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Abstract— Marine robots are an increasingly attractive
means for observing and monitoring in the ocean, but under-
water acoustic communication (“acomms”) remains a major
challenge, especially for real-time control. Packet loss occurs
widely, bit rates are low, and there are significant delays.
We consider here strategies for feedback control with acomms
links in either the sensor-controller channel, or the controller-
actuator channel. On the controller-actuator side we implement
sparse packetized predictive control (S-PPC), which simulta-
neously addresses packet-loss and the data rate limit. For the
sensor-controller channel we study a modified information filter
(MIF) in a Linear Quadratic Gaussian (LQG) control scheme.
Field experiments were carried out with both approaches,
regulating crosstrack error in a robotic kayak using acomms.
Outcomes with both the S-PPC and MIF LQG confirm that
good performance is achievable.

I. INTRODUCTION

Marine robots have played an increasing role in ocean

operations over recent years, with the proliferation of many

commercial platforms, systems and sensors. The trend is

toward tetherless operations, for which each vehicle has to

carry its own power source and have a means of wireless

communication. Underwater communication over distances

beyond about one hundred meters is almost exclusively made

through acoustics, and the wireless nature of acoustic com-

munications (“acomms”) lends itself naturally to operations

with multiple agents.

Acoustic communications bring many challenges, how-

ever. Packet loss occurs frequently, caused by ambient noise,

multipath, and changing environmental conditions. Even

when packets are successful, the data rate can be very low

(O(100bits/sec)). The channel is subject to the speed of

sound (∼ 1450m/s in water), imposing a significant delay.

This delay is exacerbated by duty cycle limitations from

the time needed to transmit at low bit rates, guard times

to combat multipath, as well as interference effects between

multiple users [1]. These bad properties of acomms have

limited their use in high-performance, real-time tasks. Such

tasks could include traditional dynamic control and, more

broadly, groups of vehicles tracking a submarine or marine

animal, characterizing an evolving oil plume, or perhaps

collaboratively moving a large object.

Our goal in this paper is to investigate several recent

schemes that can maximize the effectiveness of acomms in

rate-critical missions. As shown in Figure 1, there are at least
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Fig. 1. Block diagram of a feedback system with acoustic communication
in the sensor-controller link and the controller-actuator link.

two possible locations for an acomms link in a standard feed-

back loop: sensor data transmitted to a fusion site (sensor-

controller channel), and command data sent to one or more

actuated agents (controller-actuator channel). We address

both of these. Our approach is aimed towards implementation

using commercially-available acoustic modems, such as the

WHOI Micro-Modem [2]. As such, we focus on packet loss,

rate limits, and delay to stay independent of more detailed

descriptions of signal-to-noise ratios, modulation methods,

and signal processing.

A number of prior works describe the roles of acoustic

modems in controlling AUVs. In [3] Caiti et al. characterize

packet-loss rates for different packet sizes. In [4], two AUVs

perform a coordination task, but vehicles simply stay in their

current position if packets are not received. Multiple AUVs

with acoustic modems are used for distributed navigation in

[5], and low packet loss is ensured by using low data rates.

More fundamentally, the impacts of packet loss and lim-

ited data rate can be combined in the information-theoretic

capacity of the channel, in a feedback interconnection. For

open-loop unstable systems, a number of compact results

exist [6], [7]. Few autonomous vehicles are open-loop un-

stable, however, and more often the goal is performance in

following reference trajectories and rejecting disturbances. In

this regard, an essential inequality between the Bode integral

and the channel capacity was developed by Martins & Dahleh

[8]. A familiar engineering approach to exploit a rate-limited

channel is quantization [9], [10].

One specific and practical technique for a lossy controller-

actuator channel is packetized predictive control (PPC) [11],

a variant of model predictive control (MPC). PPC makes

a natural fit for packet loss, as an entire receding-horizon

control trajectory computed by MPC is sent in each packet.

Nagahara and Quevedo articulated PPC using a mixed ℓ1/ℓ2

cost function, that addresses the data rate limit by sparsifying

the trajectory to be sent [12]. We will call this approach
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sparse packetized predictive control (S-PPC). In related prior

work within marine robotics, Naeem et al. [13] used a

genetic algorithm-based MPC for heading control on an

AUV, but did not consider any effects of communication

constraints or delays.

For packet loss in the sensor-controller channel, Kalman

filter-based LQG control with missed information has been

studied extensively, e.g. [14]. An LQG approach using a

modified information filter (MIF) was developed by Gupta

et al. [15]; the method does not require acknowledgements.

Linear coding for estimation under packet loss is considered

in [16], but a major drawback is that acknowledgements are

required.

We present in this paper experimental results from separate

implementations of S-PPC and MIF-LQG in dynamic control

of crosstrack error for a robotic kayak using acomms. To

our knowledge, neither packetized predictive control nor

MIF-based LQG control have been applied to autonomous

vehicles.

To justify studying a feedback loop with only one lossy

link, we observe that many physical and operational condi-

tions can lead to strong directional asymmetries in acous-

tic performance. Both directions are uniquely affected by

multipath, reflections, obstructions, and ambient noise (e.g.,

ships, waves) that are ever-present in the shallow-water

environment. Acoustic communication channels suffer from

interference with long-baseline and other acoustic systems

operating in the same frequency band. On-board machinery

is also a major issue; local propulsion noise can cause errors

on the receiving end. These asymmetries make the treatment

of only one lossy channel an interesting and relevant inquiry.

A reliable acoustic link will still impose a delay of

course, but this can be handled directly through linear-time-

invariant modeling and control. Thus for the current work,

our assumption is that one channel is lossy and delayed,

while the other is reliable and instantaneous.

The paper is organized as follows. We formulate the S-

PPC problem for the controller-actuator channel in Sec. II,

and the MIF-LQG problem for the sensor-controller channel

in Sec. III. The experimental setup is given in Sec. IV, and

results in Sec. V. Crosstrack error can be regulated well with

very low data rates, and robustness to packet loss is strong.

II. S-PPC PROBLEM FORMULATION

When a packet is dropped in the controller-actuator chan-

nel, common tactics are to simply zero the control or to

hold the last valid command. In both cases conservative

gains are needed, to stay within a safe operating regime.

Alternatives have emerged recently, based on the concept

Model Predictive Control (MPC). MPC develops new con-

trol trajectories at every time step and executes the first

entry; MPC has high interest because the requisite real-

time dynamic optimizations can often be run at kiloHertz

rates with today’s computing power [17]. An MPC variant

known as Packetized Predictive Control (PPC) [11] sends a

multi-step trajectory on every cycle, and the idea is that if

a packet is lost, the buffered commands can be executed

open-loop until a new packet arrives. The approach will

usually provide far better performance than zero- or hold-

input control, while simultaneously operating near constraint

boundaries and enforcing practical inequality constraints via

the MPC computations. In accordance with the rate limits

of acoustic communication, we have implemented a sparse

PPC (S-PPC) that simultaneously addresses loss and data

rate constraints [12], via a mixed ℓ1/ℓ2 cost function (similar

to that used in compressed sensing). Since S-PPC focuses

on the controller-side link, we assume that a good state

estimate is available instantaneously, and that it contains an

acknowledgement of the delayed control packet.

To allow for sparse trajectories, the control actions sent

are defined as increments in the heading setpoint φ d for the

kayak (see Sec. IV-B). The trajectory u is indexed by the

time sent, and it takes one time step ∆t to reach the vehicle.

On arrival u is written to a buffer u′, and thus we have

φ d
k+1 = φ d

k +u′k, whether the packet was received or not.

To lay out the formal optimization problem, let the S-

PPC planning horizon be indexed by τ = 1, . . . ,T , and the

complete mission by k = 1, . . . ,N. The weighting matrix for

the terminal state in the horizon is P, and for the rest of

the trajectory it is Q. We assume a state space model of the

system given by matrices [A,B,C,0]. Control trajectory u is

computed by solving the following finite-horizon minimiza-

tion problem at each time step k ∈ 1, . . . ,N −1:

minimize
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subject to xxxτ+1 = Axxxτ +Bφ d
τ ,τ = k, . . . ,k+T +1 (2)

φ d
τ+1 = φ d

τ +uτ , τ = k, . . . ,k+T (3)

|φ d
τ | ≤ φ d,max, (4)

τ = k+1, . . . ,k+T +1

|xxxτ | ≤ xxxmax, (5)

τ = k+2, . . . ,k+T +2

|uτ | ≤ umax, τ = k, . . . ,k+T (6)

Constraints (4) set a limit on the commanded heading relative

to the trackline, ensuring that the linearizations stay valid.

Constraints (5) and (6) are state and control limits. The inputs

to the optimization are the most recent state estimate, xxxk, and

the newest heading setpoint φ d
k , which also serves as the

control acknowledgment. The short time needed to compute

the S-PPC trajectory is included in the outbound transmission

delay.

III. MIF-LQG PROBLEM FORMULATION

We study performance of the MIF-LQG strategy proposed

in Gupta et al. [15] for a lossy link between the sensor and

controller. In these experiments, instead of sending the most

recent measurements or the innovation to the controller at

each time step, we send a specialized information vector.

We note that our implementation is a subset of Gupta’s al-

gorithm: the entire message is either successfully transmitted



or lost. Let the sensor noise covariance be Rs and the process

noise covariance be Qp. The measurement at time k is zk,

and the control uk. The control gain matrix is K, designed

in this case as an LQR. At each time step we implement the

following.

Sensor Side: Initializing suitably, make the following calcu-

lations:

Yk|k = Yk|k−1 +CT R−1
s C

γk = Yk|k−1AY−1
k−1|k−1

λk = CT R−1
s zk

gk = λk + γkgk−1, and send it

Yk+1|k = Q−1
p −Q−1

p A(AT Q−1
p A+Yk|k)

−1AT Q−1
p .

Controller Side:

1) Update Y and compute γk as in the first two steps on

the sensor side. From a zero initial value, update Ψ by

Ψk = Yk|k−1Buk−1 + γkΨk−1.

2) If the message is successfully received, update the state

estimate as

x̂k = Y−1
k|k (gk +Ψk).

Else, update it as

x̂k = Ax̂k−1 +Buk−1.

3) Compute the new control uk =−Kx̂k.

4) Evolve Y as in the last step on the sensor side.

IV. EXPERIMENTAL SETUP

A. Hardware and Operating Environment

We perform control experiments on a Wavesport Fuse 35

whitewater kayak, shown in Figure 2, with a 220N thrust

Minn Kota Riptide thruster under the bow of the boat.

The kayak is 1.8m long with a mass of 40kg including

all onboard electronics and batteries. During operation a

WHOI Micro-Modem hangs underneath at a depth of two

meters. The vehicle runs MOOS-IvP autonomy software [18]

integrated with custom control algorithms. Forward speed

Fig. 2. Autonomous surface vehicle operating in Boston Harbor.

Fig. 3. Experimental Micro-Modem performance data in the Charles River
Basin, which is not a power-limited environment but rather one limited by
multipath. There is a stone wall about 10m behind the source, a trench under
the low-SNR circles in the lower right, and a shoreline just out of the field
of view on the lower right. The source is fixed on a dock, the paths are made
by a kayak towing a modem, and the blue cluster is from a second kayak
station-keeping. This SNR value indicates sound pressure level relative to
ambient noise.
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Fig. 4. Example noise histograms from kayak GPS and compass sensors,
with the vehicle stationary. The GPS is the uBlox NEO-6 sampled at five
Hertz; the variance is 13.3m2. The compass is the OceanServer OS5000
sampled at ten Hertz, and then filtered by MOOS at a 1.95Hz cutoff; the
variance is 9.6deg2.

during experiments was 2.1m/s, and the cycle time was six

seconds.

We conduct experiments on the Charles River in Boston,

MA, an environment characterized by sporadic acomms

behavior, as shown in Figure 3. Packet losses can range from

5% to over 70% depending on conditions and user settings.

The kayak is equipped with a GPS receiver to measure

position and tilt-compensated compass to measure heading

angle. In designing Kalman filters, we used a sensor noise

covariance of 10m2 for the crosstrack position based on GPS;

raw compass measurements were passed through a first-order

low-pass filter having time constant 1.95s, and we modeled

the noise on this signal with a variance of 10deg2. Data

supporting these settings are given in Figure 4.
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Fig. 5. Kayak closed-loop heading model fit on experimental data in waves.

TABLE I

COMPARISON OF THE MOOS AND S-PPC TRACKLINE CONTROLLERS.

Controller MOOS Trackline S-PPC

Crosstrack Sensor(s) GPS@5Hz GPS@ 5Hz

Compass@10Hz

Crosstrack Filtering None Five-state KF
Control Output Heading command Heading command

φ/φ d Model 1 3rd-order all-pole TF (7)
Update Rate 0.5s 6s

Control Delay < 0.5s 6s

Packet Loss No Yes

B. System Model

We use the kayak’s local PID heading controller for all

our experiments, and model the closed-loop behavior as a

(stable) third-order, all-pole transfer function

φ(s)

φ d(s)
=

c0

s3 + c2s2 + c1s+ c0
, (7)

with φ the heading and φ d the command. The angles are

defined as deviations from a fixed trackline heading. We ar-

rived at the fit c0 = 1.7, c1 = 2.5, and c2 = 7.5 in Equation 7,

through ten-, twenty-, and thirty-degree step responses, as

shown in Figure 5. These traces indicate a rise time of about

four seconds, and 30% overshoot. This model holds only for

small inputs; the image also illustrates the effect of one-Hertz

chop that is typical in our light-air operations.

We use the simplest kinematic model for crosstrack error,

assuming that the vehicle is translating only in the direction

it is pointing: ė = V sin(φ) ≈ V φ . The state vector for the

system model is taken as xxx = [φ̈ , φ̇ ,φ ,e]T , and we convert

the system to discrete time with a zero-order hold to obtain

the state-space matrices [A,B,C,0]. The loop time ∆t is set

based on the delay of one acoustic link, transmitting either

the control trajectory for S-PPC or the information vector for

MIF-LQG. Both of our strategies assume constant time step

and delay, valid for acoustic ranges less than one kilometer

where message coding and decoding times dominate.
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Fig. 6. Histogram of the numbers of non-zero entries in control plans
computed by S-PPC, for a run with 50% packet-loss on a calm day, shown
in Figure 7. The run was was 52 time steps long, and each plan was 32
steps.

C. S-PPC Experimental Setup

Performance of the S-PPC controller under packet-loss

conditions is compared to that of the MOOS Trackline, which

is used in a number of marine vehicles today [19], [20] and so

provides a reasonable baseline; see Table I. MOOS Trackline

is an inner-outer loop that modulates the desired vehicle

heading so as to steer it toward a point on the trackline,

some lead distance ld ahead. The result for small errors

is a proportional map for desired heading: φ d ≃ e/ld , with

ld = 15m a typical value, and φ d in radians.1

We made the S-PPC computations on a shore computer

with Matlab and CVX [21], [22]. Faster solvers exist for

both MPC and mixed ℓ1/ℓ2 optimization, such as [23], but

CVX was chosen for ease of implementation since the com-

putational delays are still small - about 0.2s - compared to

the delays and time step using acoustics. For state estimation

during the S-PPC tests we ran a Kalman Filter (KF) at five

Hertz onboard, with full access to the vehicle sensors. The

state weighting matrix Q was diagonal, with Q
1/2
e = 100 to

strongly penalize crosstrack error and Q
1/2

φ = 0.1 to very

lightly penalize heading. All other state weightings were

zero. The terminal matrix was set at P = 10Q, the sparsity

parameter µ = 1, and φ d,max = 30deg. State and control limits

were subsumed by the desired heading limit.

In S-PPC each packet carries the control actions for every

step in the prediction horizon. We chose a prediction horizon

length of T = 32 steps, or 192s, for our experiments. In

real-world marine robots operating with disturbances and

physical sensor and actuator limits, we can immediately

recognize a practical quantization, so that one byte suffices to

describe a single heading command. The idea behind S-PPC,

however, is that the ℓ1 cost function will create sparse control

packets that can be encoded even more efficiently, freeing

space for other payload data, longer prediction plans, or finer

1The linear form written is based on approximation of the tangent
function. For errors less than one meter, MOOS Trackline controller
increases the lead distance proportionally, effectively lowering the gain to
limit oscillations.



quantization. A histogram illustrating the very low number

of nonzero control actions in each control trajectory for one

of the experimental runs is shown in Figure 6. The largest

number of nonzero coefficients in a given 32-step plan is

eleven, and this requires only 143 bits to code instead of 256,

including five time index bits for each nonzero command.

Clearly there are many tradeoffs to be considered in the

length of the prediction horizon, quantization of control

commands, and encoding methods. These are outside our

present scope and we refer the reader to [11], [12] for further

discussion.

D. MIF-LQG Experimental Setup

For the MIF-LQG experiments we set the LQR state

penalty matrix to be diagonal with Q
1/2
e = 31 and all other

diagonal entries Q1/2 = 10, so that error in crosstrack posi-

tion is most highly penalized. We set the control penalty as

R1/2 = 316.

E. Physical Connectivity

We conducted two different sets of experiments for each

control scheme: one set relies completely on Wi-Fi commu-

nication with artificially-imposed packet size and losses, and

the other on communication through acoustic modems. In the

S-PPC Wi-Fi set of experiments, at every time step the kayak

transmits GPS and compass measurements to shore over Wi-

Fi, with essentially no delay. The shore computes the new

set of control commands and randomly decides whether the

packet will be lost, based on a pre-set probability. The shore

then simulates a delay, and transmits the successful control

packet, or nothing, over Wi-Fi to the kayak. The dual is

carried out for the MIF-LQG scheme, with the delay and

packet-loss instead imposed in the sensor-controller channel.

In the S-PPC acoustic modem set of experiments, sensor

signals are transmitted from kayak to shore via Wi-Fi, and

control command packets are sent from shore to kayak using

an acoustic modem. The dual is carried out for the MIF-

LQG control scheme, with the acoustic modem transmitting

between sensor and shore. In the interest of space, this paper

focuses on lossy conditions via all-Wi-Fi connectivity; no

acoustics results for S-PPC, and only one for the MIF-LQG,

are reported.

V. EXPERIMENTAL RESULTS

A. S-PPC

We present S-PPC results from experiments on two differ-

ent days. Conditions on the first day, 17 October 2012, were

relatively calm with about five knots of wind and rippled

water; there were intermittent motorboat wakes. The second

day, 2 November 2012, was windier, with gusting and shifty

following winds around 5-10 knots, resulting in chop.

Results on the first day show how the system performs

when disturbances are nearly negligible. Figure 7 gives a

comparison of four runs: one run with the MOOS Trackline,

and one run each for the S-PPC with no loss, with 50%

loss, and with 80% packet loss. Most noticeable, the lack

of large physical disturbances brings out the precision limits
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Fig. 7. Comparison of trajectories when using MOOS Trackline and S-
PPC controllers, with varying packet loss in calm conditions of 17 October
2012. Green vertical bars indicate successful packets. S-PPC has a six-
second update period, while MOOS Trackline runs at two Hertz (i.e., twelve
MOOS steps per S-PPC step in the plot).

of our sensors and actuators. The desired heading in MOOS

is rounded to the nearest degree, and our thruster servo has

backlash and stiction. MOOS Trackline performance is con-

sistent with other works that use similar controllers, sensors

and update rates [24], [25], and the S-PPC without packet

losses is almost as good. The deterioration in performance

with 50% packet loss is minor, which is surprising since

there are many twelve-second and longer periods with no

crosstrack information. With 80% packet loss, these vacan-

cies cause the vehicle to drift more substantially between

hits, although the closed-loop behavior remains stable. Large

deviations that might appear to indicate an instability are in

fact simply the consequence of large gaps in packet arrival.

Results from the second day, with more wind and waves,

are shown in Figure 8. The effect of larger disturbances

is visible here through a negative error bias, the result of

no integral action. The MOOS Trackline performs well as

expected, but the S-PPC with no packet loss has substantially

higher crosstrack errors. In one S-PPC timestep the boat is

subjected to multiple waves; these not only force it to move

laterally but also in yaw (Figure 5), which can confuse the

estimator. Higher rates of packet loss lead to worse and worse

performance, although again we have seen no evidence of

instability in our many trials.

B. MIF-LQG

Crosstrack errors over time are shown in Figure 9 for

trials with acoustic-modems on 27 November 2012. Errors

are shown in Figure 10 for Wi-Fi-only MIF-LQG trials on

24 October 2012 for calm wind conditions, and in Figure 11

on 16 October 2012 for strong wind conditions.

Results from 27 November act mainly as a demonstration

that we can control the kayak with sensor signals via the

actual acoustic modem. In this trial packet loss rate was

about 5% and wind conditions were zero to five knots.
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Fig. 9. MIF-LQG control tests with acoustic communications on a day
with light wind, 27 November 2012. Green vertical bars indicate packet
successes. Each time step represents six seconds.

24 October had close to zero wind, resulting in very low

crosstrack errors; RMS levels were essentially the same for

trials with no loss, 30% packet loss, and 70% packet loss.

These errors were also significantly lower than that of a run

with no crosstrack feedback (labeled Constant Set Heading),

as expected. These results corroborate our findings with S-

PPC.

16 October had significant chop with sustained winds of

fifteen knots, gusting to thirty. As with S-PPC, we see a bias

due to the disturbances, and a reduction in control fidelity

with increased packet loss. Most dramatically, in the 70%-

loss case the vehicle cannot maintain the trackline at all.

Underlying this failure is the fact that the boat is operating

well outside of the linear model; heading commands from the

LQR exceed sixty degrees late in the run. At this signal level,

progress toward the trackline is substantially over-estimated,

so that corrective actions are too small. Meanwhile, the error
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Fig. 10. MIF-LQG control tests with varying packet loss on a day with
nearly no wind, 24 October 2012. Several apparent flyers were removed
from this plot (gaps).
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Fig. 11. MIF-LQG control tests with varying packet loss on a day with
strong wind, 16 October 2012.

signal to the controller is erroneously well-behaved in the

absence of packets containing crosstrack error information.

VI. CONCLUSION

We have demonstrated cross-track error control of an

autonomous kayak through acoustic communications. For

a lossy controller-actuator channel, we implemented Naga-

hara & Quevedo’s sparse packetized predictive control, and

showed that performance under acomms constraints can be

comparable to that of standard trackline controllers that have

fast update rates, full information and no delays. For a lossy

sensor-controller channel , our implementation of Gupta et

al.’s modified information filter and LQG yielded similarly

strong results. These experiments are encouraging, and we

expect that implementing both the S-PPC and MIF-LQG

concepts simultaneously, for systems with two lossy links,

could also yield good performance.

ACKNOWLEDGMENTS

Work is supported by the Office of Naval Research,

Grant N00014-09-1-0700, the National Science Foundation,

Contract CNS-1212597, and Finmeccanica. We thank Toby



Schneider and Mike Benjamin at MIT; Keenan Ball and

Sandipa Singh at WHOI; and MIT Sailing Master Franny

Charles.

REFERENCES

[1] J. Heidemann, M. Stojanovic, and M. Zorzi, “Underwater sensor net-
works: applications, advances and challenges,” Philosophical Transac-

tions of the Royal Society A: Mathematical, Physical and Engineering

Sciences, vol. 370, no. 1958, pp. 158–175, 2012.

[2] L. Freitag, M. Grund, S. Singh, J. Partan, P. Koski, and K. Ball, “The
WHOI micro-modem: an acoustic communications and navigation
system for multiple platforms,” in Proc. MTS/IEEE OCEANS, 2005.

[3] A. Caiti, V. Calabro, G. Dini, A. Duca, and A. Munafo, “AUVs as
mobile nodes in acoustic communication networks: Field experience
at the UAN10 experiments,” in Proc. MTS/IEEE OCEANS, 2011.

[4] L. Brignone, J. Alves, and J. Opderbecke, “GREX sea trials: first
experiences in multiple underwater vehicle coordination based on
acoustic communication,” in Proc. MTS/IEEE OCEANS, 2009.

[5] A. Bahr, J. Leonard, and M. Fallon, “Cooperative localization for
autonomous underwater vehicles,” International J. Robotics Research,
vol. 28, no. 6, p. 714, 2009.

[6] S. Tatikonda and S. Mitter, “Control under communication con-
straints,” IEEE Trans. Autonomatic Control, vol. 49, no. 7, pp. 1056
– 1068, July 2004.

[7] G. Nair, F. Fagnani, S. Zampieri, and R. Evans, “Feedback control
under data rate constraints: An overview,” Proceedings of the IEEE,
vol. 95, no. 1, pp. 108 –137, Jan. 2007.

[8] N. Martins and M. Dahleh, “Feedback control in the presence of noisy
channels: Bode-like fundamental limitations of performance,” IEEE

Trans. Autonomatic Control, vol. 53, no. 7, pp. 1604–1615, 2008.

[9] M. Fu and L. Xie, “The sector bound approach to quantized feedback
control,” IEEE Trans. Automatic Control, vol. 50, no. 11, pp. 1698 –
1711, Nov. 2005.

[10] A. Ribeiro, G. Giannakis, and S. Roumeliotis, “Soi-kf: Distributed
kalman filtering with low-cost communications using the sign of
innovations,” Signal Processing, IEEE Transactions on, vol. 54, no. 12,
pp. 4782 –4795, Dec. 2006.

[11] D. Quevedo, J. Ostergaard, and D. Nesic, “Packetized predictive
control of stochastic systems over bit-rate limited channels with packet
loss,” IEEE Trans. Automatic Control, vol. 56, no. 12, pp. 2854 –2868,
Dec. 2011.

[12] M. Nagahara and D. Quevedo, “Sparse representations for packetized
predictive networked control,” in Proc. IFAC World Congress, 2011.

[13] W. Naeem, R. Sutton, J. Chudley, F. Dalgleish, and S. Tetlow, “An
online genetic algorithm based model predictive control autopilot de-
sign with experimental verification,” International J. Control, vol. 78,
no. 14, pp. 1076–1090, 2005.

[14] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, and S. Sastry,
“An LQG optimal linear controller for control systems with packet
losses,” in Proc. 44th IEEE Conf. Decision and Control. IEEE, 2005,
pp. 458–463.

[15] V. Gupta, B. Hassibi, and R. Murray, “Optimal LQG control across
packet-dropping links,” Systems & Control Letters, vol. 56, no. 6, pp.
439–446, 2007.

[16] C. Robinson and P. Kumar, “Sending the most recent observation is
not optimal in networked control: Linear temporal coding and towards
the design of a control specific transport protocol,” in Proc. 46th IEEE

Conf. Decision and Control, dec. 2007, pp. 334 –339.

[17] Y. Wang and S. Boyd, “Fast model predictive control using online
optimization,” IEEE Trans. Control Systems Technology, vol. 18, no. 2,
pp. 267–278, 2010.

[18] M. Benjamin, J. Leonard, H. Schmidt, and P. Newman, “An overview
of MOOS-IvP and a brief users guide to the IvP helm autonomy
software,” Massachusetts Institute of Technology, MIT CSAIL, Tech.

Rep. TR-2009-28-07, 2009.

[19] M. Benjamin, D. Battle, D. Eickstedt, H. Schmidt, and A. Balasuriya,
“Autonomous control of an autonomous underwater vehicle towing
a vector sensor array,” in Robotics and Automation, 2007 IEEE

International Conference on. IEEE, 2007, pp. 4562–4569.

[20] D. Eickstedt and S. Sideleau, The backseat control architecture for

autonomous robotic vehicles: A case study with the Iver2 AUV. IEEE,
2009.

[21] M. Grant and S. Boyd, “Graph implementations for nonsmooth convex
programs,” in Recent Advances in Learning and Control, ser. Lecture
Notes in Control and Information Sciences, V. Blondel, S. Boyd, and
H. Kimura, Eds. Springer-Verlag Limited, 2008, pp. 95–110.

[22] CVX Research Inc., “CVX: Matlab software for disciplined convex
programming, version 2.0 beta,” http://cvxr.com/cvx, Sept. 2012.

[23] M. Zibulevsky and M. Elad, “L1-l2 optimization in signal and image
processing,” IEEE Signal Processing Magazine, vol. 27, no. 3, pp.
76–88, 2010.

[24] M. Caccia, M. Bibuli, R. Bono, and G. Bruzzone, “Basic navigation,
guidance and control of an unmanned surface vehicle,” Autonomous

Robots, vol. 25, no. 4, pp. 349–365, 2008.
[25] C. Kitts, P. Mahacek, T. Adamek, K. Rasal, V. Howard, S. Li,

A. Badaoui, W. Kirkwood, G. Wheat, and S. Hulme, “Field operation
of a robotic small waterplane area twin hull boat for shallow-water
bathymetric characterization,” J. Field Robotics, vol. 29, pp. 924–928,
2012.


