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Abstract— Marine robots are an increasingly attractive
means for observing and monitoring the ocean, but underwa-
ter acoustic communications remain a major challenge. The
channel exhibits long delay spreads with frequency-dependent
attenuation; moreover, it is time-varying. We consider the
minimum energy wireless transmission problem [MET], aug-
mented by the practical condition that constraints on link power
must be satisfied in probability. For this, we formulate the
robust counterpart of the multicommodity mixed-integer linear
programming (MILP) model from Haugland and Yuan [1],
and derive scaled power levels that account for uncertainty.
Our main result is that the deterministic formulation with
these scaled power levels recovers exactly the optimal robust
solution in the absence of correlations, and therefore allows for
efficient solution via MILP. This approach achieves significant
power improvements over heuristics, and naturally lends itself
to vehicle networks.

I. INTRODUCTION

Oil spills, toxic algal blooms and undersea volcanic erup-

tions are all dynamic ocean processes that need to be mea-

sured and monitored in order to enhance our understanding

and safe utilization of the ocean [2]. For such tasks, multiple-

vehicle fleets will need to work collaboratively [3].

Acoustics is used today for underwater communications

over kilometer-plus ranges; compared to RF, acoustic com-

munication (“acomms”) has low bandwidth, high latency

and poor reliability. Range and data throughput depend on

modem power and carrier frequency [4], and as a result,

ocean network deployments are often over-powered or lim-

ited in scale to improve robustness. However, excess power

causes interference and depletes limited energy sources in

untethered vehicles and nodes.

In this work, we consider underwater acomms routing

with power control via a centralized robust approach, with

emphasis on multicast. While the large size and ad-hoc

nature of many RF wireless applications motivate distributed

routing methods based on network discovery [5], the high

latency and unreliability of acomms suggests that these

algorithms could exhibit poor convergence in the underwater

domain. In addition, considering large-scale ocean missions,

data assimilation and planning are typically centralized today

and the marine assets are expensive and tracked carefully

[6]. These aspects of acomms and ocean missions motivate
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Fig. 1: Top: Multiple marine robots performing a strongly

coordinated mission using acoustic communications. Bottom:

Acoustic modem performance (receive SNR) in the Charles

River (Boston, MA). Two out-and-back trips with a vehicle

collecting statistics are shown.

optimization methods which can take into account motion

plans, global channel information, and operator input [7].

Wireless network design via centralized approaches is

of course a rich and active area of research. Convex op-

timization for routing in multi-hop RF wireless networks

is presented in [8]; see also [9] for an approach specific

to acomms. These works do not consider robustness, how-

ever. Chang et. al. consider robustness to uncertain packet

success rates in lossy network coding subgraph generation

[10]. Regarding power control in routing, several non-robust,

acoustics-focused approaches have been proposed, including

[11]. Quek et. al. consider robust power allocation for two-

hop RF wireless relay networks [12]; we consider multicast

over arbitrary numbers of hops using acoustic channel mod-

els. Although acomms possesses the broadcast advantage,

multicast has received little attention in underwater acoustic

networks [13].

We base our approach on the multicommodity MET-F2

formulation by Haugland and Yuan [1], and the main idea is

to use robust convex optimization to account for uncertainty

in required power levels for acomms. We give the problem

statement in Sec. II. Stochastic acomms models motivated by

data are discussed in Sec. III. The supporting formulations

are outlined in Sec. IV, and our new approach for Robust

MET is presented in Sec. V. In Sec. VI, we show that

the deterministic formulation with properly-scaled power

data can be used to solve the robust problem. We present
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computational results in Sec. VII, and discuss conclusions

and some realistic extensions to our formulation in Sec. VIII.

II. APPROACH AND PROBLEM DEFINITION

We consider a single source transmitting to multiple

destinations, and design minimum-power broadcast trees

and node power levels which meet individual connectivity

requirements with a specified probability. Node locations are

considered static and known; the primary sources of uncer-

tainty are in transmission loss and noise at the receiver and

transmitter. While we recognize the importance of protocol

effects, we do not consider link throughput rates, impacts

of interference on medium access, nor correlated uncertainty

across links in this work in order to focus on the key aspects

of robust minimum-power routing. However, the formulation

of Robust MET via convex optimization is a key underlying

construction onto which protocol aspects may be added and

analyzed.

Since we are designing power levels at the nodes, we

choose to model uncertainty in the transmit power necessary

to achieve a minimum SNR at the receiver: pij = p̄ij + p̃ij .

The mean power for link (i, j) to have successful trans-

mission is p̄ij (the no-uncertainty power), and the normal

random variable describing the uncertainty in the power is

p̃ij .1 The mean and variance for each link, along with the

desired probability of link connectivity, are inputs to the

optimization.

Robust optimization considers the worst-case realization

of the random variable pij ; under the assumption of a

Gaussian distribution we use the mean power plus a properly-

scaled addition to account for uncertainty. Our solution is

thus feasible for the worst-case realization within a certain

probabilistic bound. We call the mean power plus the scaled

power p̂ij and will show in Sec. VI that it can be set

deterministically.

The wireless network is described by a graph G(V,E),
where E is set of possible (undirected) edges and V is the

set of nodes. The set of directional arcs derived from E is

A. The multicast source node is s and the set of destinations

is D. The transmit power of node i is Pi. Additionally,

xt
ij = Flow on arc (i, j) ∈ A for commodity t ∈ D

yij =

{

1 if the power of node i ≥ p̂ij
0 otherwise

The x variables are binary and an arc is included in the

routing if it has flow for any commodity.

The minimum energy transmission [MET] problem was

first introduced in [14], and concerns the optimal node

transmission powers and associated routing tree for a

wireless single-source broadcast or multicast network. To

be consistent with our notation we use p̄ij to denote the

1As will be discussed in Sec. IV-B, the assumption of a Gaussian
distribution is simply used to formally size the uncertainty sets used in the
optimization. Other distributions can be better-suited for acoustic channel
variability, and the size of the uncertainty sets could be approximated under
different distributions or based directly on data.

deterministic power model. The formal problem statement is:

[MET] Find a power vector (P1, P2, . . . , PN ) ∈ R
N
+ of

minimum sum, such that the induced graph (V,EP ), where

EP = {(i, j) ∈ A : Pi ≥ p̄ij}, has a path from s to each

t ∈ D.

Broadcast has D=V \{s} while multicast has D ⊂ V \{s}.

The MET problem can be transformed into an equivalent

Steiner tree problem and is thus NP-complete [1].

The robust formulation of MET requires the power con-

straints, which relate the power Pi at a node to the inter-node

minimum power levels pij , to be satisfied in probability:

EP = {(i, j) ∈ A : prob (Pi ≥ pij) ≥ η} (1)

Successful transmission occurs when the power at the

receiver exceeds a minimum SNR threshold.

III. ACOUSTIC COMMUNICATIONS MODEL

The unique characteristics of the acoustic communications

channel leave many transmission parameters to be optimized,

such as center-frequency, bandwidth, frequency allocation,

power level, and modulation schemes [4]. We develop our

simple models with an eye towards practical implementation

using currently available hardware. The WHOI MicroModem

[15] is commonly used in acoustic communication research,

and operates at one of three hardware-defined frequency

bands; we thus assume center frequencies, bandwidth, and

frequency allocation to be fixed in our propagation models.

New versions of the MicroModem allow for transmit power

to be set in the range of 140-150 [dB], whereas the standard

source level is 185 [dB] [16].

For our mean power model we use classical descriptions

of underwater acoustic propagation, as well as the con-

version from sound pressure level (traditionally denoted in

acoustics in [dB rel µPa]) to absolute power in [W]. To

reach a threshold SNR of SNR0 [dB], with ambient noise

NRX [dB rel µPa], the transmit power in [W] as a function

of distance r [m] is approximated as

p̄(r) = Arκ
(

10(αr)/10
)(

10(SNR0+NRX+60−185)/10
)

+B

(2)

The first term (rκ) is due to spreading (κ = 2 for spherical),

while the second term is a linear approximation of absorption

loss in seawater [9]. The constant factor that is a function of

SNR0 and NRX represents the desired power at the receiver,

and (60−185) represents the conversion from [dB rel µPa]

to [W].

Uncertainty derives from different types of nodes (static

sensor nodes, AUVs, surface ships), different operating lo-

cations (harbor, open-ocean, shipping lane) and different

ocean conditions (mixing water masses, varying wind/wave

conditions, varying bathymetry). These can all affect both the

ambient noise at the receiver and the transmission loss. Con-

sequently, we define multiplicative and additive uncertainty

on each link: Aij = 1 + Ãij , and Bij = 0 + B̃ij , with Ãij

and B̃ij as zero-mean Gaussian random variables. To first



order, multiplicative uncertainty can approximate physical

uncertainty in path loss (large-scale fading), uncertainty in

distance (navigation), as well as ambient noise at the receiver.

Additive uncertainty corresponds to uncertain power levels

or conditions at the transmitter, specifically including local

noise sources.

References [17], [7] discuss two specific MicroModem

datasets which are supportive of the mean power model in

Eqn. 2, and have a path loss variance in decibels which is

constant with distance. Constant variance in decibels roughly

equates with our multiplicative uncertainty model in Watts.

These data were taken in moderately deep water and in

relatively good channel conditions. Conversely, Fig. 1 shows

data with higher variability obtained in experiments with

MicroModems in the Charles River (Boston, MA), a very

shallow acoustic environment. Statistical analysis of modem

performance in this environment is ongoing work.

IV. SUPPORTING FORMULATIONS

A. MET-F2 MILP formulation

Here we summarize a compact integer programming

model for MET introduced by Haugland and Yuan [1];

our notation matches theirs. The strength of “MET-F2”

over previous formulations comes from multi-commodity

flows: each commodity corresponds to a unique destination.

Continuity is defined in a standard way by relating the flows

of each commodity, xt, the graph G, and the supply/demand

vector bst: x
t ∈ F(G, bst), t ∈ D\{s}, where F is the set

of admissible flows. For each commodity, the source has a

supply of one, and the destination has a demand of one.

The multicommodity flow formulation allows for the

broadcast advantage to be represented compactly, using

constraints which relate the yij variables to the flows xt
ij

using a specific ordering of power levels. For any node

i ∈ V, let πi : {1, . . . , N − 1} 7→ V \{i} be a bijection such

that pi,πi(1), . . . , pi,πi(N−1) is monotonically non-decreasing.

As shorthand, the subscript (i, k) defines the variables in

non-decreasing order of power required, where k refers to

the kth-closest node to node i. The formal problem is [1]:

[MET-F2]

minimize
∑

{i,j}∈A

pijyij (3)

subject to xt ∈ F(G, bst), t ∈ D\{s}, (4)

N−1
∑

l=k

xt
(il) ≤

N−1
∑

l=k

y(il),

i ∈ V, k ∈ 1, . . . , N − 1, t ∈ D\{s}, (5)

y ∈ {0, 1}|A|, (6)

x ∈ {0, 1}|A||D|, (7)

where the minimum mean link powers pij , the sets A and

D, the source s, and the ordering πij are given. The node

powers are then set as Pi =
∑

j∈V pijyij .

B. Robust LP

A deterministic LP uses constraints of the form aT
i z ≤ bi,

where aT
i and bi are known. The robust optimization frame-

work of Ben-Tal and Nemirovski [18] requires the solution

to hold for all constraint parameters in an uncertainty set.

We use the second-order cone program (SOCP) formulation

from [19], which models ai as Gaussian random variables

and sizes the uncertainty sets such that the constraints are

met in probability. We desire:

prob(aT
i z ≤ bi) ≥ η. (8)

The corresponding SOC constraint is:

āT
i z +Φ−1(η)

∣

∣

∣

∣

∣

∣Q
1/2
i z

∣

∣

∣

∣

∣

∣

2
≤ bi (9)

where Φ−1 is the inverse cdf of the standard normal dis-

tribution. The probability η must be ≥ 0.5, which results

in Φ−1(η) ≥ 0, making (9) a valid SOC constraint. Qi is

the covariance matrix of the independent Gaussian random

vectors ai; there are no correlations between ai and aj

represented. Notice that this formulation uses continuous

decision variables, while there are binary variables in MET-

F2. We will address this in the next section.

V. ROBUST LP FOR MET-F2

In the deterministic MET-F2 formulation, the Pi variables

are used, since they are redundant with pij and yij . In order

to pose the problem as a robust LP, we re-introduce them.

Substituting the stochastic definition of pij from Sec. III, and

enforcing the power constraint probabilistically, we require

Pi ≥
∑

j∈V

(p̄ij + p̃ij)yij , with probability η. (10)

We define the vector of decision variables, with N Pi

variables, |A||D| xt
ij variables, and |A| yij variables:

z = [P1, . . . , PN , x12, . . . , xN−1,N , y12, . . . , yN−1,N ] (11)

Following the procedure of Sec. IV-B, we can manipulate

the constraints of [MET-F2] into the form aT
i z ≤ bi, and

arrive at a new set of SOC constraints:

−Pi +

N
∑

j=1

(p̄ijyij) + Φ−1(η)
∣

∣

∣

∣

∣

∣Q
1

2

i z

∣

∣

∣

∣

∣

∣

2
≤ 0, i = 1, . . . , N

(12)

For the Robust MET-F2 problem, Qi is a large matrix with

blocks corresponding to the constituents of z (Pi, x
t
ij , and

yij). For a given node i, yij is a singleton vector which we

denote yi. Since uncertainty is modeled in the parameter pij ,

multiplying the variables yij , the only nonzero block of Qi

is the one corresponding to yi. We denote this block Qi,yy ,

and restrict it to be diagonal.

With inter-node variances of pij denoted as σ2
ij , we

define the vector of variances from node i to each other

node σ2
i = [σ2

i1, . . . , σ
2
iN ]. Thus, Qi,yy = diag(σ2

i ). The

full robust MET-F2 optimization problem is:



[Robust MET-F2]

minimize
∑

i∈V

Pi (13)

subject to (4), (5), (6), (7),

− Pi +

N
∑

j=1

(p̄ijyij) + Φ−1(η)σT
i yi ≤ 0,

i = 1, . . . , N, (14)

Pmin
i ≤ Pi ≤ Pmax

i , i = 1, . . . , N (15)

This model has two major features. First, the diagonal Qi,yy

restriction reduces the second-order cone constraint of the

robust counterpart to a linear constraint. Second, the ordering

based on power used in constraint (5) must be modified to

use p̂ij instead of the deterministic (or mean) powers in order

to account for the effects of uncertainty. In the next section

we show exactly how to set p̂ij .

VI. ANALYSIS AND DETERMINATION OF SCALED POWERS

A. Determination of p̂ij

We show that the scaled powers p̂ij are a function of the

mean and variance of pij , and further, that if p̂ij is used

as input to the deterministic MET-F2 MILP formulation, the

results are the optimal solution to Robust MET.

We assume that the optimal routing yij has been deter-

mined, and define j∗(i) = j s.t. yij = 1; j∗(i) is the node in

the routing which requires the largest power for connectivity

with node i. The robust constraint (14) reduces to:

Pi ≥ p̄ij∗(i) +Φ−1(η)σij∗(i), (16)

where σij∗(i) is the standard deviation of the uncertainty for

the transmit power of link ij∗(i). Since the objective is to

minimize the sum of the node powers Pi, and Pi appear only

in this constraint, the inequality (16) is tight. The resulting

equality relation for Pi allows for substitution of the RHS

of (16) in the objective,2 which becomes:

minimize

N
∑

i=1

Pi =

N
∑

i=1

(

p̄ij∗(i) +Φ−1(η)σij∗(i)

)

(17)

The only remaining difference between the constraint sets

of the deterministic MET-F2 formulation and the robust

version is that the ordering used in constraint (5) is different.3

Robust MET requires ordering based on the scaled powers

p̂ij , while ordering in deterministic MET-F2 is set based on

the deterministic (or mean) powers. However, by the same

equality argument as for Eqn. (16), it is clear that:

p̂ij = p̄ij +Φ−1(η)σij . (18)

Substituting p̂ij for pij in deterministic MET-F2 results in

an equivalent formulation to Robust MET. This is important

2Substituting the robust definition of Pi into the objective can also be
viewed as a special case of the robust optimization approach for cost
coefficients with ellipsoidal uncertainty sets by Bertsimas and Sim [20].

3Additionally, if maximum and minimum node power levels are desired,
the Pi variables must be retained; the effect on overall problem size and
tractability is negligible.

computationally because MET-F2 (a MILP) solves much

faster than the general robust counterpart of a MILP (a

MISOCP). We refer to [1] for solution times; networks up

to fifty nodes are tractable to solve to optimality today.

The case of a nondiagonal Qi,yy represents correlations,

which is outside our current scope. However, correlations

could be treated approximately by solving the MISOCP with

constraint (12), using the ordering based on p̂ij as given

above. If it is desired, a fully linear approximation could

also be made through the relation:
∣

∣

∣

∣

∣

∣Q
1/2
i,yyyi

∣

∣

∣

∣

∣

∣

2
≤
∣

∣

∣

∣

∣

∣Q
1/2
i,yy

∣

∣

∣

∣

∣

∣

2
. (19)

B. Special case: constant multiplicative uncertainty

Multiplicative uncertainty (described by Ã in Sec. III)

which is constant across all links is amenable to further

analysis. This model would be valid if all nodes have similar

characteristics and the ocean conditions are approximately

uniform across the operating region. The uncertainty for link

ij in absolute power [W] at the sender becomes a simple

fraction of the mean power for the link in [W]:

σ
(

Ãij

)

= σij =
p̄ij
C

(20)

We insert this model for σij into the objective as defined in

(17) and collect terms:

N
∑

i=1

Pi =

(

1 +
Φ−1(η)

C

)

(

N
∑

i=1

p̄ij∗(i)

)

(21)

Since Φ−1(η) and C are both constants, the ordering based

on p̂ij is the same as the ordering based on p̄ij . Thus, this

formulation has the same feasible set as deterministic MET-

F2 and the optimal solution to Robust MET is:

• The optimal routing xt
ij and yij from deterministic

MET-F2

• Node powers set according to:

Pi =

(

1 +
Φ−1(η)

C

)





N
∑

j=1

p̄ijyij



 (22)

The optimal topology and routing are invariant, but the power

levels change with the uncertainty level.

VII. COMPUTATIONAL RESULTS

We ignore absorption losses and present results for the

spherical spreading model p̄ij = Gr2ij in order to be

consistent with literature on MET. Results were computed

using AMPL/CPLEX. The results we show are all for a

single multicast instance with N = 30 nodes, and |D| = 15
destinations randomly located in the unit square. We present

example results for multiplicative and additive uncertainty

separately, all with η = 0.99. We normalize the powers such

that the deterministic objective (σ = 0) has total power of

one. We did not set maximum or minimum power levels for

any of these cases, in order to focus on the effects of the

robust constraints.



A. Multiplicative uncertainty

The left side of Fig. 2 shows the deterministic routing,

and the right side shows a scenario where all links going

into destinations have a multiplicative uncertainty of σij =
p̄ij/2 and all links going into optional router nodes have a

multiplicative uncertainty of σij = p̄ij/20. The routing is

notably different between the two cases. The deterministic

case would be infeasible with uncertainty.

s

Deterministic
Objective = 1.00

s

Multiplicative uncertainty
Objective = 1.82

Fig. 2: The left plot is the deterministic solution (shown

for reference). The red node labeled s is the source. The

right plot is the solution when destination nodes (blue) have

multiplicative uncertainty of σij = p̄ij/2 and optional routers

(black) have multiplicative uncertainty of σij = p̄ij/20. Note

that the deterministic solution would be infeasible for the

scenario with uncertainty.

B. Constant additive uncertainty

We consider next uncertainties in transmit power for all

links as a single constant: σ(B̃ij) = σij = σC . Fig. 3

shows three cases. The uncertainty is normalized such that

a standard deviation of one is equal to the power required

to transmit the edge length of the domain. The optimal

solutions are compared to the prior heuristic, which takes the

deterministic design and increases node power levels in order

to meet the robust constraints. The heuristic applied in this

case is very poor. As uncertainty increases, the true solution

moves from the optimal deterministic solution towards a star

network. Fig. 4 shows a summary comparison. Even at low

uncertainty, for σC = 1/50 shown in Fig. 3b, Robust MET

achieves an objective which is 41% better than that of the

heuristic. We note that the optimal solution is piecewise-

linear in between changes in routing and topology, although

Fig. 4 does not directly show each discrete change.

VIII. DISCUSSION AND FUTURE WORK

Robust MET provides a tractable means for designing

efficient geographic routing subject to power uncertainty, a

capability which is especially useful in power-constrained

marine robotic networks that rely on unreliable acomms. We

have shown that with proper scaling of input power levels,

a deterministic MILP formulation may be used to find the

optimal robust solution; MILP solvers are faster than mixed-

integer SOCP solvers. Additionally, in the case of constant

s

Objective = 1.63

s

Objective = 2.09

(a) σC =
1

100

s

Objective = 1.87

s

Objective = 3.19

(b) σC =
1

50

s

Objective = 4.36

s

Objective = 22.89

(c) σC =
1

5

Fig. 3: Robust MET solution (left) compared to baseline

heuristic (right) for three different values of constant additive

uncertainty. σC = 1 corresponds to uncertainty equal to the

power to transmit the distance of an edge of the box. The

objective is normalized such that the optimal deterministic

objective (σ = 0) is equal to one.

multiplicative uncertainty the deterministic routing solution

plus a linear scaling of node powers is optimal. This suggests

that the routing table does not always need to be updated as

conditions change. In this case or between shifts in topology

for arbitrary uncertainty scenarios, adaptive power-control

schemes using feedback, such as in [21], could be used

for additional performance benefits as the routing is locally

optimal.

Robust MET can be extended in a number of directions,

most directly to multi-source solutions via shared broadcast

trees [22]. Interference between competing transmissions

should be explicitly considered for optimal medium access
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of constant additive uncertainty for N = 30 and D = 15.

The total power with no uncertainty is 1. Uncertainty with

a standard deviation equal to the mean power required to

transmit the edge length of the domain is one.

control. We would like to connect our work with the de-

sign of reliable protocols above the physical layer, such as

network coding. To incorporate mobility, we can re-solve

the optimization as vehicles move, and thus integrate our

formulation with motion planning. More broadly, we expect

that convex optimization can continue to provide a unifying

framework for design and analysis in the context of robust

multi-agent control in marine applications.
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