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Abstract—Many point estimation problems in robotics, com-
puter vision and machine learning can be formulated as instances
of the general problem of minimizing a sparse nonlinear sum-of-
squares objective function. For inference problems of this type,
each input datum gives rise to a summand in the objective
function, and therefore performing online inference corresponds
to solving a sequence of sparse nonlinear least-squares minimiza-
tion problems in which additional summands are added to the
objective function over time. In this paper we present Robust
Incremental least-Squares Estimation (RISE), an incrementalized
version of the Powell’s Dog-Leg numerical optimization method
suitable for use in online sequential sparse least-squares min-
imization. As a trust-region method, RISE is naturally robust
to objective function nonlinearity and numerical ill-conditioning,
and is provably globally convergent for a broad class of inferential
cost functions (twice-continuously differentiable functions with
bounded sublevel sets). Consequently, RISE maintains the speed
of current state-of-the-art online sparse least-squares methods
while providing superior reliability.

Index Terms—Sparse least-squares minimization, online esti-
mation, SLAM, computer vision, machine learning

I. INTRODUCTION

ANY point estimation problems in robotics, computer
vision and machine learning can be formulated as
instances of the general problem of minimizing a sparse
nonlinear sum-of-squares objective function; for example,
the archetypal problems of full (smoothing) simultaneous
localization and mapping (SLAM) [1] (in robotics), bundle
adjustment (BA) [2], [3] (in computer vision), and sparse
(kernel) regularized least-squares classification and regression
[4], [5] (in machine learning) all belong to this class. For
inference problems of this type, each input datum gives rise to
a summand in the objective function, and therefore performing
online inference (in which the data is collected sequentially
and the estimate updated after the incorporation of each new
datum) corresponds to solving a sequence of sparse least-
squares minimization problems in which additional summands
are added to the objective function over time.
In practice, these online inference problems are often solved
by computing each estimate in the sequence as the solu-
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Fig. 1. The Powell’s Dog-Leg update step hg; is obtained by interpolating
the (possibly approximate) Newton step h v and the gradient descent step hgq
using a trust-region of radius A centered on the current iterate x. By adapting
A online in response to the observed performance of the Newton steps near
x, the algorithm is able to combine the rapid end-stage convergence speed of
Newton-type methods with the reliability of gradient descent.

tion of an independent minimization problem using standard
sparse least-squares techniques (most commonly Levenberg-
Marquardt [6]-[8]). While this approach is general and pro-
duces good results, it is computationally expensive, and does
not exploit the sequential structure of the underlying inference
problem; this limits its utility in real-time online applications,
where speed is crucial.

More sophisticated solutions achieve faster computation by
directly exploiting the sequentiality of the online inference
problem. The canonical example is online gradient descent,
which is attractive for its robustness, simplicity, and low
memory and per-iteration computational costs, but its first-
order rate can lead to painfully slow convergence [8]. Al-
ternatively, Kaess et al. have developed incremental smooth-
ing and mapping (iSAM), [9], [10], which exploits recent
algorithmic advances in sparse numerical linear algebra to
implement an efficient incrementalized version of the Gauss-
Newton method [8] for use in online sparse least-squares
minimization. This incremental approach, together with the
Gauss-Newton method’s superlinear convergence rate, enables
iSAM to achieve computational speeds unmatched by iterated
batch techniques. However, the Gauss-Newton method can
exhibit poor (even globally divergent) behavior when applied
to objective functions with significant nonlinearity [11], which
restricts the class of problems to which iSAM can be reliably
applied. To date, the development of a fully incremental online
sparse least-squares solver that combines the robustness of
gradient descent with the superlinear convergence rate of
Newton-type methods has remained an outstanding problem.



To that end, in this paper we present Robust Incremental
least-Squares Estimation (RISE), an incrementalized version
of the Powell’s Dog-Leg numerical optimization algorithm [8],
[12] suitable for use in online sequential sparse least-squares
minimization. As a trust-region method (Fig. 1), Powell’s
Dog-Leg is naturally robust to objective function nonlinearity
and numerical ill-conditioning, and enjoys excellent global
convergence properties [13]-[15]; furthermore, it is known to
perform significantly faster than Levenberg-Marquardt in batch
sparse least-squares minimization while obtaining solutions of
comparable quality [16]. By exploiting iSAM’s pre-existing
functionality to incrementalize the computation of the dog-
leg step, RISE maintains the speed of current state-of-the-art
online sparse least-squares solvers while providing superior
robustness to objective function nonlinearity and numerical
ill-conditioning.

The rest of this paper is organized as follows. In the next
section we formulate the sequential sparse least-squares mini-
mization problem and discuss its connections to online infer-
ence. In Section III we review the class of Newton-type opti-
mization methods, focusing in particular on the Gauss-Newton
method and its incrementalization to produce iSAM. Section
IV introduces the general class of trust-region methods, paying
particular attention to Powell’s Dog-Leg. Here we derive
the indefinite Gauss-Newton-Powell’s Dog-Leg (IGN-PDL)
algorithm (an extension of Powell’s Dog-Leg with Gauss-
Newton steps to the case of indefinite Jacobians), analyze its
robustness with respect to objective function nonlinearity and
numerical ill-conditioning, and establish sufficient conditions
for its global convergence (Theorem 3). We then derive the
RISE and RISE2 algorithms in Section V by incrementalizing
IGN-PDL with the aid of iSAM. We contextualize RISE with
a discussion of related work in Section VI, and evaluate its
performance in Section VII on standard 6DOF pose-graph
SLAM benchmarks and on a real-world visual mapping task
using a calibrated monocular camera. Finally, Section VIII
concludes with a summary of this paper’s contributions and a
discussion of future research directions.

II. PROBLEM FORMULATION

We are interested in the general problem of obtaining a
point estimate z* € R” of some quantity of interest X as the
solution of a sparse nonlinear least-squares problem
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for r: R — R™ with m > n. Problems of this form
frequently arise in probabilistic inference in the context of
maximum likelihood (ML) or maximum a posteriori (MAP)
parameter estimation; indeed, performing ML or MAP esti-
mation over any probability distribution p: R” — R* whose
factor graph representation G = (F, X, &) [17] is sparse and
whose factors are positive and bounded is equivalent to solving
a sparse least-squares problem of the form (1) in which each
summand r; corresponds to a factor p; of p [18]. Given the

Fig. 2. The factor graph formulation of the full (smoothing) SLAM problem.
Here variable nodes are shown as large circles and factor nodes as small solid
circles. The variables consist of robot poses  and landmark positions I, and
the factors are odometry measurements u, a prior p, loop closing constraints ¢
and landmark measurements m. Each of the factors corresponds to a summand
r; in (1). In the online case, as the robot explores previously unseen areas,
new variable nodes (i.e. robot positions and landmarks) and factor nodes
(measurements) are added to this graph over time; the corresponding online
inference problem is then given by (2).

ubiquity of these models, robust and computationally efficient
methods for solving (1) are thus of significant practical import.

In the case of online inference, the input data is collected
sequentially, and we wish to obtain a revised estimate for X
after the incorporation of each datum. Since each input datum
gives rise to a summand in (1), online inference corresponds
to solving the sequence of sparse least-squares problems
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for 7 : R™ — R™ and t = 1,2,..., where:

1) my,n; € NT are monotonically non-decreasing in ¢,

2) my > n; for all ¢,

3) x; € R™ for all ¢ and x; C x; for all + < j.
Condition 1 above expresses the fact that the summation in
(2) evolves over time only through the addition of new terms.
Condition 2 is necessary in order for the minimization problem
in (2) to have a unique solution. Condition 3 formalizes the
idea that we also allow the vector of states X that we wish
to estimate to be augmented online by the addition of new
quantities of interest (for example, as in the case of robotic
mapping when exploring previously unseen areas, cf. Fig. 2).

Our goal in this paper is to develop a fully incremental
algorithm capable of robustly solving online sparse least-
squares minimization problems of the form (2) in real-time.

III. REVIEW OF NEWTON-TYPE OPTIMIZATION METHODS
AND ISAM

The RISE algorithm that we develop in Section V exploits
iSAM’s incremental computation of the Gauss-Newton step in
order to solve the sequential sparse least-squares problem (2)
efficiently in the online case. In this section, we review the
general class of Newton-type optimization methods, their spe-
cialization to the Gauss-Newton method, and Gauss-Newton’s
incremental implementation in iISAM.

A. Newton’s method and its approximations

Newton’s method [8], [11] is an iterative numerical method
for estimating a solution z* of the general nonlinear mini-
mization problem

min f(z),

2(mn
min feC*®), ©



Given an initial estimate () for z*, the function f is locally
approximated at 2(*) by its second-order Taylor expansion ¢(*):
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and a revised estimate
20D = 20 4 () )
is computed by choosing the Newton step hg\i,) to be any

increment to z(*) that minimizes the value of the local ap-
proximation (4):

hg\i,) € argmin ¢ (x(i) + h) . (6)
heRn

Provided that %(mm) > 0, there is a unique minimizer hg\i,)
in (6), which is determined as the solution of

0
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Assuming that each of the steps hg\l,) in (6) exists, Newton’s
method consists of iteratively applying equations (4), (6),
and (5), in that order, to generate a sequence of estimates
2@ 2 for 2* until some stopping criterion is satisfied.

Newton’s method has several attractive theoretical proper-
ties, in particular a fast (quadratic) convergence rate when
initialized with an estimate (%) that is close to a minimizer z*
of a sufficiently regular function f [8]. However, in application
it may not always be practical or computationally feasible to
evaluate the gradient Vf(z(Y)) or Hessian %(I(i)) in the
quadratic model (4) at every iteration (depending upon the
dimension n and analytical complexity of the function f). In
these cases, the local model (4) is often relaxed to
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where ¢() € R™ and B(") € R"*™ symmetric are chosen such
that
0*f

0 B0 ~
); e

~ V(2 (@), ©)
and the corresponding update step hg\i,)
solution of

is computed as a

BOR) = — ), (10)
The selection of different methods for performing the ap-
proximations (9) gives rise to a broad class of optimization
algorithms collectively referred to as Newton-type or approxi-
mate Newton methods. With a careful choice of approximation
scheme in (9) it is possible to preserve many of the desirable
properties of Newton’s method (most importantly a superlinear
end-stage convergence rate) while dramatically reducm% the
computational burden of computing the update steps h

B. The Gauss-Newton method

The Gauss-Newton method [8], [11] is an approximate
Newton method for solving the minimization problem (3) in

the special case (1) in which the objective function is a sum
of squared nonlinear terms. In this case we have
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and the Gauss-Newton method is obtained as an approximate
Newton method by ignoring the effects of the second-order
partial derivatives of » when forming the approximate Hessian

B® in (9):
Z or; Or;
6Ij 8xk

(the exact gradient V.S(x()) corresponding to (11a) is used
for g(*)). Using the function r: R™ — R™, we can write this
approximation more conveniently in matrix notation as

azjaxk (12)

g =27 () Tr(z), (13a)
BW = 27 (zT J(2®), (13b)
where J(x()) denotes the Jacobian of r evaluated at z(¥):
) or
J(z®) = — e R™*™, 14
(') | (14)

We observe that the approximation (12) is equivalent to the
assumption that 7 is locally linear. Indeed, substitution of (13)
into (8) produces

D@D + h) = r(@NTr@D) + 20 (T T (2D)h
+hTJ(@)T J (D)
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where _ _ _ _
LD 4 h) = r(@D) + J(@D)h (16)

is the first-order Taylor expansion (i.e. linearization) of r
about z(". Consequently, by virtue of (11b), (12), and (15),
we expect the Gauss-Newton method to produce the best
results when applied to functions r that have relatively modest
nonlinearities (as quantified by the magnitudes of their second
partial derivatives) and small magnitudes UTH

To compute the Gauss-Newton step hé v» we observe that

if J(x) is full-rank, then B(*) as defined in (13b) is positive
definite, and thus hg)N is uniquely determined by
27 ()T J(xD)hly = =20 (D) Tre®)  a7)
following (10). Letting
) (@) )
Q¥ (RO ) = J(a) (18)
be a QR decomposition [19] of the Jacobian .J(z(*)) and
d® o\ oG
(e<w> = (@) r(@) 19)
for d¥ € R™ and e € R™", we can simplify (17) to
RORD = —a®. (20)

Since R™ is upper-triangular, equation (20) can be efficiently
solved for h(é)N by back-substitution.



C. iSAM: Incrementalizing Gauss-Newton

As shown in Section 1II, the arrival of new data corresponds
to augmenting the function r = r,;4: R™ — R™ on the right-
hand side of (1) to the function

7 Rn+nmw — Rm+mnew

_ r T
r (xoldvxnew) = ( Old( Old) > 7

Tnew (x()ldv xnew)
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where here 7, : R*"T7new  — RMnew jg the set of new
measurement functions and ., € R™> is the set of new
system variables introduced as a result of the new observations.

In the naive application of the Gauss-Newton algorithm
of Section III-B, the solution z* = (x},,,2.,,) for the
augmented least-squares problem determined by (21) would
be found by performing Gauss-Newton iterations until con-
vergence. However, in the context of the sequential estimation
problem (2) we already have a good estimate .4 for the
values of the previously-introduced variables x4, obtained by
solving the least-squares minimization problem (1) prior to the
introduction of the new measurement functions 7,,.,,. Thus,
given any good initialization &, for the newly-introduced
system variables Zpew, & = (Zoid, Tnew) provides a good
initialization for the augmented state * = (Zoid, Tnew) fOr
the Gauss-Newton algorithm.

Furthermore, since we generally expect the initial estimate
Z to be close to the true minimizing value x*, it is not usually
necessary to iterate the Gauss-Newton algorithm until conver-
gence after integration of every new observation; instead, a
single Gauss-Newton step is computed and used to correct the
initial estimate Z. The advantage to this approach is that it
avoids having to recompute the Jacobian J(%) for 7 and its
QR decomposition anew each time new observations arrive;
instead, iISAM efficiently obtains J(#) together with its QR
decomposition by updating the Jacobian J(Z,,4) and its QR
decomposition, as we now describe.

Letting £ = (Zoid, Tnew), the Jacobian J(x) for the aug-
mented system (21) can be decomposed into block form as

oy or (g 00\ (T (wa) O
J(m) - % - (%rneli é)rnew> - < Jnew(m) (22)

Told Tnew
where 5
Told
J (To1d) = € R 23
(To1a) D2ty (23)
is the Jacobian of the previous function r,;4 and
OTnew
new — € RMnewX (n+nnew) 24
(a) = =5 (4

is the Jacobian of the new measurement function 7,,¢,,. Letting

J (Zo1a) = (@1 Q2) (g)

be a QR decomposition for J(Zoq), Where Q1 € R™*™ and

Qo € R™*(m=71) e have
R 0
Q1 0 Qo | _ (@R 0\ _ 5.
(0 I o) Jneg(x) _<Jnew(az~)>_J(m)

(25)

(26)

by (22) and (25), which gives a partial QR decomposition of
J(Z). This partial decomposition can be completed by using
Givens rotations to zero out the remaining nonzero elements
below the main diagonal. Let G € R(*Fmnew)x(ntmncy)
denote a matrix of Givens rotations such that

(1) = (0)

where R € R(**nnew)*(n4nnew) i ypper-triangular. Defining

~_ (G 0 A_ (@1 0 Q2 Ar

a=(5 7). e=(3 7 )
(so that G, Q € R(m+mnew)x(m+mnew) are also orthogonal),
equations (26), (27) and (28) show that

i@ =a(5)
is a QR decomposition for the augmented Jacobian .J (). Now

we can use (19) and (20) to compute the Gauss-Newton step
hgn for the augmented system:

Qf 0 -
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for d € R"T"new The Gauss-Newton step hq v used to correct
the estimate & for the augmented system is then computed as
the solution of
Rhoy = —d. (32)
Equations (24), (27) and (31) show how to obtain the R
factor of the QR decomposition of .J(#) and the corresponding
linear system (32) by updating the R factor and linear system
for the previous Jacobian J(&,;4) using Givens rotations. Since
the updated factor R and the new right-hand side vector d are
obtained by applying G directly to the augmented factor R in
(27) and the augmented right-hand side vector d in (31), it is
not necessary to explicitly form the orthogonal matrix Q in
(28). Nor is it necessary to form the matrix G explicitly either;
instead, the appropriate individual Givens rotations can be
applied sequentially directly to the matrix in (27) and the right-
hand side vector in (31). Under the assumption of sparsity,
only a few elements of the the Jacobian Jye,, (%) will be
nonzero, and therefore only a small number of Givens rotations
will be needed to perform the update in (27). Obtaining the
linear system (32) by this method is thus a computationally
efficient operation.
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Fig. 3. Failure of the Gauss-Newton method. (a): The graph of the sum-of- squares objective function S(x) determined by (33) for A = —2. This function is

C'°° and strictly convex, and has a unique global minimizer at x* = 0 with a S 2 (z*) > 0. (b): This plot shows the distance from the ith Gauss-Newton iterate
z(®) to the global minimizer z* for the first 100 iterations of a sequence 1n1tlallzed with £(®) = 10—, Note that the Gauss-Newton method initially drives the
estimate (") away from the global minimum z* before converging to a 6-periodic orbit. (c): This figure illustrates the behavior of the Gauss-Newton update
rule GN : 29 — 2(t+1) and its 6-fold composition GN () considered as dynamical systems. The graph of G'N intersects the graph of the identity mapping
at the minimizer * = 0, showing that «* is a fixed point of GN (as we would hope); however VGN (z*) = —2, so that [VGN(z*) — 1| =3 > 1,
and therefore this fixed point is repelling [20, Chp. 10]. The intersections of the graph of GN(®) with the graph of the identity give the 6-periodic points of
GN, including the members of the 6-periodic orbit to which the Gauss-Newton iterates converge in (b). This example illustrates the Gauss-Newton method’s
sensitivity to nonlinearity even when applied to well-behaved functions with good initialization. (d): In contrast, the IGN-PDL algorithm of Section IV-C is
globally convergent when applied to this function (cf. Theorem 3). This plot shows the distance from the ith IGN-PDL iterate 2(9) to the minimizer z* for
20 sequences with initializations z(0) sampled uniformly randomly from [—1,1] and parameters A0 = o1, n = .25, m2 = .75, y1 = .5, 72 = 2. The
12th iterates 2(12) of these sequences are all within 3 x 10~% of the minimizer z*. Strong global convergence properties and robustness to highly nonlinear
and ill-conditioned systems are general features of this algorithm (cf. Sec. IV-D).

Finally, we observe that while relinearization is not needed
after every new observation, the system should be periodically
relinearized about its corrected estimate in order to perform
a full Gauss-Newton iteration and obtain a better estimate of
the local minimum (this is particularly true after observations
which are likely to significantly alter the estimates of system
variables). When relinearizing the system about the corrected
estimate, the incremental updating method outlined above is no
longer applicable; instead, the QR factorization of the Jacobian
needs to be recomputed anew. While this is an expensive
batch operation, the factorization step can be combined with a
variable reordering step [21] in order to reduce the fill-in in the
resulting factor R, thereby maintaining sparsity and speeding
up subsequent incremental computations.

IV. FROM GAUSS-NEWTON TO POWELL’S DOG-LEG

The incrementalized Gauss-Newton method outlined in
Section III-C is computationally efficient, straightforward to
implement, and enjoys rapid (up to quadratic [11, pg. 113])
convergence near the minimum. However, the assumption of
the local linearity of  (which underlies the approximations
(13b) and (15)) means that the Gauss-Newton method can
exhibit poor behavior when either r itself or its second partial
derivatives 88 a’"w have large magnitude. Indeed, convergence
of the Gauss- Newton method is not guaranteed, not even lo-
cally; this is in marked contrast with the behavior of Newton’s
method, which (although not globally convergent) can at least
guarantee fast local convergence for a class of functions that
is not excessively restrictive in practice (cf. Theorem 3.5 of
[8]). Furthermore, it is not difficult to construct simple (even
quadratic) examples of r where the sequence of Gauss-Newton
iterates {2()}22, is in fact globally divergent (i.e. fails to
converge when initialized with any point z(*) # z*). For

example, consider the minimization (1) determined by

r: R — R2
(z) = xz+1 (33)
"= \2v2z-1)
For A = —2, the function S(z) is C* and strictly convex, and
has a single global minimum at z* = 0 with %(Jc*) > 0,

hence satisfies all of the standard regularity conditions cus-
tomarily assumed in numerical optimization (cf. e.g. [8], [11]).
Nevertheless, the Gauss-Newton algorithm is in fact globally
divergent in this case [11, pg. 113]. This lack of robustness
even under ideal conditions (a well-behaved objective function
with strong regularity properties and good initialization, cf.
Fig. 3) is a serious shortcoming of the Gauss-Newton method.

To address this shortcoming, in this paper we adopt the Pow-
ell’s Dog-Leg algorithm [8], [12] as the method of choice for
performing the sparse least-squares minimization (1). This al-
gorithm combines the superlinear end-stage convergence speed
of the Newton-type methods with the excellent global con-
vergence properties [13]-[15] of gradient descent approaches.
Indeed, when applied to sparse least-squares minimization
problems, Powell’s Dog-Leg performs significantly faster than
Levenberg-Marquardt (the current method of choice in the
robotics and computer vision communities) while maintaining
comparable levels of accuracy [16].

A. The trust-region approach

As shown in Section III-A, in each iteration Newton’s
method constructs a local model ¢(*) for the objective function
f on a neighborhood U@ of the current estimate (¥, and then
determines an update step hgf,) that minimizes ¢(¥) in place
of f. However, the model ¢(¥ in (4) is constructed using
information about f’s first- and second-order derivatives at
(), which depend only upon the local behavior of f near z(*).



Consequently, while ¢(¥) is a good approximation of f near
2 (in a sense made precise by Taylor’s Theorem), its global
behavior may be quite different from f’s. This can become
problematic if the update step h%) computed using ¢(*) leaves
the region U in which f is well-approximated by ¢(*).
Trust-region methods [8] address this hazard by maintaining
an explicit trust-region, an open ball of radius A centered
on the current estimate z(*) within which f is considered
well-approximated by the local model ¢”). The trust-region
update step hg;) is then obtained as an increment to z(*) that
minimizes the value of ¢\9), subject to the condition that the
update step does not leave the trust-region:
hgi) e argmin ¢ (z® + h).
hll<A®

(34)

The following theorem gives necessary and sufficient op-
timality conditions characterizing the trust-region step hgf) in
(34) when ¢(*) is a quadratic model (as in approximate Newton
methods). Its proof follows from a straightforward application
of the Karush-Kuhn-Tucker first-order optimality conditions
together with the enforcement of the necessary second-order
conditions for a minimizer (cf. [8, Chps. 4 and 12]).

Theorem 1 (Optimality conditions for the trust-region step).
Let f,g € R™, let B € R™*™ be symmetric, and define
qg:R" - R

qh) = f+g"h+ %hTBh. 53)
Then h* € R™ is a solution of the constrained minimization

i & ||R] <
jmin g(h) st [[A] <A

for A > 0 if and only if |h*|| < A and there exists \* > 0
such that the following conditions are satisfied:

(36)

(B+XI)h* = —g, (37a)
A (A = [[17]l) = 0, (37b)
(B+A\1) > 0. (37¢)

As the trust-region method proceeds, the radius of the trust
region A() is varied adaptively according to the gain ratio:
@ _ ared @ (hf})) (38)
pred® (h(;))
where
ared? (W) = f(2@) — f(a® + n?),
pred (ki) = ¢ (2") — ¢V (2 + b))
this compares the actual reduction in the objective function’s
value obtained by taking the proposed trust-region step hg?
with the predicted reduction in function value using the local
model ¢(). Values of p close to 1 indicate that the local model
¢ is performing well near the current iterate z(*), so the
trust-region radius A(Y) can be increased in the next iteration
(to allow longer steps and hence faster convergence), while
values close to O indicate that the local model is performing
poorly, and A(®) should be reduced accordingly (Algorithm 1).
The entire trust-region method is summarized as Algorithm 2;

(39)

Algorithm 1 Updating the trust-region radius A

1: procedure UPDATE_DELTA(p, A, 11,72, 71, V2)
2 if p > 71 then
3 A "YQA
4 else if p < 7n; then
5: A A
6
7
8

end if
return A
: end procedure

Algorithm 2 The trust-region minimization method
1: procedure TRUST-REGION(f, g, Ao, 71, N2, V1, V2)
2: Initialize © < xg9, A < Ag.
3 repeat
4 Construct local model ¢ for f about z.
5 Compute trust-region step h. by solving (34).
6: Set Tproposed (.13 + ht'r)~
7
8
9

Compute p using (38).

if p > 1, then
: Set T < Zproposed-
10: end if

11: A + UPDATE_DELTA(p, A, n1, N2, Y1, V2)-
12: until (stopping criteria)
13: return x

14: end procedure

here 0 < 1 < 7me < land 0 < 73 < 1 < 7y are user-
supplied parameters specifying the gain-ratio thresholds and
scaling factors used in the update of the trust-region radius.

B. Powell’s Dog-Leg

While the canonical trust-region method (Algorithm 2) is
intellectually pleasing and enjoys excellent convergence and
robustness properties (cf. Section IV-D), it is not commonly
used in practice because of the computational cost of finding
the exact trust-region step hy. in (34). (Briefly, this entails
solving a root-finding problem for the Lagrange multiplier
A* in (37a) that generally requires multiple factorizations of
matrices of the form B + AI [22], a prohibitively expensive
operation when appearing as a single step within another
iterative algorithm.) Instead, most practical trust-region imple-
mentations solve (34) approximately using a computationally
cheap approximation that is nevertheless accurate enough to
preserve the desirable properties of the canonical algorithm. In
this section we describe Powell’s Dog-Leg [8], [12], one such
approximate method that can be used whenever the matrix B
in the local quadratic model ¢ in (34) is positive definite.

The dog-leg approximation is derived by regarding the trust-
region step computed in (34) as a function hy,-(A) of the trust-
region radius and considering the effect of varying A. For
B € R™*™ symmetric and positive definite, the local model ¢

has a unique unconstrained minimizer: the Newton step
hy = —B™lg. (40)

If the trust-region radius A is greater than the length of this
step, then the constraint in (34) is inactive, and therefore

hir(A) = hy, |hn]| < A. (41)



Conversely, when the trust-region radius A is small, the
(second-order) quadratic term in the local model (8) is dom-
inated by the linear term, and therefore the trust-region step
computed in (34) will be well-approximated by the maximum
step length allowable in the direction of steepest descent:

A
hir(A) = —mg, A small.

(42)

As A increases through the range [0, c0), the exact trust-
region step hy.(A) traces a smooth path interpolating these
cases; Powell’s Dog-Leg approximates this path using a piece-
wise linear path with two segments (Fig. 4). The first segment
extends from z to the gradient descent step hyq, which we
define as the unconstrained minimizer of the local model ¢
along the steepest descent direction:

a = argmin ¢(z — ag). (43)

acR+
Using the definition of the local model (8) and the fact that
B > 0 by hypothesis, the gradient descent step defined in (43)
can be written in closed-form as:

hgd = —ag,

g’y

~ ¢'Bg’
The second segment linearly interpolates the gradient descent
step hgq and the Newton step hp. Parameterizing the dog-leg
path as pg;: [0,1] — R”™, we have

0 th,q, 0<t
bl - hgd + (2t - 1)(hN - hgd)v % <t

A direct computation using the definitions (40), (43), and
(45) proves the following result (cf. e.g. [8, Sec. 4.1]).

hga = —ag,  « (44)

— N

EC))

<
<

Lemma 1. The dog-leg path pg; defined in (45) satisfies the
following properties:
() |lpai(t)|| is monotonically increasing for all t € [0,1].
(i) q(pai(t)) is monotonically decreasing for all t € [0, 1].

By virtue of Lemma 1, the Powell’s Dog-Leg step hg is
defined to be the (unique) farthest point along the dog-leg
path pg; lying inside the trust-region boundary (cf. Fig. 1):

hai = pai(T),
T =max{t € [0,1] | [[pa(t)[| < A}.

The algorithmic computation of the dog-leg step hg corre-
sponding to definition (46) is given in Algorithm 3. The scalar
[ appearing in line 7 is chosen to satisfy

[hga + B(hy — hga)||* = A%,

which is quadratic in 5. By Lemma 1, (47) has exactly one
solution in (0, 1), which can be written in closed form as

(46)

47)

v = hN — hgd7
—hgav + \/(hfdv)2 + (A% = [[hgal®)[[0]1?
o] '
The complete Powell’s Dog-Leg algorithm is obtained from
Algorithm 2 by replacing the computation of the trust-region

step hy, in line 5 with the computation of the dog-leg step hg;
defined by equations (40), (44), and Algorithm 3.

(48)

Trust-region and dog-leg paths

? % <=> Model contours
1 Trust-region path
2t U — — — Dog-leg path

2

Fig. 4.  This figure shows the trust-region and Powell’s Dog-Leg paths
for a quadratic model g constructed at x¢ with minimizer x*. As the trust-
region radius A increases, the trust-region step h¢r(A) traces a smooth path
interpolating the constrained gradient descent step and the Newton step hp .
Powell’s Dog-Leg approximates this path using a piecewise linear path with
two segments: the first from o to the full gradient descent step hyq, and the
second from hgq to the Newton step Ay .

Algorithm 3 Computing the dog-leg step hg;
1: procedure COMPUTE_DOG-LEG(hy, hgq, A)

2: if ||An]| < A then

3: ha < hyn

4: else if ||hyq|| > A then

5 har (‘uhf?u hga

6: else

7: hqr < hgd + ﬂ(hN — hgd), where 3 € (0, 1) is

chosen such that ||hg| = A (cf. equation (48)).
8: end if
9: return hy
10: end procedure

C. Indefinite Gauss-Newton-Powell’s Dog-Leg

In this subsection we derive an approximate trust-region
algorithm based on Powell’s Dog-Leg with Gauss-Newton
steps for solving minimization problems of the form (1).

To begin, we observe that by virtue of the Hessian approxi-
mations (13b) used in the Gauss-Newton local model ¢, B > 0
always. If J(x) is full-rank, then B > 0 and the dog-leg step
hq; defined in Section IV-B exists and can be computed in
terms of the Gauss-Newton step hg v and the gradient descent
step hgyq. Equations (18)—(20) already provide a closed-form
solution for computing the Gauss-Newton step, so it suffices
to provide a closed-form solution for the gradient descent step
hgaq in (44). Substituting the expressions for B and g from
(13) into (44), we find

— z)Tr(z o= ﬂ
g =2J(z)"r(z), 2[|J(z)g|]2”

(49)
Equations (18)—(20), (49), and Algorithm 3 thus enable the
computation of the dog-leg step hg when B > 0.
In the case that J(z) is not full-rank, B is not positive
definite and the dog-leg step is not defined. However, the
Cauchy step hc (the constrained minimizer of the local model



Algorithm 4 The indefinite Gauss-Newton-Powell’s Dog-Leg
algorithm
1: procedure IGN-PDL(’/‘, xQ, Ao, 1, M2, Y1, ’)/2)

2: Initialize © < x9, A < Ag.

3 repeat

4 Set g + J(x)Tr(x).

5 Compute R factor and right-hand side vector d

as in equations (18) and (19).
6: if R is nonsingular then
7: Compute Gauss-Newton step hgy using (20).
: Set a <+ [lg][2/ 17 (x)g]%
9 Set hgq < —ag.

10: Set h +—COMPUTE_DOG-LEG(hgn, hgd, D).
11: else

12: Compute  using equation (53c).

13: Set h + —kg.

14: end if

15: Set Tproposed < (T + h).

16: Compute p using (38).

17: if p > 1, then

18: Set T < Tproposed-

19: end if

20: A < UPDATE_DELTA(p, A, 71, N2, V1, V2)-
21: until (stopping criteria)

22: return r

23: end procedure

q along the steepest descent direction):

hco = —kg
k = argmin ¢(x — ag) (50)
0<a< 2

= Mgl

always exists and is unique for g # 0 and arbitrary symmetric
B € R™ ™ in the local model (8). Indeed, direct computation
in (50) shows that the step-length x can be written in a simple
closed form as:

2
L {mm{@l, gl‘qgj‘gg}, gT"Bg > 0,

A T
ol 9" Bg=<0.

(S

Substituting the approximate Hessian (13b) from the Gauss-
Newton local model into (51) produces:

. 2
o {mm{@u’ i b 1@l > 0.
A

52
@l =0. O

gl

Our proposed algorithm, which we refer to as the indef-
inite Gauss-Newton-Powell’s Dog-Leg (IGN-PDL) algorithm,
is obtained from Algorithm 2 by using Gauss-Newton-Powell’s
Dog-Leg steps in line 5 when J(z) is full-rank, and con-
strained Cauchy steps otherwise.

Finally, for the sake of notational simplicity and to avoid
unnecessary work, we simplify the computations in (49) and
(52) by canceling the common factors of 2 in the gradient

vector g and the stepsizes a and x. This produces

9=Ja) i), (53a)
o= (53b)
|J(x)gl[?’
- Lgll®
K= {mm {ﬁ’ W} o @l >0
Tall 1 (@)gll = .

The IGN-PDL algorithm is summarized as Algorithm 4.

D. Theoretical analysis

While the trust-region approach of Section IV-A may appear
to be only a slight variation on the Newton-type methods,
in fact trust-region algorithms possess markedly superior ro-
bustness properties. In this subsection we examine two such
properties (global convergence and robustness to numerical ill-
conditioning), and prove a strong global convergence result for
the IGN-PDL algorithm of Section IV-C.

1) Global convergence: One of the most attractive and
powerful features of trust-region algorithms is that they are
globally convergent under very general conditions, even when
using (possibly very loose) gradient and Hessian approxima-
tions in the local models ¢(. By way of illustration, the
following remarkable theorem is due to R.G. Carter [13].

Theorem 2 (Global convergence of trust-region methods). Let

f:R*" > R, 2 e R, and let Q C R™ be any convex open

set containing the sublevel set Ef(x(o)) of f at z(0):
£;@®) = {z e R | f(2) < f@O)}.

Assume further that f is lower-bounded on ), f € C1(Q),
and that V f is Lipschitz continuous on ).

(54)

Fix constants 0 < 11 < 2 < land 0 < v < 1 < 79,
¢<1—mn B,0 € (0,00), and ¢ € (0,1], and let {x(D}2,
be the sequence of iterates obtained in Algorithm 2 using local
models q(i) and approximate trust-region update steps hﬁl) in
line 5 that satisfy the following criteria:
(i) Feasibility: |h\? || < A® for all i > 0.
(i) Gradient approximation error: the approximate gradi-
ents g\ used in each of the local models q\*) satisfy
the bounded relative error criterion:

o = VO _
. <c.
gt
Uniform boundedness of approximate Hessians: each
BU) € R™ ™ is symmetric and satisfies | B™ || < f.
(iv) Asymptotic step direction: assuming that | B?)|| < 8 for
all i > 0 and that

T

(55)

(iii)

liminf|[g®| > 0 and lim A® =0,  (56)
71— 00 71— 00
the step direction ©%) satisfies
lim cos @) =1, (57)
11— 00
where
7T p®
ot — _97) hu (58)

lg@ 1 [1ag |



(v) Uniform predicted decrease: each of the proposed up-
date steps hif) satisfies:

. , 1 _ ) (@)
pred® (hgl)) > 50”9(1)” min {A(l), ”gl} . (59)
o
Then either Vf(z)) = 0 for some iterate =), or the

infinite subsequence {x()}3°  C {1} of iterates that
are accepted in line 9 of Algorithm 2 satisfies

lim ||V f (")) = 0. (60)
k—o0

With the aid of Theorem 2, we prove the following conver-

gence result for the IGN-PDL algorithm (Algorithm 4).

Theorem 3 (Global convergence of the IGN-PDL algorithm).
Let r: R® — R™ be C?, define
S(z) = |[r(@)]I*,

and fix 0 <1 < me < land 0 < v <1 < 7. Given any
(0 € R", if the sublevel set Ls(x(*)) is bounded, then the
sequence of iterates {x(i)} accepted in line 18 of Algorithm 4
either terminates at some %) with V.S(z*)) = 0 or satisfies

lim [|[VS(z®¥)]| — 0. (62)
1— 00

(61)

This theorem is proved in the Appendix.

In practice, the hypotheses of Theorem 3 are quite general;
intuitively, the bounded sublevel set condition simply prohibits
the cost function .S from assigning the same quality to arbitrar-
ily large regions of the state space. Any reasonable inferential
cost function arising in practice will satisfy this condition.

2) Robustness to numerical ill-conditioning: In addition to
their strong convergence properties, trust-region methods are
also naturally robust against numerical ill-conditioning in the
linear system (10) used to solve for the Newton step.

Recall that for a matrix A € R™*"™ with m > n, the
condition number k2(A) (cf. [19, pg. 230]) is

Umax(A) k A —
ko(A) = {Omin(A)’ rank(A)

" 63)
00, rank(A) < n,

where opmax (A) and opin(A) give the maximum and minimum
singular values of A, respectively. Matrices A with ko(A) > 1
are called ill-conditioned; these matrices tend to have poor
numerical properties when used as the coefficient matrix for
inverse problems of the form

. a2
min || Az — b (64)
for b € R™ (of which (10) and (15) are special cases). To see
why this is so, observe that if rank(A) = n, then (64) has the
unique minimizer

n uz“b

rps = argmin| Az — b||* = Z (I
Tz€ER™ p— g5

(65)

where 07 > .-+ > 0, > 0 are the singular values of A, and
u; € R™*! and v; € R™ ! are the left- and right-singular
vectors (respectively) corresponding to o; for all 1 < ¢ < n
(cf. [19, Sec. 5.5.3]). If k2(A) > 1, then since {u;}7
and {v;}}_, are orthonormal sets, (65) shows that xg will

tend to be dominated by the effects of those (generally few)
components of b lying in subspaces spanned by left-singular
vectors u; corresponding to small singular values o;. In
practice, this commonly manifests as the least-squares solution
xrs “exploding” (as measured by ||-||) through subspaces of
R™ spanned by right-singular vectors v; corresponding to small
singular values o; whenever A is ill-conditioned.

One standard approach for addressing poor numerical con-
ditioning in (64) is Tikhonov regularization [23]. In this
approach, the original problem (64) is replaced by

min [ Az = b|1* + A, (66)
where I' € R™*™ is a conditioning matrix designed to control
some property of interest of the Tikhonov-regularized solution,
and A > 0 is a parameter controlling the applied degree
of regularization. The minimizer x of (66) can be formally

computed in closed form as
xy = argmin||Az — b||* + || Tz|?
zER? (67)

= (ATA4+ATTT) "1 AT,

The standard form of Tikhonov regularization has I' = I,
which simply controls the norm of z,. More interestingly,
this choice also has the effect of improving the numerical
conditioning of (66) versus (64). To see this, observe that (66)
with I = I can be expressed as an instance of (64):

min || Az — b||> + Az = min | Az —5|°,  (68)
TER™ z€R™
where A b
A:<\m>, b:<0). (69)

The n x n block v/AI of the augmented coefficient matrix
A ensures that o (A) > v/, and the Pythagorean theorem
implies that o (A) = || 4] < /A +|A][2. These two
inequalities together imply that

1y < YAFIAP _ 1A
IQQ(A)S\/X—\/l—F N

Equation (70) shows that the regularization parameter
controls the effective conditioning of the Tikhonov-regularized
system (66)—(69) when T = 1.

We now highlight a remarkable connection between trust-
region methods and Tikhonov regularization. Consider the
optimality condition (37a) for the trust-region step in Theorem
1, and suppose that B > 0. Since B is symmetric, it can be
diagonalized by an orthogonal matrix ):

B = Qdiag(A1,..., \)Q" (71)

where \;y > --- > X\, > 0 since B > 0; (71) is thus also
a singular value decomposition for B, and ko(B) = A1/ A,.
The same () appearing in (71) also diagonalizes the matrix

B = B + M\*I appearing in (37a):
B = Qdiag(\ + A", ..., A + X)QT,

and therefore

(70)

(72)

— AL+ A* A1
= < —
ra(B) =X =57 S,

= KQ(B)7 (73)



where the inequality in (73) is strict if A* > 0.

Theorem 1 and equations (71)—(73) show that the trust-
region step h;. determined by (34) can be interpreted as
a kind of Tikhonov-regularized solution of the system (10)
defining the (approximate) Newton step hy; indeed, in the
specific case of the Gauss-Newton system defined by (13),
the corresponding first-order optimality condition (37a) is

(J(@)"J(2) + A1) hyy = —J (2) (), (74)

which is an instance of the Tikhonov-regularized system (67).
In particular, equation (73) shows that hy, is the solution of a
system whose conditioning is always at least as good as that
of the system (10) defining A .

This analysis shows that trust-region methods are innately
robust to ill-conditioning, and we therefore expect them to
be particularly effective (as compared to pure Newton-type
methods) whenever the approximate Hessians B(") used in
the local quadratic models (8) are ill-conditioned.

V. RISE: INCREMENTALIZING POWELL’S DOG-LEG

In this section we present Robust Incremental least-Squares
Estimation (RISE), an incrementalized version of the IGN-
PDL algorithm (Algorithm 4). For pedagogical clarity, we
begin by following the original derivation of RISE as given
in [24], in which IGN-PDL is incrementalized with the aid of
iSAM. We then derive RISE2, a new and improved version of
the RISE algorithm obtained by using iSAM2 [10] in place of
the original iSAM.

A. Derivation of RISE

The IGN-PDL algorithm computes the approximate trust-
region update step h from the Gauss-Newton step hgy and
the gradient descent step hg,q when R is nonsingular, and the
Cauchy step h¢c when R is singular (cf. lines 7-10 and 13
of Algorithm 4). As iSAM already implements an efficient
incremental algorithm for computing hg in the nonsingular
case, it remains only to develop efficient methods to compute
hgq and he. In turn, lines 9 and 13 of Algorithm 4 show that
hgq and hc are computed in terms of the gradient direction
vector g and the scale factors « and « defined in (53). Thus,
it suffices to determine efficient incrementalized versions of
equations (53a)—(53c).

Letting * = (Zoid, Tnew) as before and substituting the
block decompositions (21) and (22) into (53a) produces

7o)
Tuw(@)? ) ("))

e
( Jjold
- ( xom gow@ozd)) + Jnca (@) Taew(@):

Comparing the right-hand side of (75) with (53a), we rec-
ognize the product J(Zoa)? 7o1d(Z01a) as nothing more than
g = goid, the gradient direction vector of the original (i.e.
unaugmented) system at the linearization point ;4. Thus, (75)
can be reduced to

= (g) + new (@) Tnew(®).

(75)

(76)

Algorithm 5 The RISE algorithm
1: procedure RISE
2: Initialization: %14, Testimate < Lo, A < Ag.
3 while (3 new data (e, Thew)) do
4 if (relinearize) then
5: Update linearization point: ;4 < Testimate-
6
7

Construct Jacobian J (014, Tnew)-

Perform complete QR decomposition on .J (&),
cache R factor and right-hand side vector d as
in equations (18) and (19).

: Set g « RTd.
9: else
10: Compute the partial Jacobian J,,e,, (Z) in (24).
11: Obtain and cache the new R factor and new

right-hand side vector d by means of Givens
rotations as in equations (27) and (31).
12: Set

3 (8) + donl e

13: end if

14: if R is nonsingular then

15: Compute Gauss-Newton step hgy using (32).

16: Set o« [|g]* /| Rg|*.

17: Set hgq < —ag.

18: Set h <~ COMPUTE_DOG-LEG(hgn, hgd, D).

19: else

20: Compute  using (80b).

21: Set h + —kg.

22: end if

23: Set Eproposed < (& + h).

24: Compute p using (38).

25: if p > 1, then

26: Update estimate: Testimate < Lproposed-

27: else

28: Retain current estimate: Tostimate < -

29: end if

30: Set A < UPDATE_DELTA(p, A, 11, N2, Y1, Y2)-

31: Update cached variables: Z,;q < &, 7 ¢ 7, g < g,
R+ R,d+d.

32: end while

33: return Z.giimate

34: end procedure

Since the matrix Jy, e, (2) is sparse and its row dimension is
equal to the (small) number of new measurements added when
the system is extended, equation (76) provides an efficient
method for obtaining the gradient direction vector g for the
augmented system by incrementally updating the previous
gradient direction vector g, as desired.

Furthermore, in addition to obtaining g from g using (76) in
incremental update steps, we can also exploit computations al-
ready performed by iSAM to more efficiently batch-compute g
during relinearization steps, when incremental updates cannot
be performed. Substituting (29) into (53a), we obtain:

9= (Q (?))Tf(@ = (R" 0)Q"r(@). (7



Comparing (77) with (30) then shows that
g=(&" 0) (%) =&"d
2 .

The advantage of equation (78) versus equation (53a) is that R
is a sparse matrix of smaller dimension than .J(%), so that the
matrix-vector multiplication in (78) will be faster. Moreover,
since iISAM already computes the factor R and the right-hand
side vector d, the factors on the right-hand side of (78) are
available at no additional computational expense.

Having shown how to compute the vector g, it remains only
to determine the scaling factors o and « as in (53b) and (53c).
The magnitude of g can of course be computed efficiently
directly from g itself, which leaves only the denominator
||7(2)g||>. To compute this quantity we again exploit the
fact that iSAM already maintains the R factor of the QR
decomposition for J(#); for since Q is orthogonal, then

ot -| o ()-8 -1

and equations (53b) and (53c) are therefore equivalent to

(78)

Ig11?
“ = gl o
in{ A gl } Pz
Kz{lr;m{llgl’ DZIESE ”{%9_7”>0’ (80b)
e |Rg = 0.

Again, since R is sparse, the matrix-vector multiplication
appearing in (80) is efficient.

Equations (76), (78), and (80) enable the implementation of
RISE, a fully incrementalized version of the IGN-PDL algo-
rithm that integrates directly into the existing iSAM framework
(Algorithm 5).

B. RISE2: Enabling fluid relinearization

In this section we present RISE2, an improved version of
RISE obtained by replacing iSAM with iSAM2 [10] in the
derivation given in Section V-A. iISAM2 improves upon iSAM
by eliminating the need to periodically reevaluate and refactor
the entire Jacobian (two very expensive batch operations) in
order to relinearize the system about its corrected estimate
(cf. Section III-C); instead, iISAM?2 efficiently relinearizes the
system at every iteration by applying direct updates only
to those (few) rows of R and d that are modified when
relinearization occurs, a process known as fluid relinearization.
Similarly, RISE2 eliminates expensive periodic batch factor-
izations (cf. lines 4 to 8 in Algorithm 5) by applying iSAM2’s
fluid relinearization in order to efficiently update R, d, and
the gradient direction vector g to their values at the updated
estimate Testimate at every iteration.

Internally, iSAM?2 achieves efficient computation by means
of the Bayes Tree [25], which encodes a symbolic factorization
of the R factor and right-hand side vector d of the linear
system (20) obtained from the QR decomposition (18), (19).
Each node in the tree stores pairs of the form [R;, d;], where

Algorithm 6 The RISE2 algorithm
1: procedure RISE2

2: Initialization: Zestimate < o, A < Ag.

3: while (3 new data (e, Thew)) do

4: Add new nodes for 7, to Bayes Tree and set
initial augmented estimate: & = (Zestimate, Lnew)-

5: Apply Algorithm 6 of [10] to update the Bayes
Tree, R and d, and the linearization point Zy;,.

6: Initialize gradient g for augmented system:

o (6)

for all (pairs [R;, d;] modified in Step 5) do
Compute the updated contribution g; to the
gradient direction vector g coming from row ¢:

9: Update gradient direction vector:
g9 (%) + i

10 Cache updated value of g;: g; < ;.

11: end for

12: Cache updated value of gradient: g + g.

13: if R is nonsingular then

14: Compute the Gauss-Newton step hgy using
Algorithm 7 of [10].

15 Set a « [|g12/ | Rgll*.

16: Set hgq < —ag.

17: Set h <+—COMPUTE_DOG-LEG(hgn, hgd, D).

18: else

19: Compute « using (80b).

20: Set h + —kg.

21: end if

22: Set jp’roposed — (i’lm + h).

23: Compute p using (38).

24: if p > n; then

25: Update estimate: Testimate < Lproposed-

26: else

27: Retain current estimate: Zestimate < Liin-

28: end if

29: A + UPDATE_DELTA(p, A, n1, N2, Y1, V2)-

30: end while

31: return Zogiimate

32: end procedure

R; € R™" is the ith row of the matrix R and d; € R is the
ith element of the right-hand side vector d:

Ry dy
D e R, d=1":
R, dy,
(cf. Fig. 3(c) in [10]). Updating R and d by adding new
measurements to the system or relinearizing the system about
its updated estimate T.stimate can be implemented as simple,

computationally efficient editing operations on the tree itself
(cf. Algorithms 4 and 5 of [10], respectively); similarly, solv-

R eER™T (81)



ing the updated system for the Gauss-Newton step is achieved
by means of a simple single-pass algorithm flowing from the
root towards the leaves (Algorithm 7 of [10]). As in the case
of the original RISE algorithm, we obtain RISE2 by exploiting
these computations to produce an efficient incremental update
rule for the gradient direction vector g.

According to (78), g can be computed from R and d as:

g=RTd. (82)

Substituting the block decomposition (81) into (82) produces
dy n

g=R"d=(RT RO [+ | => 4R, (83)
dn =1

which expresses g as a linear combination of the rows of R.

When fluid relinearization and updating are applied, some
of the values [R;,d;] in the nodes of the Bayes Tree may
be modified. By means of (83), we can recover the updated
value g of the gradient direction vector corresponding to the
new linearization point Zestimate USINg only those quantities
that the Bayes Tree already computes during this update.
Specifically, we initialize g according to:

§<<g>,

and for each pair [R;, d;] that was modified during the update
of the Bayes Tree, we likewise update g according to:

geg—@ﬂ+m

gi = leva

(84)

(85)

where

gi = d;RT; (86)

here [R;,d;] gives the values in row ¢ prior to their update,
and [R;,d;] gives these values affer their update. Equations
(85) and (86) indicate that the update to g due to row %’s
update simply consists of subtracting off the contribution g;
to the gradient direction vector coming from row ¢ prior to its
update and replacing it with the updated contribution g;.

Replacing the computation of ¢ in the original RISE algo-
rithm (lines 4 to 13 of Algorithm 5) with the new incremental
update procedure (84)—(86) produces RISE2 (Algorithm 6).

We point out that in both cases RISE(2)’s efficiency and
incrementality are a direct result of exploiting iISAM(2)’s pre-
existing functionality for incrementally updating R and d. In
addition to being a purely intellectually pleasing result, this
also means that any other computations depending upon pre-
existing iISAM(2) functionality (for example, online covariance
extraction for data association [26]) can proceed with RISE(2)
without modification.

VI. RELATED WORK

There is a vast body of prior work on least-squares problems
(1) and their solution; indeed, entire books have been devoted
to this subject alone [27]. However, since our own interest
in this problem is motivated by visual mapping applications,
we will restrict our attention to prior work in the SLAM and
bundle adjustment literature that attempts to solve (1) exactly.

In the SLAM literature, the first formulation of the full
or smoothing problem as an instance of (1) is due to Lu &
Milios [28], who proposed to solve it using the Gauss-Newton
algorithm. This approach remains perhaps the most popular,
with many well-known algorithms [10], [29]-[33] differing
only in how they solve the linear system (10) corresponding
to (13). Lu & Milios themselves originally proposed to solve
(10) directly using dense matrix inversion, but the O(n?)
computational cost of this technique is only tractable for fairly
small problems. Subsequent work achieved improved compu-
tational speeds by exploiting symmetric positive definiteness
and sparsity in the approximate Hessian (13b) using iterative
methods such as sparse preconditioned conjugate gradient [29]
or (multiresolution) Gauss-Seidel relaxation [30]. Thrun &
Montemerlo [31] exploited the sparse block structure of the
Hessian in a direct method by using the Schur complement to
solve first the (dense but low-dimensional) system correspond-
ing to the robot pose update and then the (large but sparse)
system corresponding to the landmark update. Grisetti et al.
[32] exploited sparsity by implementing a hierarchical version
of Gauss-Newton on a multiresolution pyramid and using lazy
evaluation when propagating updates downward.

To further exploit sparsity, Dellaert & Kaess [34] conducted
a thorough investigation of direct linear-algebraic techniques
for efficiently solving sparse linear systems of the form (10).
One surprising result of this analysis was the primacy of
variable ordering strategies as a factor in the computational
cost of solving these systems; indeed, the use of fast sparse
matrix factorization algorithms (such as sparse multifrontal
QR [35] or Cholesky [36] decompositions) coupled with good
variable ordering heuristics [21] enables the linear system
(10) to be solved in a fraction of the time needed to simply
construct it (i.e. evaluate the Jacobian or Hessian). This insight
in turn eventually led to the development of the Bayes Tree
[25] and iISAM2 [10], which directly update the reduced linear
system (20) at each iteration rather than reevaluating and
refactoring the Hessian in (10); this completely incremental
approach is the current state of the art amongst Gauss-Newton-
based optimization algorithms in robotics.

Alternatively, some SLAM approaches propose to solve
(1) using first-order methods. These methods have excellent
robustness properties, but are limited to a linear convergence
rate since they do not take advantage of curvature information.
Olson et al. [37] proposed to overcome this slow convergence
by using a deterministic variation of Jacobi-preconditioned
stochastic gradient descent with a clever parameterization that
enables the algorithm to make more rapid progress through the
state space. While originally conceived as a batch algorithm,
Olson’s method was later adapted to the online setting through
the use of spatially-varying learning rates and lazy evaluation
[38]. Grisetti et al. [39] improved upon Olson’s original
parameterization by ordering variables using a spanning tree
through the network of constraints rather than temporally.
These approaches were later unified to produce TORO [40].

In bundle adjustment, the optimization (1) is typically
solved in the batch (offline) case, and therefore BA solutions
generally emphasize good robustness and convergence prop-
erties rather than real-time computational speed. To that end,



many popular software packages used for BA (e.g. g%o [33],
SBA [41] and sSBA [42]) implement sparse batch versions of
Levenberg-Marquardt to take advantage of its desirable robust-
ness and numerical properties. One notable online approach is
the continuable LM method of [43], which (like iISAM and
RISE) applies a single update step per iteration and (also like
RISE) maintains the value of the damping parameter A across
iterations; however, unlike RISE (which incrementally updates
the linear system (10)) it completely reconstructs and refactors
the modified normal equations (74) in each iteration, which are
the most expensive parts of computing each update step.

In summary, while prior work has addressed subsets of the
following criteria, we believe that the RISE algorithm is the
first to satisfy all three simultaneously:

o Speed: We implement a numerical optimization method
with a superlinear convergence rate and incrementally
update the linear system (32) across iterations rather
than recomputing it, thus achieving computational speeds
comparable to state-of-the-art online incremental sparse
least-squares solvers.

o Robustness: Unlike purely Gauss-Newton-based meth-
ods, RISE is provably robust to highly nonlinear systems
and numerically ill-conditioned Jacobians and is globally
convergent for a broad class of objective functions.

o Generality: We place no restrictions on the admissible
parameterizations of the state variables, nor on the num-
ber of arguments to each of the functions r;.

VII. EXPERIMENTAL RESULTS

In this section we illustrate the performance of the Powell’s
Dog-Leg, Gauss-Newton, and Levenberg-Marquardt batch
methods and the iISAM(2) and RISE(2) incremental methods
on a few representative optimization problems arising in the
context of robotic mapping. We use the implementations of
these algorithms (including preliminary research implemen-
tations of RISE and RISE2) available in the iSAM! and
GTSAM? software libraries. Within each experiment, all algo-
rithms are implemented atop a common set of data structures,
so any differences in their performance are due solely to
differences amongst the algorithms themselves.

Since our aim in these experiments is to characterize the
performance of optimization algorithms, our primary experi-
mental metrics will be the objective function value(s) obtained
by each method and their total elapsed computation times. To
that end, we have selected test problem instances for which
the objective function is correctly specified (i.e. for which the
data association is known and correct, either by construction
in simulation or through the use of visual fiducials in real-
world experiments) in order to experimentally control for the
effects of front-end feature extraction and data association.

Finally, one of our principal motivations in developing an
incremental optimization method that is more resilient to non-
linearity is to enable the use of robust cost functions in SLAM

'The iSAM Library (version 1.6), available through http://people.csail.mit.
edu/kaess/isam/isam_v1_6.tgz.

2The GTSAM Library (version 2.1.0), available through https://research.cc.
gatech.edu/borg/sites/edu.borg/files/downloads/gtsam-2.1.0.tgz

and visual mapping applications in order to attenuate the ill
effects of occasional gross measurement errors. To that end, in
the sequel we formulate M-estimation using a robust cost func-
tion C(6) > 0 as an instance of least-squares minimization by
defining, for each raw residual r;(x), the corresponding robust
least-squares residual 7} (z) = £4/C(r;(x)); the M-estimate
is then obtained as the minimizer of the least-squares problem
(1) in the residuals 7} (x).

A. Simulated data: sphere2500

Here we consider the performance of the Powell’s Dog-Leg,
Gauss-Newton, and Levenberg-Marquardt batch methods and
the iISAM and RISE incremental methods on 1000 randomly-
generated instances’ of the sphere2500 dataset [10], a standard
6DOF pose-graph SLAM benchmark. In these experiments we
use the implementations of these algorithms available in the
iSAM v1.6 library with their default settings, and apply the
pseudo-Huber robust cost function (cf. [2, Sec. A6.8]) with
parameter b = .5.

1) Batch methods: In this experiment we compare the per-
formance of the three batch methods to validate our adoption
of Powell’s Dog-Leg in Section IV as the sparse least-squares
optimization method of choice. All algorithms use the same
stopping criteria, and (in the interest of time) are limited to a
maximum of 500 iterations. The initial estimate of the robot
path is obtained by integrating the simulated raw odometry
measurements. Results from the experiment are summarized
in Table I, and the solutions computed by each algorithm for
a single representative problem instance are shown in Fig. 5.

As expected, Powell’s Dog-Leg and Levenberg-Marquardt
obtain solutions of comparable quality, significantly outper-
forming Gauss-Newton. The superior performance of these
algorithms can be understood in terms of their robust con-
vergence properties and high tolerance for nonlinearity; it is
clear from Table I that Gauss-Newton makes only marginal
progress towards the minima in these examples.

Furthermore, in addition to its favorable accuracy, Powell’s
Dog-Leg is also the fastest algorithm of the three by an
order of magnitude, both in terms of the number of iterations
necessary to converge to a local minimum and the total elapsed
computation time. In this case the superior speed of Pow-
ell’s Dog-Leg versus Gauss-Newton is a consequence of its
improved convergence; its superior speed versus Levenberg-
Marquardt has been studied previously [16], and is due in
part to the fact that Powell’s Dog-Leg need only solve (10)
for the Newton step once at each linearization point, whereas
Levenberg-Marquardt must solve the modified normal equa-
tions (74) (an expensive operation) whenever the linearization
point is updated or the damping parameter \ is changed.

2) Incremental methods: Next we compare the original
iSAM algorithm with RISE (Algorithm 5); results are sum-
marized in Table II (note that the statistics given for each
method in the first and second rows of Table II are computed
using only the set of problem instances for which that method
ran to completion, as explained below).

3Generated using the generateSpheresICRA2012 . cpp executable in
the iISAM v1.6 library.
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(a) Initial estimate

(b) Gauss-Newton

Fig. 5.

(c) Levenberg-Marquardt (d) Powell’s Dog-Leg

A representative instance of the sphere2500 6DOF SLAM problem from the batch experiments. 5(a): The initial estimate for the solution (objective

function value 1.221 E8). 5(b): The solution obtained by Gauss-Newton (3.494 E6). 5(c): The solution obtained by Levenberg-Marquardt (8.306 E3). 5(d):
The solution obtained by Powell’s Dog-Leg (8.309 E3). Note that the objective function value for each of these solutions is within +0.5% of the median

value for the corresponding method given in Table I.

Powell’s Dog-Leg Gauss-Newton Levenberg-Marquardt
Mean Median Std. Dev. Mean Median Std. Dev. Mean Median Std. Dev.
Objective function value 8285 E3 | 8.282 E3 71.40 4.544 E6 | 3.508 E6 | 4.443 E6 9.383 E3 | 8.326 E3 | 2.650 E3
Computation time (sec) 16.06 15.73 1.960 226.2 226.0 2.028 126.7 127.0 43.51
# Iterations 34.48 34 4.171 499.9 500 2.500 338.2 328 138.9
# Tteration limit reached 0 998 311
TABLE I
SUMMARY OF RESULTS FOR SPHERE2500 BATCH EXPERIMENTS
RISE iSAM
Mean Median Std. Dev. Mean Median Std. Dev.
Objective function value 9.292 E3 | 9.180 E3 | 5.840 E2 6.904 E11 | 1.811 E4 | 1.242 E13
Computation time (sec) 50.21 50.18 0.13 42.97 42.95 0.13
# Rank-deficient Jacobians 0 (0.0%) 586 (58.6%)
TABLE II

SUMMARY OF RESULTS FOR SPHERE2500 INCREMENTAL EXPERIMENTS

As expected, RISE significantly outperformed iSAM in
terms of final solution quality. In over half of the problem
instances, the solution computed by iSAM diverged so far from
the true minimum that the numerically-computed Jacobian
became rank-deficient, forcing the algorithm to abort the
computation (solving equation (20) for the Gauss-Newton
step requires that the Jacobian be full-rank). Even for those
problem instances in which iSAM ran to completion (which
are necessarily the instances that are the “easiest” to solve),
Table II shows that the solutions computed using the incremen-
tal Gauss-Newton approach have significantly greater costs
than those computed using the incremental Powell’s Dog-Leg
method. Indeed, RISE’s performance on all of the problem
instances was, on the average, significantly better than iISAM’s
performance on only the easiest instances.

RISE’s enhanced robustness versus iSAM does come at a
slightly greater computational cost: each iteration of the RISE
algorithm must compute the Gauss-Newton step (the output
of iSAM) as an intermediate result in the computation of the
dog-leg step. As shown in Algorithms 3 and 5, the cost of
computing the dog-leg step given the Gauss-Newton step is
dominated by the costs of the matrix-vector multiplications
needed to compute the gradient descent step; since these have
the same asymptotic time-complexity as the backsubstitution
that iSAM already performs to compute the Gauss-Newton
step, we expect that RISE will suffer at most a small constant-
factor slowdown in speed versus iSAM. The results in Table II
show that in practice this constant-factor slowdown has only a

modest effect on RISE’s overall execution speed (an increase
of about 20% versus iSAM) when the computational costs of
manipulating the underlying data structures are also included:
both iISAM and RISE are fast enough to run comfortably in
real-time.

B. Visual mapping with a calibrated monocular camera

In this experiment we consider a significantly more chal-
lenging test scenario: visual mapping with a calibrated monoc-
ular camera via incremental bundle adjustment. Bundle adjust-
ment is known to suffer from a litany of numerical challenges,
including strong nonlinearities in the objective function (due
to the nonlinear camera projection mappings, the rotational
degrees of freedom in the camera pose estimates, and the
use of robust cost functions) and poor numerical conditioning
(which can be caused by unfavorable camera configurations or
large variations across the uncertainties of the reconstructed
camera poses and point positions) [3]. Successful bundle
adjustment optimization methods must be able to robustly
address these numerical difficulties.

The input for this experiment consists of a short (141
second) 640 x 480 monochrome video sequence recorded
by the left camera of a Bumblebee2 stereocamera as it was
hand-scanned over a room-sized static scene containing 46
AprilTags [44]. A set of keyframes and point observations
was extracted from this video by sampling at 1 Hz (to provide
a reasonable baseline between successive keyframes) and then
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Fig. 6. Visual mapping with a calibrated monocular camera. (a): A graphical overlay highlighting 14 detected AprilTags and the estimated positions of their
corner points in keyframe 96, one of 104 keyframes extracted from the input video. (b): An overhead view of the final camera and point position estimates
obtained via incremental bundle adjustment using RISE2, registered against the Vicon system ground truth. (c): A plot of the objective function values and
update vector magnitudes computed by iSAM2 and RISE2 for the first 30 iterations of the visual mapping task (the iISAM?2 algorithm aborted the computation
in iteration 31 with a numerically rank-deficient Jacobian).

RISE2 (final)

RISE2 (iteration 30)

1ISAM2 (iteration 30)

Mean | Median | Std. Dev. Mean | Median | Std. Dev. Mean | Median | Std. Dev.
Objective function value 5.588 E2 8.157 E3 1.574 E7
Computation time (sec) 1.040 E2 8.618 E-1 7.746 E-1

Camera position errors (m)

1574 E-2 | 1384 E-2 | 8209 E-3

1.844 E-1 [ 6.170 E-2 [ 5.855 E-1

3164 E-1 | 4.117 E2 | 6967 E-1

TABLE III

SUMMARY OF RESULTS FOR INCREMENTAL BUNDLE ADJUSTMENT

selecting as keyframes all images in which at least 3 April-
Tags were detected; this yielded 104 keyframes containing
3876 observations of the 184 AprilTag corner points. These
observations were used to estimate the 3D camera pose of
each keyframe and the 3D position of each corner point via
bundle adjustment (i.e. by minimizing the sum of reprojection
errors under the Huber robust cost function (cf. [2, Sec. A6.8])
with parameter b = 1); the camera’s internal calibration was
estimated using Zhang’s method [45] immediately prior to
recording the video and treated as a fixed constant. No prior
information about the AprilTags’ geometry was included in
the adjustment; the tags were used only to solve the data
association problem, which is beyond the scope of this work.
Ground truth was also acquired by tracking the position of the
camera using a Vicon system.*

Incremental bundle adjustment was performed using the
iISAM2 and RISE2 implementations available in the GTSAM
v2.1.0 library (here one iteration comprised the incorporation
of all observations from a single keyframe). Camera poses
were initialized using the EPnP algorithm [46] (whenever at
least four previously-initialized points were in view) or the
two-view homogeneous DLT method of [2, Sec. 9.6]; points
were initialized using either the homogeneous DLT triangula-
tion method of [2, Sec. 12.2] or the two-view homogeneous
method of [2, Sec. 9.6]. Results from the experiment are shown
in Fig. 6 and Table III.

The RISE2 algorithm successfully processed all 104 frames,
converging to a final solution with an objective function value
of 558.8 and a raw RMS reprojection error of .3797 pixels. In
contrast, the iISAM2 algorithm did not even run to completion

4The complete dataset for this experiment (including ground truth) is avail-
able through http://groups.csail.mit.edu/marine/apriltags_groundtruth_BA/

on this example; in the 31st iteration it reported that the
Jacobian J (")) was numerically rank-deficient and aborted
the computation. A closer investigation reveals that the Gauss-
Newton update step applied by iSAM2 in iteration 30 overshot
the true objective function minimum by moving 5 points
behind several of the cameras from which they were visible
near the newly-initialized camera for keyframe 30 (cf. Fig.
6(c) and Table III); this led to a poor initialization of the
camera pose for keyframe 31 and the subsequent failure of
the algorithm.

Our experience has been that this failure mode (overshoot-
ing followed by the rank-deficiency of the Jacobian computed
in the next iteration) is generic when iSAM(2) is applied
to highly nonlinear or ill-conditioned systems. In contrast,
RISE(2)’s use of the trust-region approach enables it to reliably
overcome these numerical challenges.

VIII. CONCLUSION

In this paper we presented RISE, an incremental trust-region
method for robust online sparse least-squares estimation. RISE
improves upon current state-of-the-art sequential sparse least-
squares solvers by providing superior robustness to objective
function nonlinearity and numerical ill-conditioning while
simultaneously exploiting prior advances in incremental op-
timization to achieve fast online computation. In addition
to deriving the RISE algorithm itself, we also provided a
thorough theoretical analysis of its desirable numerical prop-
erties and proved its global convergence for a broad class
of inferential cost functions (twice-continuously differentiable
functions with bounded sublevel sets). Finally, we evaluated
the algorithm empirically in simulation using standard 6DOF
pose-graph SLAM benchmark datasets, and demonstrated its
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superior performance on a more challenging real-world exam-
ple arising in the context of online visual mapping.

In addition to its utility in SLAM and visual mapping tasks,
we believe that the RISE algorithm can also be advantageously
applied to other numerically challenging online inference
problems sharing the common mathematical structure (2);
we are particularly interested in its use as a superlinear
optimization method for online machine learning with kernels
[5]. Recent work in the robotics [47] and computer vision [48]
literature has shown promising results in this direction, but
utilizes Gauss-Newton-based approaches that (as demonstrated
herein) limit the class of objective functions that can be reli-
ably employed. It would be interesting to consider applications
of RISE (and related techniques) in the context of online
machine learning in future work.

APPENDIX

Proof of Theorem 3: We prove Theorem 3 by means of
Theorem 2. Since Lg(z(?)) is bounded, there exists D>0
such that ||z — (9| < D for all z € Lg(z(?)). Define the
convex open set

Q={zeR"||z-z?| < D}. (87)

Then Q is a closed and bounded (hence compact) subset of

R™ containing the sublevel set Lg(z(?)). Equation (11b) gives
2

the elements of the Hessian matrix g § , which are continuous

since r € C?, and therefore || 3 || attains a maximum value L
on the compact set ; L is thus a Lipschitz constant for V.S on
Q. The same argument applied to the approximate Hessians B
whose elements are defined by equation (12) shows that || B]|
likewise attains a maximum £ on ). Finally, S (as a sum-of-
squares function) is clearly lower-bounded by 0 everywhere.
This establishes the initial hypotheses of Theorem 2.

We now check each of the enumerated criteria (i)—(v) in
turn. Condition (i) is immediate from the definitions of the
dog-leg and constrained Cauchy steps in and (46) and (50).
Condition (ii) is satisfied with ( = 0 since the gradients used
in Algorithm 4 are exact (cf. equation (13a)). Condition (iii)
is satisfied using the value of 3 obtained in the preceding
paragraph. Condition (iv) is trivially satisfied in the case of
the Cauchy step h¢, since this step is by definition always
antiparallel to the gradient (cf. equation (50)). In the case of
the dog-leg step, we observe using (44) that

gl ) el o el gl

9" Bg 9"Bg ~ Blgl* B
so that (by virtue of the computation in Algorithm 3) hg is
also antiparallel to the gradient whenever

1hgall =

(88)

g .

A® ”5”<M%w (89)
Equation (89) will hold for all ¢ > N for some sufficiently
large N by virtue of the additional hypotheses (56) in effect
for the purposes of this condition.

Finally, for condition (v), consider the predicted decrease
for the Cauchy step ho = —kg defined in (50) and (51):
2 gT B qg.

pred(h) = k||g||* — =k (90)

2

llgll®

The full (i.e. unconstrained) Cauchy step has x = TEy in
which case (90) becomes:
lgll? lgl?
prea(h) = (2= ol -
gTBg TBg 1)
_ 1 gl H9H2
2 g"Bg — 28

since ||B|| < 3. In the constrained case with g” Bg > 0,
k = A/|lgll only when Afllg| < |lg|*/g" Bg (implying
AgTBg < ||g||?), in which case (90) simplifies as

A 1/ A\
( >||g||2<) ¢’ By
Tl T9l

1 A T
= Allgll - iw (Ag BQ)

pred(h) =

~—

92)

1
> =Al|g|l.
> ~Alg|

Finally, for the constrained case with gTB g < 0, we observe
that in fact g7 Bg = 0 since the Gauss-Newton Hessian
approximation (13b) is always positive semidefinite; thus
K= H%H and (90) simplifies as

pred(h) = (” ||)92 Allgll ©3)

Equations (91)—(93) show that the Cauchy step defined in (50)
satisfies the uniform predicted decrease condition (59) with
¢ = 1and o = f. For the dog-leg step, we simply observe that
by virtue of (45), (46) and Lemma 1, pred(hy;) > pred(h¢)
whenever hg; exists. This proves condition (v), and completes
the proof. O
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