact that only a
subset of the factorization is recalculated, the exact joint density is recovered.
Further, a single branch (filter or smoother) may be updated multiple times
while still recovering the exact solution without requiring any communication
with the other branch.

The branches may also be updated concurrently, adding new factors to the
smoother branch while performing multiple updates to the filter branch. During
concurrent updates, the filter branch is updated with new filter measurements
assuming the smoother branch remains unchanged (lines 4-13 in Algorithm 1),
while the smoother branch is updated with new measurements assuming the
filter branch remains unchanged (lines 14-21). Let new filter measurements be
denoted ZF ′ and new smoother measurements denoted ZS′ , then the resulting
updated densities are:

pfilter (Θsep,ΘF | ZS , ZF , ZF ′) =
p̃ (ZS | Θsep) p̃ (ZF , ZF ′ | Θsep) p (ΘF | Θsep, ZF , ZF ′)

psmoother (ΘS ,Θsep | ZS , ZS′ , ZF) =
p (ΘS | Θsep, ZS , ZS′) p̃ (ZS , ZS′ | Θsep) p̃ (ZF | Θsep) (13)

Each branch still obtains an exact solution, but the solutions are to problems
with different measurement sets: {ZS , ZF , ZF ′} for the filter versus {ZS , ZS′ , ZF }
for the smoother. We refer to this situation as being unsynchronized. Although
the system is unsynchronized, it is important to note that the filter branch con-
tinues to incorporate new measurements, producing the exact MAP estimate
of its particular subproblem (i.e. it does not include the most recent smoother
measurements), at the same time the smoother is performing its update in the
background. To recover the full joint density given all measurements, the two
branches must first be synchronized, as described in the next section.

The computational complexity of the concurrent update step depends on
the inference algorithm selected for the filter and smoother. Although the CFS
architecture does not require a specific inference strategy, the goals of the CFS
system do suggest specific choices. For the filter, an EKF variant would be a

19

reasonable choice, providing fixed-time updates of complexity O
(
n3), where n

is the number of states in the filter branch. If vision information is used, an aug-
mented state filter or fixed-lag smoother might be employed that allows the lin-
earization point of landmark variables to improve over time. For the smoother,
the large number of states involved will generally make the added complexity
of sparse linear algebra methods worthwhile. For a navigation system with a
sparse graph and no loop closures, full smoothing methods can approach O (m)
complexity, wherem is the number of states in the smoother branch. Additional
performance gains could be achieved by employing incremental techniques, such
as iSAM2 Kaess et al. (2011, 2012a). However, in the presence of loop closure
constraints, the actual complexity of full smoothing methods, batch or incre-
mental, is scenario dependent. As the synchronization procedure, discussed in
the next section, can be performed only after the inference in smoother and
filter branches is complete, the navigation solution is updated with loop closure
information with a certain time delay. We elaborate on the root causes for this
time delay in Section 5.5.

5.3 Synchronization
Periodic synchronization exchanges updated information between the filter and
smoother after concurrent updates, thus recovering the optimal state estimate
given all of the measurements. As discussed in the previous section, updating
the smoother and filter in parallel leads to a mismatch in the measurements used
by each branch. For example, when a loop closure constraint is added to the
smoother, it can take several seconds for the smoother to incorporate the change
across all past states. In the mean time, the filter continues to incorporate
new high-speed measurements into the navigation solution. Once the smoother
completes its optimization, the smoother does not include all of the recent high-
speed measurements, nor does the filter include the loop closure information.
The exchange of this updated information is referred to as synchronization.

Let ZS be all of the measurements contained within the smoother branch,
and ZF be all of the measurements contained within the filter branch before any
concurrent updates, such that Z = ZS ∪ZF . The two branches are synchronized
as they both use identical measurement sets:

pfilter (Θsep,ΘF | ZS , ZF) = p̃ (ZS | Θsep) p̃ (ZF | Θsep) p (ΘF | Θsep, ZF)
psmoother (ΘS ,Θsep | ZS , ZF) = p (ΘS | Θsep, ZS) p̃ (ZS | Θsep) p̃ (ZF | Θsep)

(14)

where the term p̃ (ZS | Θsep) is the marginal density on the separator vari-
ables calculated by marginalizing the smoother variables ΘS from the smoother
measurements ZS , and similarly p̃ (ZF | Θsep) is the marginal density on the
separator variables calculated by marginalizing the filter variables ΘF from the
filter measurements ZF .

During the concurrent update phase, additional measurements are incor-
porated into the smoother and the filter. Let ZS′ and ZF ′ be all of the new

20

measurements received by the smoother and filter respectively. After concurrent
updates, the system is in an unsynchronized state, where neither the filter den-
sity nor the smoother density contains the information from all of the received
measurements:

pfilter (Θsep,ΘF | ZS , ZF , ZF ′) =
p̃ (ZS | Θsep) p̃ (ZF , ZF ′ | Θsep) p (ΘF | Θsep, ZF , ZF ′)

psmoother (ΘS ,Θsep | ZS , ZS′ , ZF) =
p (ΘS | Θsep, ZS , ZS′) p̃ (ZS , ZS′ | Θsep) p̃ (ZF | Θsep) (15)

This process was described in detail in Section 5.2. Each branch contains an out-
dated marginal factor on the separator variables, p̃ (ZS | Θsep) or p̃ (ZF | Θsep),
from the other branch. Thus, synchronizing the two branches merely requires
updating the cached marginal on the separator with the updated version from
the other branch: p̃ (ZF , ZF ′ | Θsep) is sent from the filter to the smoother,
while p̃ (ZS , ZS′ | Θsep) is sent from the smoother to the filter (lines 24-25 in
Algorithm 1). After synchronization, both branches again use identical mea-
surements:

pfilter (Θsep,ΘF | ZS , ZS′ , ZF , ZF ′) =
p̃ (ZS , ZS′ | Θsep) p̃ (ZF , ZF ′ | Θsep) p (ΘF | Θsep, ZF , ZF ′)

psmoother (ΘS ,Θsep | ZS , ZS′ , ZF , ZF ′) =
p (ΘS | Θsep, ZS , ZS′) p̃ (ZS , ZS′ | Θsep) p̃ (ZF , ZF ′ | Θsep) (16)

and the full joint can be recovered using information from both branches:

pjoint (ΘS ,Θsep,ΘF | ZS , ZS′ , ZF , ZF ′) =
p (ΘS | Θsep, ZS , ZS′) p̃ (ZS , ZS′ | Θsep) p̃ (ZF , ZF ′ | Θsep) p (ΘF | Θsep, ZF , ZF ′)

(17)

As shown in (17), the synchronized system is equivalent to the full joint of a
single system containing all measurements (p (Θ | Z)), and thus the optimal
MAP estimate is recovered. Since these marginal factors must be calculated by
each branch during variable elimination as part of the normal inference process,
the marginals can be cached by each branch with no additional computational
requirement. Thus, synchronization is a constant time process, O(1).

5.4 Advancing the Separator
After synchronization, the concurrent architecture has recovered the MAP state
estimate given all of the incorporated measurements. However, as new measure-
ments are added to the filter branch, the size of the filter branch increases. Over

21

(a) (b) (c)

Figure 9: The evolution of the CFS Bayes tree over time. (a) The CFS begins
in a consistent, synchronized state. (b) The smoother starts an update and
thus is unavailable for a time. New states are accumulated in the filter branch
(shown in red). (c) Once the smoother update completes, the separator is
advanced, returning the filter to the desired size and transitioning new states to
the smoother (shown in red). At this point, the separator is constructed from
a different set of states than in (a) or (b).

time, the computation required to update the filter will exceed the real-time
threshold for a given platform. To remedy this situation, a new separator is
constructed that leaves the desired number of states in the filter branch, using
the same process described in Section 5.1. This effectively advances the sepa-
rator forward in time, as depicted in Figure 9. The factors and variables that
move out of the filter branch are immediately sent to the smoother for further
optimization (line 27 in Algorithm 1). This operation is equivalent to selecting
a different elimination order in the filter, and consequently does not affect the
state estimated by the system. Further, since the estimate does not change as
a consequence of this reordering, the full filter does not need to be recomputed.
Partial elimination results from the unchanged portion of the filter branch can
be reused, as was recognized in incremental smoothing and mapping (iSAM2)
Kaess et al. (2011, 2012a). Consequently, the computational complexity of mov-
ing the separator depends only on the number of states to be transitioned to
the smoother branch.

5.5 Time Delays
As mentioned, the trade-off for utilizing the CFS factorization is a time delay
between a loop closure observation and effect of the loop closure on the filter
solution. One source of time delay is simply the computation time required to
update the smoother with the loop closure constraint. There can be additional
delay induced by the availability of the smoother at the time the constraint is
first identified. In the worst case, a loop closure constraint is identified just
after a smoother update has been initiated, at time t. Before this constraint
may be added to the smoother, the smoother must first complete its current
update. Assuming each smoother update requires ∆s seconds to complete, the

22

new constraint will not be inserted into the smoother until t+∆s. The smoother
must then perform a full second update before the smoother has incorporated
the new constraint into the solution and synchronized with the filter. Thus, the
filter will not be updated with the effects of the loop closure constraint until
time t+ 2∆s.

A second, less obvious time delay is induced from the CFS factorization itself.
As discussed in Section 5.1, the CFS factorization assumes no edge directly
connects a filter state to a smoother state, thus allowing the filter and smoother
to be conditionally independent. However, loop closure constraints are supposed
to do just that: relate the current state to states in the distant past. In order to
maintain the CFS factorization, these loop closures must be delayed until the
involved state has transitioned from the filter into the smoother or separator.
The size of this time delay will be dependent on the design of the filter. For
example, if the states comprising the last ∆f seconds are maintained in the filter
(i.e. an augmented state filter or fixed-lag smoother), then the CFS architecture
cannot incorporate the loop closure constraint into the smoother for at least ∆f

seconds. Thus, delays as long as 2∆s + ∆f may be experienced between the
time a loop closure is identified and the time the filtering solution is affected.

To demonstrate this effect, a simulated system consisting of three relative-
pose measurement sources is considered. The filter is implemented as a fixed-
lag smoother with a smoother lag ∆f = 5.0 s, and the filter is updated at
a rate of 10Hz. The smoother is operated with an artificial smoother delay of
∆s = 10.0 s. Synchronization is scheduled to occur after every smoother update.
A loop closure constraint between the most recent state and a past state within
the smoother is identified at t = 15.1 s, midway between the smoother updates
at t = 10.0 s and t = 20.0 s. Since this constraint would connect between
a filter state and smoother state, the constraint cannot be added until the
involved state transitions to the smoother. In this example, the state would be
available to be moved to the smoother at t = 20.1 s, 5.0 s after the state first
appeared in the filter. However, this transition will not actually occur until the
next filter-smoother synchronization, scheduled at t = 30.0 s. At t = 30.0 s,
the loop closure constraint will be added to the smoother, starting a new ∆s

smoother update cycle. At t = 40.0 s, the smoother will complete this cycle
and synchronize with the filter, updating the filter solution with the effects of
the loop closure constraint. This means the constraint identified at t = 15.1 s
will not affect the navigation solution until t = 40.0 s, a delay of 24.9 s or
approximately 2∆s + ∆f . Note that this is the worst-case delay. Figure 10
compares the resulting trajectory from the CFS system to that of a full batch
optimization where the loop closure is applied immediately. The timestamps of
the different events are marked on the trajectory. Notice that after the CFS has
fully integrated the loop closure, it again tracks the full batch solution.

23

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

Time[sec]

P
o

s
it
io

n
[m

]

Batch (without time delay)

Concurrent

Concurrent Smoother
Update Starts

Loop Closure
Identified

Concurrent Smoother
Update Starts

Loop Closure State
Exits Filter

Concurrent Smoother
Incorporates Loop Closure

Concurrent Filter Updated
With Loop Closure

During Synchronization

Figure 10: An example system demonstrating the time delays inherent in the
CFS system. A loop closure constraint is identified at 15.1 s while the concurrent
smoother is updating. Due to the concurrent filter lag, the loop closure state
does not exit the filter until 20.1 s, after a new smoother update has been
initiated at 20.0 s. Thus the loop closure does not get incorporated into the
concurrent smoother until the third update at 30.0 s, and does not affect the
filter until the concurrent smoother update has completed at 40.0 s.

6 Constant-Time Operation
Thus far, the basic concept of the CFS system has been discussed: a factor-
ization that produces two conditionally independent branches, a method for
performing concurrent updates of those branches, and a simple method for syn-
chronizing the branches after a series of concurrent updates. However, the
computational complexity of the filter update (Section 5.2) and of the separa-
tor advance (Section 5.4) both have an undesirable linear-time component. In
this section, we discuss additional techniques that guarantee constant-time filter
operation and synchronization.

6.1 Constant-time Filter Update
The factorization of the full joint density used by the concurrent filtering and
smoothing architecture permits asynchronous updates of the smoother and the
filter, but it does not guarantee constant-time updates for either. Specifically,
the filter will accumulate additional states during times when the smoother
is busy, causing the filter computation time to increase. For example, if new
states are added at a rate of 10Hz and the smoother requires 1.5s to complete
an update, then the size of the filter will increase by 15 states before the next
synchronization is performed. After the synchronization occurs, the size of the
filter will be reset to its nominal size. This cycle of accumulating states in the
filter and later transitioning them to the smoother is illustrated in Figure 9.

24

This linear increase in the filter size between synchronizations is undesirable as
it translates into increased computational requirements of the high-rate filter.
This is complicated by the fact that the required update time of the smoother
is unpredictable, depending on such things as the quality of initialization and
the presence or absence of loop closures.

To combat this issue, a method of “pre-advancing” the separator can be
implemented to maintain a constant-size filter. With this scheme, the filter
constantly changes its local definition of the separator states to maintain a
constant-size filter. States that should be part of the smoother are transitioned
to the smoother side of the Bayes tree within the filter. At the same time,
a marginal on the new separator from the smoother is computed using the
smoother marginal on the old separator (provided during the last synchroniza-
tion) and the information contained within the transitioned nodes.

At each timestep, the filter determines the minimal set of states that are to
remain inside the filter. For an augmented state filter or fixed-lag smoother, this
is simply the set of states newer than the defined filter lag. For vision-enabled
systems, this might be the set of states associated with active feature tracks.
We define this new set of filter states as ΘF ′ . Using the method defined in
Section 5.1, the corresponding separator, Θsep′ , is identified. Any existing filter
states that are not included in the new filter states or new separator states will
eventually be transitioned to the smoother. Denote the set to be transitioned as
ΘS′ = {Θsep,ΘF } \ {Θsep′ ,ΘF ′}, the transition variables. Also define the set of
measurements that involve only transition states or new separator states as ZS′ .
Since these measurements connect only new smoother states and new separator
states, this is the set of measurements that should be sent to the smoother for
further optimization. Using the old definition of the filter and separator states,
the filter joint was factored as:

pfilter (Θsep,ΘF) = p̃ (ZS | Θsep) p̃ (ZF | Θsep) p (ΘF | Θsep, ZF) (18)

where ΘF denotes all of the filter variables, and ZF denotes all of the filter
measurements. Using the new definition of the filter and separator states, the
filter joint can be further factored as:

pfilter (Θsep,ΘF) =
p̃ (ZS | Θsep) p̃ (ZS′ | ΘS′ ,Θsep′) p̃ (ZF ′ | Θsep′) p (ΘF ′ | Θsep′ , ZF ′) (19)

where the combination of the transition states ΘS′ , the new separator states
Θsep′ , and the new filter states ΘF ′ span the set of original filter and separator
states such that Θsep ∪ΘF = ΘS′ ∪Θsep′ ∪ΘF ′ . The final two terms in this fac-
torization, p̃ (ZF ′ | Θsep′) p (ΘF ′ | Θsep′ , ZF ′), are equivalent to the final terms in
the original factorization, p̃ (ZF | Θsep) p (ΘF | Θsep, ZF), except using the new
definition of the separator states, filter states, and filter measurements. The
estimate for the smoother marginal on the new separator, p̃ (ZS , ZS′ | Θsep′),
can be obtained by marginalizing out the unneeded variables from the first two

25

(a)

Trans

(b) (c)

Figure 11: The evolution of the CFS Bayes tree using the separator “pre-
advance” strategy. The CFS begins in a consistent, synchronized state. (b)
The smoother starts an update and thus is unavailable for a time. As new
states are introduced into the filter, the “pre-advance” strategy creates a new
separator that maintains a constant-sized filter. The old states are transitioned
to the smoother side of the Bayes tree, even though they are still contained
within the filter states. (c) Once the smoother update completes, the transition
states are moved into the smoother.

terms of this factorization:

p̃ (ZS , ZS′ | Θsep′) =
ˆ
qΘsep′

p̃ (ZS | Θsep) p̃ (ZS′ | ΘS′ ,Θsep′) (20)

Assuming the marginal on the old separator, p̃ (ZS | Θsep), provided to the filter
from the smoother during the last synchronization, remains unchanged during
sequential filter updates, then this operation of marginalizing out the states
not contained within the new separator happens automatically during elimina-
tion. The method of “pre-advancing” may be interpreted as enforcing a specific
elimination order within the filter branch, generating a new separator for the
combined system. By caching the updated marginal on the new separator pro-
duced during elimination, no additional computation is incurred by the filter to
maintain a constant state size. Also, since the variables being transitioned to the
smoother are simply marginalized from the filter, then the behavior of the filter
between synchronizations is identical to a fixed-lag or augmented state filter.
Figure 11 illustrates the “pre-advance” cycle of accumulating transition states
while maintaining a constant-size filter. Note that the same states are transi-
tioned to the smoother at the same time regardless of whether “pre-advance” is
used; only the definition of the filter states changes.

6.2 Constant-time Synchronization
As described in the previous section, a scheme of “pre-advancing” the separator
has been implemented that allows the filter update to be constant-time. During

26

each filter update, an elimination order is selected such that the older states are
moved to the transition set, reducing the number of states included in the filter.
This allows the filter to remain a constant size and hence allow constant-time
updates.

However, this increases the computational complexity of the synchronization
step as there are now transition states between the smoother-maintained sepa-
rator and the filter-maintained separator. This situation is depicted in Figure
11, where the states of interest are labeled as transition nodes. When using the
separator “pre-advance,” none of the transition states are involved in the filter
update. However, during synchronization, the updated smoother information
must be propagated to the filter. All of the transition states, ΘS′ , are involved
in this calculation. The separator “pre-advance” effectively moves a linear-time
operation out of the filter update and into the synchronization.

To remove this linear time delay from the synchronization process, a constant-
time synchronization update can be implemented by maintaining a “shortcut”
conditional between the smoother-maintained separator and the current filter-
maintained separator. Under the separator “pre-advance”, the full joint density
is effectively factorized as:

p (Θ) = p (ΘS | Θsep, ZS) p̃ (ZS | Θsep) ·
p̃ (ZS′ | ΘS′ ,Θsep′) p̃ (ZF ′ | Θsep′) p (ΘF ′ | Θsep′ , ZF ′) (21)

When the smoother completes an update, it will have recomputed its contri-
bution to the full factored joint density, the conditional p (ΘS | Θsep, ZS) and
the marginal p̃ (ZS | Θsep). However, unlike the synchronization step described
in Section 5.3, this marginal cannot be applied directly to the filter-maintained
separator variables, ΘS′ . Instead, a new marginal must be computed as:

p̃ (ZS , ZS′ | Θsep′) =
ˆ
qΘsep′

p̃ (ZS | Θsep) p̃ (ZS′ | ΘS′ ,Θsep′) (22)

Clearly, the computational complexity of this operation depends on the number
of transition states that must be marginalized out to form the desired marginal
density. Alternatively, this marginalization step can be reformulated as a recur-
sive operation shown in (23). We use the notation ZS′ and ZS′′ to represent the
measurements to be transitioned at consecutive filter updates, and Θsep′ and
Θsep′′ to represent the separator states during those time periods.

p̃ (ZS , ZS′ , ZS′′ | Θsep′′) =
ˆ
qΘsep′′

p̃ (ZS | Θsep) p̃ (ZS′ , ZS′′ | Θsep,Θsep′′)

p̃ (ZS′ , ZS′′ | Θsep,Θsep′′) =
ˆ

Θsep′

p̃ (ZS′ | Θsep,Θsep′) p̃ (ZS′′ | Θsep′ ,Θsep′′)

(23)

We call the joint marginal density p̃ (ZS′ , ZS′′ | Θsep,Θsep′′) the “shortcut” marginal,
as it allows a new version of the smoother marginal, p̃ (ZS | Θsep), to be con-
verted into a marginal on the new separator, p̃ (ZS , ZS′ , ZS′′ | Θsep′′), directly,

27

Θsep

ΘF

ΘS

p(1)

(a)

Θsep'

ΘS

ΘS'
ΘF'

p(Θsep,Θsep')

(b)

Θsep''

ΘS

Θsep

ΘF''Θsep'

p(Θsep,Θsep'')

(c)

Figure 12: The evolution of the CFS Bayes tree using the separator “pre-
advance” and the “shortcut” marginal. In addition to accumulating transition
states over time, a shortcut is maintained that allows updated smoother in-
formation to be propagated directly to the root clique of the filter, without
involving the transition states.

without including and then eliminating all of the accumulated transition states.
Under the assumption that the number of variables in the separator remains ap-
proximately constant over time (i.e. the size of Θsep′′ is about the same as Θsep),
then the calculation of the new separator marginal will also be constant-time.
It should be noted that while the creation of the shortcut conditional allows for
constant-time synchronization, the recursive calculation of the shortcut is less
efficient than the direct computation described in (22).

Figure 12 shows the time evolution of the CFS Bayes tree with separator
pre-advance and the shortcut marginal. As in Section 6.1, the filter accumu-
lates transition states over time while the smoother is busy. Additionally, the
shortcut marginal is updated recursively every timestep (Figure 12b). When
the smoother completes its update, the shortcut marginal can be used to prop-
agate the updated smoother information directly to the root clique in the filter
(Figure 12c).

6.3 Timing Performance
When utilizing the proposed separator “pre-advance” and the synchronization
“shortcut” conditional, different trade-offs are made between the computation
time of a specific algorithm component and the total required computation.
Figure 13 shows example computation times of the different components for the
basic CFS system, CFS with separator “pre-advance”, and CFS with separator
“pre-advance” and the synchronization “shortcut”. This example uses simulated
data from three relative-pose measurement sources. Filter updates occur at
10Hz while the period between synchronization is artificially adjusted from 10.0 s
to 100.0 s. As seen, the basic CFS system has an approximately linear increase in

28

10 20 30 40 50 60 70 80 90 100
2

4

6

8

10

12

14
x 10

−3

Smoother Delay[sec]

U
p
d
a
te

 T
im

e
[s

e
c
]

Basic

Pre−Advance

Pre−Advance + Shortcut

(a) Filter Update Time

10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Smoother Delay[sec]

S
y
n
c
h
ro

n
iz

a
ti
o
n
 T

im
e
[s

e
c
]

Basic

Pre−Advance

Pre−Advance + Shortcut

(b) Synchronization Time

10 20 30 40 50 60 70 80 90 100
2

4

6

8

10

12

14

Smoother Delay[sec]

T
o
ta

l
C

o
m

p
u
ta

ti
o
n
 T

im
e
[s

e
c
]

Basic

Pre−Advance

Pre−Advance + Shortcut

(c) Total Computation Time

Figure 13: Update and synchronization performance with respect to the delay
between concurrent smoother synchronizations using the basic CFS, CFS with
separator pre-advance, and CFS with separator pre-advance and synchroniza-
tion shortcut.

both the filter update time and synchronization time. Between synchronizations
the basic system accumulates additional states within the filter, resulting in
the observed linear trend. During synchronization, the basic system must also
advance the separator to recreated the desired filter size. The number of states
involved in this operation also increases with the time between synchronizations.
By incorporating the separator pre-advance, the number of states within the
filter is held constant, resulting is constant-time filter updates. However, as
described in Section 6.2, any updated information from the smoother must be
propagated through the transition variables first. Since the number of transition
variables is proportional to the time between synchronizations, a linear trend
in the synchronization time is evident. Finally, when using both the separator
pre-advance and the synchronization shortcut, both the filter update and the
synchronization time are approximately constant-time.

7 Results
In this section we investigate the estimation accuracy and the computational
performance of the concurrent filtering and smoothing approach using both a
synthetic dataset and real-world data. The proposed method is compared to full
batch optimization and a fixed-lag smoother. All methods were implemented
using the open-source factor graph library, GTSAM1, using a Gauss-Newton
iterative nonlinear solver. All tests were executed on a single core of an Intel
i7-2600 processor with a 3.40GHz clock rate and 16GB of RAM memory.

7.1 Simulation
The CFS architecture was examined in a 100-trial Monte-Carlo study using an
aerial vehicle simulation. A ground truth trajectory was created, simulating a
flight of an aerial vehicle at a 20 m/s velocity and a constant height of 200 meter

1https://collab.cc.gatech.edu/borg/.

29

−1000

−500

0

500

−1000
−500

0
500

1000
1500

0

100

200

North [m]

East [m]

H
ie

g
h

t
[m

]

Figure 14: A visualization of the simulated ground truth trajectory of an aerial
vehicle. Ground-based landmarks are observed from a downward-facing stereo
camera. Star marking indicates beginning of trajectory.

above mean ground level. The trajectory consists of several segments of straight
and level flight and maneuvers, as shown in Figure 14.

Based on the ground truth trajectory, ideal IMU measurements were gen-
erated at 100 Hz, while taking into account Earth’s rotation and changes in
the gravity vector. For each of the 100 Monte-Carlo runs, these measurements
were corrupted with a constant bias and zero-mean Gaussian noise in each axis.
Bias terms were drawn from a zero-mean Gaussian distribution with a stan-
dard deviation of σ = 10 mg for the accelerometers and σ = 10 deg/hr for
the gyroscopes. The noise terms were drawn from a zero-mean Gaussian dis-
tribution with σ = 100µg/

√
Hz and σ = 0.001 deg/

√
hr for the accelerometers

and gyroscopes. Initial navigation errors were drawn from zero-mean Gaussian
distributions with σ = (10, 10, 15) meters for position (expressed in a north-
east-down system), σ = (0.5, 0.5, 0.5) m/s for velocity and σ = (1.0, 1.0, 1.0)
degrees for orientation. Instead of incorporating IMU measurements into the
filter at the IMU rate of 100Hz, sequential measurement are accumulated be-
tween the measurement times of the other aiding sensors, and added to the
graph as a single factor Lupton and Sukkarieh (2012); Indelman et al. (2012,
2013b,a). This prevents the accumulation of excessive states within the filter
or smoother, without a loss in estimation accuracy. Methods for generating a
state estimate at IMU rate are available, if desired.

In addition to IMU, the aerial robot was assumed to be equipped with a
stereo camera operating at 0.5Hz. Ideal visual observations were calculated by
projecting landmarks, scattered on the ground with ±50 meters elevation, onto
the cameras. Zero-mean Gaussian noise, with σ = 0.5 pixels, was added to all
visual measurements. Landmarks were observed on average by 5 views, with the

30

−500 0 500 1000 1500

−1000

−800

−600

−400

−200

0

200

400

600

East (m)

Navigation Solution − Trial 1 of 100

N
o
rt

h
 (

m
)

Ground Truth

Batch

Fixed Lag (5.0s)

Concurrent (5.0s)

Figure 15: Trajectory generated by the CFS system, compared to ground truth,
batch and fixed lag smoother trajectories from a typical trial in the Monte Carlo
study.

shortest and longest landmark-track being 2 and 12, respectively. Additionally,
loop closure measurements (i.e. landmark re-observations) were produced when
possible. Within the 725 s simulated trajectory, 11 areas exist where the trajec-
tory crosses itself, allowing the stereo camera to re-observe past landmarks.

For comparison, all measurements were processed using a full batch opti-
mizer, a short-term fixed-lag smoother, and the proposed concurrent filtering
and smoothing system. The full batch optimizer receives all of the measure-
ments (IMU, visual odometry, and loop closure constraints) whenever they are
measured, producing an updated output for each measurement time. For the
purposes of this comparison, the calculation time of the batch optimizer is ig-
nored, allowing the batch system to produce estimates as if it could run in
real-time. The fixed-lag smoother performs nonlinear optimization over the
states within a 5.0 s smoothing lag. After a state leaves the smoothing lag,
it is marginalized from the system. Consequently, this fixed-lag smoother is
incapable of processing the loop closure constraints and only the IMU and vi-
sual odometry measurements are provided. Similarly, the concurrent filter is
designed as a fixed-lag smoother with a 5.0 s smoothing lag. IMU and visual
odometry measurements are sent to the filter, while the loop closure constraints
are provided directly to the smoother. However, as discussed in Section 5.5,
there is a delay between the time the loop closure is identified and the time the
concurrent filter incorporates the constraint into the solution. Both the concur-
rent filter and concurrent smoother use Gauss-Newton nonlinear optimization
internally. As an example, Figure 15 shows the resulting trajectories from a
typical trial in the Monte Carlo study.

Figures 16-18 show a comparison of the root mean square errors (RMSE)

31

0 100 200 300 400 500 600 700 800
0

50

100

N
o
rt

h
 [
m

]

Position

0 100 200 300 400 500 600 700 800
0

50

100

E
a
s
t
[m

]

0 100 200 300 400 500 600 700 800
0

50

100

H
e
ig

h
t
[m

]

Time [sec]

Batch

Concurrent

FixedLag

Figure 16: Position estimation errors produced by a fixed-lag smoother, the
concurrent filter and smoother, and a full batch optimization.

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

N
o
rt

h
 [
m

/s
]

Velocity

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

E
a
s
t
[m

/s
]

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

H
e
ig

h
t
[m

/s
]

Time [sec]

Batch

Concurrent

FixedLag

Figure 17: Velocity estimation errors produced by a fixed-lag smoother, the
concurrent filter and smoother, and a full batch optimization.

produced by the full batch optimization, the fixed-lag smoother, and the con-
current filtering and smoothing system over the 100 trials. As shown, the per-
formance of batch optimization, fixed-lag smoother, and concurrent system are
all similar until the first loop closure is applied to the batch optimization at
78.6 s. The addition of this loop closure significantly reduces the estimations
errors. Approximately 8.0 s later (5.0 s for the loop closure state to transition
from the filter to the smoother plus 3.0 s of additional delay due to smoother
availability), the concurrent errors are reduced to the batch optimization levels.
The errors of the fixed-lag smoother, unable to benefit from the loop closure
constraints, continue to increase over the entire trajectory. To further demon-
strate that the CFS system recovers the batch solution, Figures 19-21 show the
error of CFS and fixed-lag smoother relative to the batch solution. By plotting
the differences with respect to the batch solution, it is clear that the CFS system
recovers the batch solution, except for the delays around loop closure events.

Additionally, a metric known as the Kullback–Leibler divergence (KLD)
Kullback and Leibler (1951) has been computed, comparing the CFS and the

32

0 100 200 300 400 500 600 700 800
0

0.5

1

∆
 φ

 [
d
e
g
]

Orientation

0 100 200 300 400 500 600 700 800
0

0.5

1

∆
 θ

 [
d
e
g
]

0 100 200 300 400 500 600 700 800
0

1

2

∆
 ψ

 [
d
e
g
]

Time [sec]

Batch

Concurrent

FixedLag

Figure 18: Orientation estimation errors produced by a fixed-lag smoother, the
concurrent filter and smoother, and a full batch optimization.

0 100 200 300 400 500 600 700 800
0

50

100

N
o
rt

h
 [
m

]

Position

0 100 200 300 400 500 600 700 800
0

50

100

E
a
s
t
[m

]

0 100 200 300 400 500 600 700 800
0

50

100

H
e
ig

h
t
[m

]

Time [sec]

Concurrent

FixedLag

Figure 19: Position differences relative to the full batch solution for a fixed-lag
smoother and the concurrent filter and smoother.

0 100 200 300 400 500 600 700 800
0

0.5

1

N
o
rt

h
 [
m

/s
]

Velocity

0 100 200 300 400 500 600 700 800
0

0.5

1

E
a
s
t
[m

/s
]

0 100 200 300 400 500 600 700 800
0

0.5

1

H
e
ig

h
t
[m

/s
]

Time [sec]

Concurrent

FixedLag

Figure 20: Velocity differences relative to the full batch solution for a fixed-lag
smoother and the concurrent filter and smoother.

33

0 100 200 300 400 500 600 700 800
0

0.05

0.1

∆
 φ

 [
d
e
g
]

Orientation

0 100 200 300 400 500 600 700 800
0

0.05

0.1

∆
 θ

 [
d
e
g
]

0 100 200 300 400 500 600 700 800
0

1

2

∆
 ψ

 [
d
e
g
]

Time [sec]

Concurrent

FixedLag

Figure 21: Orientation differences relative to the full batch solution for a fixed-
lag smoother and the concurrent filter and smoother.

fixed-lag smoother results with that of the batch optimization. The KLD be-
tween two k-dimensional normal distributions N1 (µ1,Σ1) and N2 (µ2,Σ2) is
defined as:

DKL(N1‖N2) = 1
2

([
tr
(
Σ−1

2 Σ1
)
− k
]

+
[
(µ2 − µ1)>Σ−1

2 (µ2 − µ1)
]
− ln

(
det Σ1
det Σ2

))
(24)

The KLD measures of the difference between two distributions up to the third
moment. Thus, the errors in the covariance as well as the mean are included.
Figure 22 shows the KLD of the 9-dimensional navigation state (6-dimensional
pose and 3-dimensional velocity) produced by the CFS and fixed-lag covariance
estimates compared with the batch covariances, averaged over the 100 Monte
Carlo trials. Again, the CFS system is able to recover the full batch covariance
between loop closure events while the fixed-lag smoother, without the aid of
loop closure constraints, continues to diverge.

7.2 Karlsruhe Dataset
To test the proposed method on real-world data, we make use of the KITTI Vi-
sion Benchmark Suite (Geiger et al., 2012). These datasets were captured from
the autonomous vehicle platform “Annieway” during traverses around the city
of Karlsruhe, Germany. This platform consists of a car chassis outfitted with
a stereo camera and a differential GPS/INS system. The differential GPS/INS
data provides highly accurate ground truth position and orientation data. Ad-
ditionally, raw IMU measurements are provided at 100 Hz, but are accumulated
into factors only at camera rate, as was done in the simulated trials. Raw cam-
era images from the stereo rig are available at 10Hz. A typical visual odometry
pipeline was used in which image features are extracted and matched between
sequential camera pairs using image descriptors. In this example, SIFT Lowe
(1999) features and descriptors are used. As in the simulated aerial environment,
the visual odometry measurements are in the form of frame-to-frame relative

34

0 100 200 300 400 500 600 700 800
−1

0

1

2

3

4

5

6

7

8

9

D
K

L

DKL

Time [sec]

Concurrent

FixedLag

Figure 22: The average Kullback–Leibler divergence (KLD) of the CFS and
fixed-lag smoother results compared with the full batch solution. The KLD
measures the differences of two distributions up to the third moment, so errors
in the covariance as well as the mean are captured.

pose transformation estimates. Figure 23 shows several typical camera images
with the tracked features indicated in red. Loop closures were extracted us-
ing standard clustering techniques on the extracted feature descriptors. Figure
24 shows the ground truth trajectory (blue) overlaid on satellite images from
Google Earth®. The identified loop closures are displayed in green.

As in the simulated scenario, the measurements are processed by a full batch
optimizer, a short-term fixed-lag smoother, and the proposed concurrent filter-
ing and smoothing system. The full batch optimizer receives all of the mea-
surements (IMU, visual odometry, and loop closure constraints) whenever they
are measured, producing an updated output for each measurement time. The
fixed-lag smoother is only provided with the IMU and visual odometry measure-
ments. Since camera measurements are produced at a much higher frequency in
the ground data, the fixed-lag smoother is configured with a 2.0 s lag, which in-
cludes measurements from the last 20 camera frames. Similarly, the concurrent
filter is designed as a fixed-lag smoother with a 2.0 s smoothing lag; identi-
fied loop closure constraints are sent directly to the concurrent smoother. The
computed trajectories of all methods are shown in Figure 25.

The proposed CFS system closely tracks the full batch optimization results
over the entire trajectory. As seen in Figure 25, the full batch trajectory and
the CFS trajectory are nearly indistinguishable, except near loop closures. The
fixed-lag smoothers, on the other hand, eventually drifts away from the optimal
solution as it cannot take advantage of the loop closure constraints. This is
shown in more detail in Figures 26a-26c which plot the position, velocity and
orientation errors relative to the batch solution. As can be seen from these
figures, the CFS system produces results very close to the batch estimate, with
the most dramatic differences in the position and yaw estimates.

The effect of the time delays, described in Section 5.5, are also evident
in the CFS trajectory. Figure 25b shows an expanded view of the first loop

35

Figure 23: Typical camera images from the test KITTI dataset. Features
tracked by the visual odometry system are indicated in red.

Figure 24: Ground truth trajectory (blue) with areas of identified feature cor-
respondences (loop closures) identified (green).

36

closure event within this Karlsruhe scenario. The vehicle starts in the north-
west corner, driving south. Once the vehicle rounds the corner, the loop closure
system correctly identifies that the vehicle is retracing a previously driven path
and adds loop closure constraints. The batch solution incorporates these loop
closures immediately, correcting much of the drift accumulated during the first
161.8 s. However, the CFS system must first wait for the states involved in the
loop closure to transition to the smoother (approximately 2.0 s in this case) and
wait for the smoother to complete the current update and process the new loop
closure (a delay of up to 1.2 s each as shown in Figure 28). The CFS system
ultimately updates the navigation solution with the loop closure information at
165.5 s, an actual delay of 3.7 s.

Also, each CFS filter-smoother synchronization event may be viewed as a
single iteration of a nonlinear optimizer operating on the entire joint pdf. While
a single iteration is often sufficient to achieve a near-optimal trajectory, correc-
tions of large drifts may need multiple synchronization updates to fully converge.
This is the situation depicted in Figure 25c. A large loop closure occurs between
the vehicle at time 352.6 s and part of the first loop at time 43.0 s. This loop
closure corrects for drift accumulated over most of the trajectory. The full batch
optimizer requires 5 iterations and over 11 s to fully incorporate the first of the
loop closures starting at 352.6 s. In contrast, the CFS system continues to pro-
duce navigation solutions at a rate of 10Hz while still converging to the batch
solution over time. However, the CFS requires more iterations before it fully
converges in this particular instance. Position updates due to these multiple
iterations can be clearly seen in Figure 25c.

In case a smooth trajectory is required, e.g. for control algorithms, one alter-
native is to generate such a trajectory using a fixed-lag estimator. Although this
solution will drift over time, it should be adequate for controlling the vehicle.

We also characterize the computation time required for each aspect of the
CFS system. First, Figure 27 shows the calculation time required to perform
each update for the full batch system, the fixed-lag smoother, and the CFS.
Since the CFS is a parallel system, this time includes only the update time for
the filter, and does not include the smoother update time (which happens in a
separate thread) or the synchronization time. This time reflects the latency be-
tween the time a measurement arrives and the time each inference architecture
has an updated navigation solution. Full batch optimization is not intended
to be real-time; it exhibits a general linear time increase with large upward
deviations caused by performing multiple optimization iterations per timestep.
The fixed-lag smoother and the concurrent filter should both provide constant
time updates. Further, since the fixed-lag smoother and concurrent filter are
both configured for the same smoother lags, their update times should be sim-
ilar. However, in addition to performing the same required operations as the
fixed-lag smoother, the concurrent filter also caches factors for the smoother
and calculates the shortcut marginal (see Section 6.2) at each iteration. As
shown in the zoomed in view, this additional overhead is negligible and both
the concurrent filter and fixed-lag smoother require approximately 6ms to per-
form each update. The timing variation shown for the filters is largely due to

37

−200 −100 0 100 200 300 400 500
−200

−100

0

100

200

300

400

500

600

East (m)

N
o
rt

h
 (

m
)

Trajectory

Ground Truth

Batch

Fixed Lag

Concurrent

(a) Trajectory

40 50 60 70 80 90

40

45

50

55

60

65

70

75

80

85

90

East (m)

N
o
rt

h
 (

m
)

Trajectory

Ground Truth

Batch

Fixed Lag

Concurrent

(b)

80 100 120 140 160 180 200 220 240

200

250

300

350

East (m)

N
o
rt

h
 (

m
)

Trajectory

Ground Truth

Batch

Fixed Lag

Concurrent

(c) Zoom 2

Figure 25: (a) The computed trajectory using full batch optimization, a fixed-
lag smoother, and the CFS system. The CFS trajectory remains close to the
batch solution, while the fixed-lag smoother trajectory diverges due to lack
of loop closure constraints. (b) An expanded view of the first loop closure
incorporated by the batch and CFS optimization, demonstrating the time delay
of the CFS, described in Section 5.5. (c) An expanded view of a long-term loop
closure correcting a large accumulated drift. While the batch optimization is
able to perform multiple optimization iterations immediately, the CFS system
converges to the batch solution over time as more synchronization events take
place.

38

0 50 100 150 200 250 300 350 400 450 500
−100

0

100

200

N
o
rt

h
[m

])

Position

0 50 100 150 200 250 300 350 400 450 500
−100

0

100

200

E
a
s
t[
m

]

0 50 100 150 200 250 300 350 400 450 500
−50

0

50

Time[sec]

H
e
ig

h
t[
m

]

Fixed Lag

Concurrent

(a)

0 50 100 150 200 250 300 350 400 450 500
−5

0

5

N
o
rt

h
[m

/s
]

Velocity

0 50 100 150 200 250 300 350 400 450 500
−5

0

5

E
a
s
t[
m

/s
]

0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

Time[sec]

H
e
ig

h
t[
m

/s
]

FixedLag

Concurrent

(b)

0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

R
o
ll[

d
e
g
]

Orientation

0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

P
it
c
h
[d

e
g
]

0 50 100 150 200 250 300 350 400 450 500
−20

−10

0

10

Time[sec]

Y
a
w

[d
e
g
]

FixedLag

Concurrent

(c)

Figure 26: Position, velocity, and orientation errors relative to the batch solu-
tion. The CFS system recovers the batch solution, except near loop closures as a
result of the time delays inherent in the real-time CFS. In particular, the large
loop closure depicted in 25c occurs at t = 352.6 s, corresponding to a period
where the CFS solution is noticeably different than the batch. By t = 400 s, the
CFS has fully incorporated all of the loop closures in this extended period and
again tracks the batch solution.

39

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

Time[sec]

U
p
d
a
te

 T
im

e
[s

e
c
]

Navigation Solution Update Time

Batch

FixedLag

ConcurrentFilter

(a)

0 50 100 150 200 250 300 350 400 450 500
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Time[sec]

U
p
d
a
te

 T
im

e
[s

e
c
]

Navigation Solution Update Time

Batch

FixedLag

ConcurrentFilter

(b)

Figure 27: (a) The calculation time for each navigation update of the full batch
optimization, fixed-lag smoother, and the concurrent filter. Loop closure con-
straints are evident in the smoother timing as large spikes in individual updates
(e.g. at 165 s and 340 s) caused by the optimizer needing many iterations to con-
verge. Compared to the full batch optimization update times, both the fixed-lag
smoother and the CFS are small. (b) An expanded view of the the fixed-lag
smoother and CFS update times, demonstrating constant-time operation for
both systems. Despite additional overhead in the CFS, such as maintaining the
“shortcut” marginal, their actual performance is comparable.

imprecisions in the CPU timer used in profiling. Figure 28 shows the timing
break-down of the individual components of the concurrent architecture: filter
update, smoother update, and synchronization. Again, the smoother update is
not intended to be real-time, and is run in a background thread where it does
not affect the filter operation. The concurrent smoother has been configured to
only perform a single optimization iteration, allowing the CFS to synchronize
more frequently. Thus, the large upward timing deviations observed in the full
batch smoother of Figure 27 are not present. The filter update times are ex-
actly those presented in Figure 27, and are provided for reference and scale of
the synchronization times. Using “shortcut” marginal calculation described in
Section 6.2, the synchronization time can be performed in approximately con-
stant time. This is supported by the zoomed in view of Figure 28 where each
synchronization requires approximately 6ms, similar to the filter update time.

8 Conclusions
This paper presented a general parallel inference architecture that combines the
fast updates typical of navigation filters with the optimality of full smoothing
approaches. This is accomplished by factoring the full joint probability density
used by batch smoothing approaches in a particular way, resulting in two condi-
tionally independent subgraphs. Methods for updating each subgraph indepen-

40

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4

Time[sec]

U
p
d
a
te

 T
im

e
[s

e
c
]

Concurrent Timing Breakdown

Filter

Smoother

Sync

(a)

0 50 100 150 200 250 300 350 400 450 500
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Time[sec]

U
p
d
a
te

 T
im

e
[s

e
c
]

Concurrent Timing Breakdown

Filter

Smoother

Sync

(b)

Figure 28: (a) The calculation time of the individual component of the CFS
system: smoother update, filter update, and synchronization. (b) An expanded
view of just the filter and synchronization times, showing both low-latency and
constant-time performance of both components.

dently and in parallel were presented, as well as a process for synchronizing the
two subgraphs after concurrent updates have occurred. These processes are gen-
eral, and are not tied to specific sensors, representations, or inference methods.
It is suggested that one of the subgraphs, suggestively referred to as the ’filter’
within this paper, consists of a small set of the most recent states. This allows
fast, and even constant-time, updates of the current navigation estimate using
newly received sensor measurements. The second subgraph, referred to as the
’smoother’, consists of all other states and the original nonlinear observations
obtained from the filter. By applying a full smoothing inference algorithm to the
smoother subgraph in a background thread, the full smoothing solution of the
entire joint density can be recovered without impacting the filter update cycle.
In addition to recovering the optimal estimate, the presence of the smoother
allows the incorporation of arbitrary loop closures into the optimization.

The cost of this parallelization is only a time delay between the instant a
loop closure constraint is identified and the time the filter is adjusted accord-
ingly. Most of this time delay is inherent to any parallel architecture running
in real-time. Before the output navigation estimate can be impacted by the
loop closure, the loop closure must first be processed by the smoother. Thus,
any parallel real-time system will be delayed by at least the smoother update
time. Further, if the smoother is updated constantly, then the system must also
wait for the current smoother optimization to complete before inserting the loop
closure and optimizing again. However, there is an additional delay in the CFS
induced by its factorization. In order to maintain the conditional independence
of the two subgraphs needed for concurrent updates, no linkage can be added
between the filter variables and the smoother variables. This means that the
system must also wait for the loop closure variable to propagate from the filter

41

to the smoother before the constraint is added to the smoother. For fixed-lag
smoother implementations, this is simply the smoother lag. Thus, the system
designer does have control over the length of this additional lag.

A practical CFS system optimizes the full joint density by performing iter-
ative, nonlinear least-squares optimization on the two independent subgraphs,
then exchanging updated information by synchronizing the subgraphs. This
synchronization may be viewed as the final step in a single optimization itera-
tion over the entire graph. As such, it is generally better for the CFS system
to perform synchronization more frequently with less optimal subgraphs, rather
than waiting for the two subgraphs to fully converge before synchronization.
Thus, the smoother implementation used throughout this paper was designed
to perform only a single optimizer iteration before synchronizing with the filter.

The CFS architecture was demonstrated on both simulated data of an aerial
vehicle and on real data collected from a ground vehicle. A Monte Carlo study
was conducted using the simulation system, showing that the CFS system does
recover the full batch solution, except during the system delays around loop clo-
sure events. Both the current state estimate and the covariances were examined.
Similar results were obtained when working with the real data: the CFS esti-
mate closely tracks the full batch estimate, except for some delay around loop
closures. The computational requirements of the different CFS operations were
examined, showing no significant difference between the CFS filter computation
time and the computation time of an equivalent fixed-lag smoother, both well
below the update rate of the involved sensors. The synchronization times of the
CFS were also shown to be constant over the entire dataset, and well below the
update rate of the involved sensors. This enables the CFS system to operate
in real-time, even while the computation of the smoother grows approximately
linearly.

8.1 Future Work
An obvious extension to the presented implementation would be to replace the
batch optimization of the smoother branch with an incremental inference imple-
mentation, such as iSAM2 Kaess et al. (2012a). This should dramatically alter
the time required for performing most of the smoother updates, converting the
approximately linear-time complexity update operation shown in Figure 27 into
an approximately constant-time update operation. Even though iSAM2 will still
require significant processing time when loop closures are incorporated, the vast
majority of the trajectory would be improved by more frequent synchronizations
with significantly smaller time delays.

A far more interesting extension of CFS system involves transforming the
formulation of the measurement factors when passing from the filter to the
smoother during synchronization. Since computational speed is critical for the
filter branch, an approximate but fast factor formulation could be used inside the
filter. For example, for stereo vision processing, all of the feature observations
between consecutive frames could be used to generate a single relative pose
constraint. However, when this factor passes from the filter to the smoother, it

42

could be transformed into a large set of projection factors, allowing the smoother
to perform full bundle adjustment of the trajectory and scene structure. The
factorization of the filter and smoother branch, presented in Section 5, specify
conditional and marginal densities given specific sets of measurements. Since
the relative pose constraint used in the filter and the set of projection factors
used in the smoother involve identical measurements (a set of pixel locations),
the CFS factorization is not violated in any way by this factor transformation.
This method could allow a designer to make use of time-saving approximate
formulations for many sensors, knowing that the filter output would ultimately
be corrected by the smoother using the true measurement formulations.

Acknowledgements
We would like to thank Rakesh Kumar and Supun Samarasekera at Sarnoff/SRI
International for their support and valuable discussions. This work was sup-
ported by the all source positioning and navigation (ASPN) program of the Air
Force Research Laboratory (AFRL) under contract FA8650-11-C-7137. The
views expressed in this work have not been endorsed by the sponsors.

References
Aharoni, R. and Berger, E. (2009). MengerÕs theorem for infinite graphs.
Inventiones mathematicae, 176(1):1–62.

Bar-Shalom, Y. (2002). Update with out-of-sequence measurements in tracking:
exact solution . IEEE Trans. Aerosp. Electron. Syst., 38:769–777.

Bar-Shalom, Y. and Li, X. (1995). Multitarget-multisensor tracking: principles
and techniques. YBS Publishing.

Davis, T., Gilbert, J., Larimore, S., and Ng, E. (2004). A column approximate
minimum degree ordering algorithm. ACM Trans. Math. Softw., 30(3):353–
376.

Dellaert, F. and Kaess, M. (2006). Square Root SAM: Simultaneous localization
and mapping via square root information smoothing. Intl. J. of Robotics
Research, 25(12):1181–1203.

Eustice, R., Singh, H., and Leonard, J. (2006). Exactly sparse delayed-state
filters for view-based SLAM. IEEE Trans. Robotics, 22(6):1100–1114.

Farrell, J. (2008). Aided Navigation: GPS with High Rate Sensors. McGraw-
Hill.

Folkesson, J. and Christensen, H. (2004). Graphical SLAM – a self-correcting
map. In IEEE Intl. Conf. on Robotics and Automation (ICRA), volume 1,
pages 383–390.

43

Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready for autonomous
driving? the KITTI vision benchmark suite. In IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pages 3354–3361, Providence, USA.

Grisetti, G., Stachniss, C., Grzonka, S., and Burgard, W. (2007). A tree param-
eterization for efficiently computing maximum likelihood maps using gradient
descent. In Robotics: Science and Systems (RSS).

Heggernes, P. and Matstoms, P. (1996). Finding good column orderings for
sparse QR factorization. In Second SIAM Conference on Sparse Matrices.

Indelman, V., Melim, A., and Dellaert, F. (2013a). Incremental light bundle
adjustment for robotics navigation. In IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS).

Indelman, V., Wiliams, S., Kaess, M., and Dellaert, F. (2012). Factor graph
based incremental smoothing in inertial navigation systems. In Intl. Conf. on
Information Fusion, FUSION.

Indelman, V., Wiliams, S., Kaess, M., and Dellaert, F. (2013b). Information
fusion in navigation systems via factor graph based incremental smoothing.
Robotics and Autonomous Systems, 61(8):721–738.

Jones, E. and Soatto, S. (2011). Visual-inertial navigation, mapping and local-
ization: A scalable real-time causal approach. Intl. J. of Robotics Research,
30(4).

Kaess, M., Ila, V., Roberts, R., and Dellaert, F. (2010a). The Bayes tree: An
algorithmic foundation for probabilistic robot mapping. In Intl. Workshop on
the Algorithmic Foundations of Robotics.

Kaess, M., Ila, V., Roberts, R., and Dellaert, F. (2010b). The Bayes tree:
Enabling incremental reordering and fluid relinearization for online mapping.
Technical Report MIT-CSAIL-TR-2010-021, Computer Science and Artificial
Intelligence Laboratory, MIT.

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J., and Dellaert, F.
(2011). iSAM2: Incremental smoothing and mapping with fluid relineariza-
tion and incremental variable reordering. In IEEE Intl. Conf. on Robotics
and Automation (ICRA), Shanghai, China.

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J., and Dellaert, F.
(2012a). iSAM2: Incremental smoothing and mapping using the Bayes tree.
Intl. J. of Robotics Research, 31:217–236.

Kaess, M., Wiliams, S., Indelman, V., Roberts, R., Leonard, J., and Dellaert, F.
(2012b). Concurrent filtering and smoothing. In Intl. Conf. on Information
Fusion, FUSION.

44

Klein, G. and Murray, D. (2007). Parallel tracking and mapping for small AR
workspaces. In IEEE and ACM Intl. Sym. on Mixed and Augmented Reality
(ISMAR), pages 225–234, Nara, Japan.

Konolige, K. and Agrawal, M. (2008). FrameSLAM: from bundle adjustment to
realtime visual mapping. IEEE Trans. Robotics, 24(5):1066–1077.

Konolige, K., Grisetti, G., Kuemmerle, R., Burgard, W., Benson, L., and
Vincent, R. (2010). Efficient sparse pose adjustment for 2D mapping. In
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), pages 22–
29, Taipei, Taiwan.

Kschischang, F., Frey, B., and Loeliger, H.-A. (2001). Factor graphs and the
sum-product algorithm. IEEE Trans. Inform. Theory, 47(2).

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The
Annals of Mathematical Statistics, pages 79–86.

Lowe, D. (1999). Object recognition from local scale-invariant features. In Intl.
Conf. on Computer Vision (ICCV), pages 1150–1157.

Lu, F. and Milios, E. (1997). Globally consistent range scan alignment for
environment mapping. Autonomous Robots, pages 333–349.

Lupton, T. and Sukkarieh, S. (2012). Visual-inertial-aided navigation for high-
dynamic motion in built environments without initial conditions. IEEE Trans.
Robotics, 28(1):61–76.

Mahon, I., Williams, S., Pizarro, O., and Johnson-Roberson, M. (2008). Ef-
ficient view-based SLAM using visual loop closures. IEEE Trans. Robotics,
24(5):1002–1014.

Maybeck, P. (1979). Stochastic Models, Estimation and Control, volume 1.
Academic Press, New York.

Mei, C., Sibley, G., Cummins, M., Newman, P., and Reid, I. (2011). RSLAM:
A system for large-scale mapping in constant-time using stereo. Intl. J. of
Computer Vision, 94(2):198–214.

Menger, K. (1927). Zur allgemeinen kurventheorie. Fundamenta Mathematicae,
10(1):96–115.

Mourikis, A. and Roumeliotis, S. (2007). A multi-state constraint Kalman filter
for vision-aided inertial navigation. In IEEE Intl. Conf. on Robotics and
Automation (ICRA), pages 3565–3572.

Mourikis, A. and Roumeliotis, S. (2008). A dual-layer estimator architecture
for long-term localization. In Proc. of the Workshop on Visual Localization
for Mobile Platforms at CVPR, Anchorage, Alaska.

45

Moutarlier, P. and Chatila, R. (1989). An experimental system for incremental
environment modelling by an autonomous mobile robot. In Experimental
Robotics I, The First International Symposium, Montréal, Canada, June 19-
21, 1989, pages 327–346.

Newcombe, R., Davison, A., Izadi, S., Kohli, P., Hilliges, O., Shotton, J.,
Molyneaux, D., Hodges, S., Kim, D., and Fitzgibbon, A. (2011a). Kinect-
Fusion: Real-time dense surface mapping and tracking. In IEEE and ACM
Intl. Sym. on Mixed and Augmented Reality (ISMAR), pages 127–136, Basel,
Switzerland.

Newcombe, R., Lovegrove, S., and Davison, A. (2011b). DTAM: Dense tracking
and mapping in real-time. In Intl. Conf. on Computer Vision (ICCV), pages
2320–2327, Barcelona, Spain.

Ranganathan, A., Kaess, M., and Dellaert, F. (2007). Fast 3D pose estimation
with out-of-sequence measurements. In IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), pages 2486–2493, San Diego, CA.

Shen, X., Son, E., Zhu, Y., and Luo, Y. (2009). Globally optimal distributed
Kalman fusion with local out-of-sequence-measurement updates. IEEE Trans-
actions on Automatic Control, 54(8):1928–1934.

Sibley, G., Mei, C., Reid, I., and Newman, P. (2009). Adaptive relative bundle
adjustment. In Robotics: Science and Systems (RSS).

Smith, D. and Singh, S. (2006). Approaches to multisensor data fusion in target
tracking: A survey. IEEE Transactions on Knowledge and Data Engineering,
18(12):1696.

Smith, R., Self, M., and Cheeseman, P. (1988). A stochastic map for uncertain
spatial relationships. In Proc. of the Intl. Symp. of Robotics Research (ISRR),
pages 467–474.

Smith, R., Self, M., and Cheeseman, P. (1990). Estimating uncertain spatial
relationships in Robotics. In Cox, I. and Wilfong, G., editors, Autonomous
Robot Vehicles, pages 167–193. Springer-Verlag.

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics. The MIT
press, Cambridge, MA.

Triggs, B., McLauchlan, P., Hartley, R., and Fitzgibbon, A. (2000). Bundle
adjustment – a modern synthesis. In Triggs, W., Zisserman, A., and Szeliski,
R., editors, Vision Algorithms: Theory and Practice, volume 1883 of LNCS,
pages 298–372. Springer Verlag.

Vial, J., Durrant-Whyte, H., and Bailey, T. (2011). Conservative sparsification
for efficient and consistent approximate estimation. In IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems (IROS), pages 886–893. IEEE.

46

Zahng, S. and Bar-Shalom, Y. (2011). Optimal update with multiple out-of-
sequence measurements. In Proc. of the SPIE, Signal Processing, Sensor
Fusion, and Target Recognition XX.

Zhu, Z., Oskiper, T., Samarasekera, S., Kumar, R., and Sawhney, H. (2007).
Ten-fold improvement in visual odometry using landmark matching. In Intl.
Conf. on Computer Vision (ICCV).

47

