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Deviational simulation of phonon transport in graphene ribbons
with ab initio scattering

Colin D. Landon and Nicolas G. Hadjiconstantinou
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, USA

(Received 17 April 2014; accepted 2 October 2014; published online 22 October 2014)

We present a deviational Monte Carlo method for solving the Boltzmann-Peierls equation with ab
initio 3-phonon scattering, for temporally and spatially dependent thermal transport problems in

arbitrary geometries. Phonon dispersion relations and transition rates for graphene are obtained

from density functional theory calculations. The ab initio scattering operator is simulated by an

energy-conserving stochastic algorithm embedded within a deviational, low-variance Monte Carlo

formulation. The deviational formulation ensures that simulations are computationally feasible for

arbitrarily small temperature differences, while the stochastic treatment of the scattering operator is

both efficient and exhibits no timestep error. The proposed method, in which geometry and

phonon-boundary scattering are explicitly treated, is extensively validated by comparison to

analytical results, previous numerical solutions and experiments. It is subsequently used to generate

solutions for heat transport in graphene ribbons of various geometries and evaluate the validity of

some common approximations found in the literature. Our results show that modeling transport in

long ribbons of finite width using the homogeneous Boltzmann equation and approximating

phonon-boundary scattering using an additional homogeneous scattering rate introduces an error on

the order of 10% at room temperature, with the maximum deviation reaching 30% in the middle of

the transition regime. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4898090]

I. INTRODUCTION

Since Novoselov and Geim’s landmark work on gra-

phene in 2004,1 a vast amount of theoretical and experimen-

tal research has attempted to characterize the thermal

properties of this two-dimensional material. While the gen-

eral consensus is that the thermal conductivity of suspended

graphene is greater than 2000 W/m K at room tempera-

ture,2–4 sometimes contradictory findings of various

approaches (molecular dynamics,5–8 Boltzmann-Peierls,9–14

Landauer,4,15 non-equilibrium Green’s function,16,17 optical

thermometry experiments2,3,7,18–20) have led to considerable

confusion regarding the fundamental physics of thermal

transport in graphene. One example relevant to this work is

the size dependence of thermal conductivity of unstrained

graphene devices, which has been predicted to diverge with

increasing device size,21–24 but for which conclusive experi-

mental evidence is lacking.8,25

An exhaustive review of the ongoing discussion of ther-

mal transport in graphene is beyond the scope of this paper

whose primary objective is the presentation and validation of

a new method for solving the Boltzmann-Peierls equation

(BPE) with ab initio scattering for temporally and spatially

dependent problems. The proposed method is based on the

deviational simulation Monte Carlo framework used to simu-

late both rarefied gases26–28 and phonon transport in the

relaxation-time approximation.29–31 In the present paper, it is

extended to include phonon dispersion relations and, via the

linearized ab initio three phonon scattering operator,32–34

anharmonic force constants calculated from density func-

tional perturbation theory (DFPT).35 Our hope is that this

method, which we will refer to as linearized ab initio

phonon-low variance deviational simulation Monte Carlo

(LAIP-LVDSMC), will provide insight into kinetic size

effects in heat transport in two-dimensional materials, and

that it will find use in modeling systems and devices at the

mesoscale and microscale. Our formulation does not consider

phonon confinement or coherence effects36–39 and is therefore

most appropriate for length scales larger than approximately

100 nm. At these lengthscales, significant kinetic (ballistic)

effects still persist as shown, for example, by recent experi-

mental measurements8 of the effective thermal conductivity

of graphene ribbons of width 1.5 lm and lengths ranging

from hundreds of nanometers to almost 10 lm.

In this paper, LAIP-LVDSMC is extensively validated

using experimental results, previous numerical solutions of the

homogeneous BPE, as well as analytical results. Following val-

idation, we use LAIP-LVDSMC to study some aspects of trans-

port in graphene ribbons, paying particular attention to explicit

treatment of the ribbon geometry and phonon-boundary interac-

tion. Our results show that state of the art BPE solutions,9,12,14

which rely on approximate treatments of boundary scattering,

may under-predict the thermal conductivity of long ribbons of

finite width by 10%–30% at room temperature.

II. BACKGROUND

The BPE

@n

@t
þ v q; sð Þ � rxn ¼ @n

@t

� �
scatt

; (1)

describes the dynamics of the phonon distribution function

nðx; q; s; tÞ, where v is the phonon group velocity, x denotes
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spatial position, q is the reciprocal space wavevector, s is the

phonon polarization, and t is the time.

Due to the complexity associated with the ab initio rep-

resentation of scattering processes, the scattering operator

(modeled by the RHS of (1)) is frequently approximated

using the phenomenological single mode relaxation time

(SMRT) approximation, which models scattering events as

relaxation processes towards the local equilibrium. Despite

being rather crude, the SMRT approximation has been

remarkably successful in describing thermal transport as

mediated by phonons in three-dimensional materials.40,41

However, in two-dimensional materials this model fails to

reproduce the details of phonon-phonon scattering obtained

using ab initio modeling.9,10,12,13

As a result, in this work, we consider the ab initio three-

phonon scattering operator34,42 (in two dimensions) given by

@nk

@t

� �
scatt

¼ Auc

2p�h2

X
s0;s00

ð
d2q0j~V 3 �k;�k0; k00

� �
j2dI

� nk þ 1ð Þ nk0 þ 1ð Þnk00 � nknk0 nk00 þ 1ð Þ
� �

þ Auc

4p�h2

X
s0;s00

ð
d2q0j~V 3 �k; k0; k00

� �
j2dII

� nk þ 1ð Þnk0nk00 � nk nk0 þ 1ð Þ nk00 þ 1ð Þ
� �

; (2)

where, in the interest of simplicity, the spatial and time

dependence of the distribution function are not shown

explicitly and k is used to denote the combined dependence

of n on q and s. Here, Auc is the material unit cell area,
~V 3ð�k;�k0; k00Þ denotes the interaction strength of the corre-

sponding three-phonon process,34 while dI ¼ dð�xk � xk0

þxk00 Þ imposes energy conservation for type-I processes and

dII ¼ dð�xk þ xk0 þ xk00 Þ for type-II processes; xk denotes

the frequency of phonon mode k.

Solution of the BPE with the ab initio scattering opera-

tor has only recently been made feasible by using an iterative

formulation42–46 to yield the material response to a constant

(and small) temperature gradient in the absence of bounda-

ries. Even more recently, a variational formulation for solv-

ing the same class of problems has also been developed.47

Both formulations assume spatially homogeneous, steady

state, linearized conditions; finite-width graphene ribbons

are approximately treated by modeling transverse boundaries

via an additional (homogenous) scattering rate.9,10,12,14

The LAIP-LVDSMC method developed here can be

used to obtain solutions of the BPE with ab initio scattering

for more general problems exhibiting arbitrary spatial and

temporal variations. It originates from the LVDSMC class of

methods30,31,48–52 for simulating the Boltzmann transport

equation. LVDSMC methods achieve computational

efficiency26,27,53 by simulating only the deviation from a

suitably chosen equilibrium distribution. For phonon sys-

tems, this is given by nd
k ¼ nk � n0

k, where the equilibrium

(control)26 distribution is the Bose-Einstein distribution

n0
k ¼ nBEðxk; T0Þ parametrized by the equilibrium tempera-

ture T0; the latter may be chosen to vary in space

(T0 ¼ T0ðxÞ) as a means of improving variance reduction or

simulating temperature gradients in the material.30,31,48,49

III. MATERIAL MODEL

The material model for this method is comprised of sec-

ond and third order force constants, which for the present

study was calculated using density functional theory (DFT)

and perturbation theory.35 Calculations were made using the

local density approximation with the PZ parametrization,54

and a lattice parameter of 2:43287 Å. The phonon dispersion

relation is shown for high symmetry directions in Figure 1;

agreement with experimental results55,56 is excellent. The

phonon frequencies at high symmetry points shown in

Table I also agree well with other DFT calculated dispersion

relations.57,58

IV. COMPUTATIONAL METHOD

Due to the small temperature gradients of interest here,

we consider the case of small deviation from equilibrium

(nd
k � n0

k) to obtain the linearized form of the scattering

operator9,33,34

@nd
k

@t

� �
scatt
¼ Auc

2p�h2

X
s0;s00

ð
d2q0j~V 3 �k;�k0; k00

� �
j2dI

� n0
k00 � n0

k

� �
nd

k0 þ n0
k þ n0

k0 þ 1
� �

nd
k00 þ n0

k00 � n0
k0

� �
nd

k

� �
þ Auc

4p�h2

X
s0;s00

ð
d2q0j~V 3 �k; k0; k00

� �
j2dII

� n0
k00 � n0

k

� �
nd

k0 þ n0
k0 � n0

k

� �
nd

k00 � n0
k00 þ n0

k0 þ 1
� �

nd
k

� �
:

(3)

We note that the assumption of small deviation from equilib-

rium is not required for the LVDSMC methodology, which

is valid for arbitrary deviations from equilibrium.59

Simulations of the non-linear operator (2) will, however,

require a different treatment from the one described here.

A. Reciprocal space discretization

In order to facilitate efficient integration of (3) over q0,
we discretize the reciprocal space unit cell,43,46,47,60 as

shown in Figure 2, and use a two dimensional implementa-

tion of the linear tetrahedra method.61,62 As a result, the line-

arized scattering operator can be written in the form47,60

FIG. 1. Comparison of the phonon dispersion relation used in this work with

neutron scattering experiments (circles55 and triangles56).
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@nd
i

@t

� �
scatt

¼
XNstates

j¼1

Aijn
d
j ; (4)

where Nstates is the number of discrete reciprocal states and i
indexes the discrete state with wavevector qi and polariza-

tion si. The transition matrix is given60 by

Alm ¼
Auc

2p�h2

1

n0
m n0

m þ 1
� �

�
X

ijk

NI i; j; kð ÞWI i; j; kð Þ �dimdml � dildjm þ dildkm

� ��
þNII i; j; kð ÞWII i; j; kð Þ �dimdml þ dildjm þ dildkm

� �
�; (5)

where WIði; j; kÞ and WIIði; j; kÞ are the coefficients arising

from the linear interpolation,60 NIði; j; kÞ ¼ n0
i n0

j ðn0
k þ 1Þ and

NIIði; j; kÞ ¼ 1
2

n0
i þ 1

� �
n0

j n0
k .

For convenience in selecting momentum conserving

processes, the discretization is chosen to include the C point.

However, the three acoustic branch phonons at the C point

are excluded because they do not satisfy the fundamental

condition for existence,63 namely, xksk > 1, where sk is the

phonon mode lifetime. Because of this exclusion, the number

of states is given by Nstates ¼ N2
side � 3, where Nside is the

number of segments into which each reciprocal space basis

vector is discretized.

In order to ensure strict energy conservation,48 we simu-

late the energy distribution

fi ¼
2

Auc Ntrid
�hxini; (6)

where Ntri is the number of triangles in the reciprocal space

discretization, and we use d ¼ 3:35 Å as the nominal

thickness of graphene.64,65 Under this formulation, the BPE

in the discretized reciprocal space becomes

@f d
i

@t
þ vi � rxf d

i þ vi � rxf 0
i ¼

X
j

Bijf
d
j ; (7)

where f 0
i ¼ ð2=Auc NtridÞ�hxin

0
i and Bij ¼ ðxi=xjÞAij.

We have found that due to numerical errors in the

calculations of the third order force constants and due to

finite discretization of the reciprocal space and the linear

interpolation, the calculated transition matrix Bij ¼
ðxi=xjÞAij does not conserve energy and momentum

exactly. This creates numerical problems for our strictly

(energy) conserving scattering scheme described in Sec. IV

B 2. In this work, we used two numerical techniques to

ameliorate this problem. First, the interaction term was

symmetrized

6j~V 3;symðk; k0; k00Þj2 ¼ j~V 3ðk; k0; k00Þj2 þ j~V 3ðk0; k; k00Þj2

þj~V 3ðk00; k0; kÞj2 þ j~V 3ðk00; k; k0Þj2

þj~V 3ðk0; k00; kÞj2 þ j~V 3ðk; k00; k0Þj2 (8)

to ensure required symmetries were satisfied. Second, a

Lagrange multiplier optimization scheme60 was used to con-

struct an additive correction to B, so that the latter satisfies

energy conservation

X
i

@f d
i

@t

� �
scatt

¼ 0 ¼
X

ij

Bijf
d
j ¼

X
j

X
i

Bij

	 

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼0

f d
j (9)

and momentum conservation

X
i

qi

@nd
i

@t

� �
scatt

¼ 0 ¼
X

ij

qi

xi
BN

ij f
d
j ¼

X
j

X
i

qi

xi
BN

ij

	 

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼0

f d
j

(10)

where BN denotes the part of the B matrix that contains only

the normal scattering processes.

B. Low-variance Monte Carlo simulation

In the LVDSMC class of methods,30,31,60 the distribu-

tion function is approximated using Nparts computational par-

ticles. This approximation can be expressed mathematically

by writing

f d
i �

XNparts

j¼1

Eeffrjdkj;ki
dðx� xjÞ; (11)

where Eeff is the effective energy that each computational

particle represents and rj is the sign (61) of particle j.
Equation (11) highlights the fact that this work uses a dis-

crete representation of the reciprocal space required by the

scattering model, but a continuous representation of physical

space. In general, advantages of particle based approaches

include efficient scaling in higher dimensions; importance

TABLE I. Graphene dispersion relation at high symmetry points in units of

cm�1. This work uses a lattice parameter of 2:43287 Å and the LDA-PZ

parameterization.54

Point ZA TA LA ZO TO LO

C 0 0 0 900.5 1577.4 1577.4

M 475.7 642.0 1352.9 636.7 1426.9 1377.1

K ¼ K0 535.5 1053.7 1205.6 535.6 1340.9 1206.2

FIG. 2. Parallelepiped unit cell used to discretize reciprocal space (units are

1010 m�1). Only the circled vertices are included in the computational

mesh—vertices on the right and top boundaries are equivalent to those on

the left and bottom boundaries, respectively, via periodicity. Here (for

clarity), a Nstates ¼ 93 discretization is shown—six branches with 16 states

in each branch, the C point for the three acoustic branches being removed.

163502-3 C. D. Landon and N. G. Hadjiconstantinou J. Appl. Phys. 116, 163502 (2014)
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sampling;27 natural, efficient, and accurate treatment of dis-

continuities in the distribution function;26,27,66 and simple,

intuitive algorithms.67

Integration of (7) in the LVDSMC formulation proceeds

via a splitting algorithm,68,69 which evolves the particle

dynamics using decoupled advection and scattering steps in

sequence, each of duration Dt. As described below, this

formulation requires four main algorithmic ingredients,

namely, initialization, sampling, scattering, and advection.

Particular emphasis is given here to the scattering step,

which is entirely new. The other ingredients have been

discussed previously for three-dimensional materials (and

continuous reciprocal space descriptions);30,48 here, we focus

on differences arising from the two-dimensional nature of

the material and the discrete reciprocal space description.

1. Initialization

Initialization requires sampling particles from the appro-

priate distribution function representing the initial condition.

In the general case of an arbitrary (non-equilibrium) initial

distribution, fiðx; t ¼ 0Þ, the deviational simulation needs to

be initialized from the deviational distribution

f d
i ðx; t ¼ 0Þ ¼ fiðx; t ¼ 0Þ � f 0

i : (12)

This is achieved by generating particles from the distribution

jfiðx; t ¼ 0Þ � f 0
i j (13)

with sign sgnðf d
i ðx; t ¼ 0ÞÞ. The number of such particles

is determined from Ninit
parts ¼

P
i jf d

i ðx; t ¼ 0Þj=Eeff . These par-

ticles can be generated by the method of acceptance-rejec-

tion.60,67 More sophisticated methods for sampling distribution

functions for LVDSMC simulations have been developed for the

rarefied gas case70 and may prove useful for phonon simulation.

For steady problems, it is most convenient to initialize

the simulation from the reference (control) equilibrium so

that f d
i ðx; t ¼ 0Þ ¼ 0. In that case, no particles need to be

generated for initialization and the initial condition is

represented exactly.

2. Scattering

The scattering step updates the particle distribution due

to the action of the scattering operator over a timestep. In

this case, the distribution after a timestep is known in terms

of the generator

P Dtð Þ ¼ eBDt ¼
X1
k¼0

Dtk

k!
Bk;

namely,

f d
i ðtþ DtÞ ¼

X
j

PijðDtÞf d
j ðtÞ: (14)

Although at first glance this appears to resemble a Markov

chain formulation, two significant differences make the for-

mer not applicable: first, the distribution f d
i can take positive

or negative values; second, the elements of the generator, Pij,

can be negative or greater than unity (a consequence of hav-

ing negative off-diagonal elements in B due to three phonon

coupling).

To account for the above complexity, we rewrite (14) in

the form

f d
i tþ Dtð Þ ¼

X
j

Pij Dtð Þ
Pj

X1
n¼0

2
P�j
Pj

 !n
0
@

1
Af d

j tð Þ; (15)

where P�j is the sum of the absolute values of the negative

elements in column j of P, and Pj ¼
PNstates

k¼1 jPkjj. Equation

(15) can be implemented by repeating the following process

for all particles: for a particle in state j with sign r,

1. Transition particle to the state p given by

Xp�1

i¼1

jPijj � RPj <
Xp

i¼1

jPijj;

where R is a uniform random variate in ½0; 1Þ.
2. Assign a new sign to the particle: r0 ¼ sgnðPpjrÞ.
3. If r0 6¼ r, generate 2 more particles in state j, with sign r

and process each by going to step 1.

Here, we note that the scattering algorithm just

described, by construction, exactly conserves energy. Also,

since (14) is exact, this scheme introduces no timestep error;

this is numerically demonstrated in Sec. V B. However, the

complete simulation algorithm is first-order accurate in time

due to the timestep error introduced by the splitting scheme.

Higher-order accuracy can be achieved by symmetrizing the

splitting scheme30,70 and will be pursued in future work.

Moreover, assuming that the number of particles is pro-

portional to Nstates as suggested by numerical experiments,60

the cost of the scattering step is expected to be of OðNstates

logðNstatesÞÞ operations, since the state to which each particle

scatters can be found using a binary search method. This

scaling is superior to a deterministic approach, in which the

same step would take OððNstatesÞ2Þ operations.

The generation of additional particles is, in general,

undesirable and if measures are not taken, it can cause the

simulation to become unstable. Stability is achieved by can-

celing positive and negative particles in the same reciprocal

space state and the same spatial cell.48 When cancellation

takes place between particles at finite distance, discretization

error is introduced, requiring that spatial cells be small (typi-

cally smaller than the mean free path). This is, in fact, the

only form of spatial discretization error introduced by this

algorithm.

3. Advection

The advection step simulates the left hand side of (7),

and is typically implemented as two separate parts. The first

part is the traditional advection step

@f d
i

@t
þ vi � rxf d

i ¼ 0; (16)

which describes ballistic motion of particles and is imple-

mented by advecting each particle for the timestep duration,

163502-4 C. D. Landon and N. G. Hadjiconstantinou J. Appl. Phys. 116, 163502 (2014)
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namely, xjðtþ DtÞ ¼ xjðtÞ þ vjðtÞDt for j ¼ 1; :::;Nparts. If

interrupted by an encounter with a boundary, the particle

motion continues for the remaining part of the timestep after

processing the associated boundary condition. The particle

formulation lends itself naturally to the treatment of bound-

ary conditions associated with phonon transport. Below, we

describe boundaries at a prescribed temperature as an

example.

The second part of the advection step implements the term

vi �
@f BE xi; Tð Þ

@T
rxT0 xð Þ; (17)

which is nonzero if the control temperature is chosen to be a

function of space. As discussed in a number of previous

publications for three dimensional30,31,48 and for two-dimen-

sional60 materials, this can be implemented by treating (17)

as a distribution from which

vi �
@f BE xi; Tð Þ

@T
rxT0 xð Þ

����
����Dt

Eeff

(18)

particles are generated per timestep. A variable control

temperature can be useful for improving computational effi-

ciency via improved variance reduction, or introducing a

temperature gradient without explicitly simulating the physi-

cal dimension, in which the gradient exists.30,48

a. Boundaries at prescribed temperature. Consider a

boundary at a fixed (prescribed) temperature Tb with inward

normal (pointing into the material) n̂b. The net heat flux

across this boundary is given by

JE;b ¼
X

i

vi � n̂bf d
i : (19)

Particles entering the domain from the boundary (vi � n̂b > 0)

come from a known distribution, f b
i ¼ f BEðxi; TbÞ

¼ ð2=Auc NtridÞ�hxin
BEðxi; TbÞ. Accordingly, the heat flux

can be divided into incoming and outgoing components

JE;b ¼
X

fijvi�n̂b>0g
vi � n̂bðf b

i � f 0
i Þ

�
X

fijvi�n̂b<0g
jvi � n̂bjf d

i : (20)

Such a boundary condition can be implemented in the

following manner: particles within the simulation that en-

counter the boundary during the advection step (described by

the term jvi � n̂bjf d
i ) are discarded; particles representing the

influx from the boundaryX
fijvi�n̂b>0g

vi � n̂bðf b � f 0
i Þ (21)

are generated following the general procedure outlined in

Sec. IV B 1, and described in more detail in previous

works.30,31,48,60

Two special cases of this boundary condition are impor-

tant for our simulation. The first is when the boundary

temperature is chosen to be the reference equilibrium tem-

perature T0. In this case, the particles encountering the

boundary are removed and no additional particles need to be

generated. The second is an adiabatic (diffuse) boundary. In

this case, the particles encountering the boundary are used to

determine the temperature of the boundary, Tb, by numeri-

cally invertingX
fijvi�n̂b>0g

vi � n̂bðf BEðxi; TbÞ � f 0
i Þ ¼

X
fijvi�n̂b<0g

jvi � n̂bjf d
i :

(22)

4. Sampling

Transport properties are sampled by dividing the physi-

cal domain into cells of volume Vcell ¼ Acelld. For example,

the energy density in a cell of volume Vcell is

um ¼
P
fjjxj2cell mg Eeffrj

Vcell

þ ueq T0ð Þ; (23)

where ueqðT0Þ is the energy density at the reference tempera-

ture T0 calculated from the equilibrium energy-temperature

relation

ueqðT0Þ ¼
X

i

f BEðxi; T0Þ: (24)

The heat flux in cell m is given by

JE;m ¼
1

Vcell

X
fjjxj2cell mg

Eeffrjvj: (25)

These estimators have been variance-reduced26,27 by separat-

ing out the equilibrium contribution to the estimator and

evaluating it analytically. This strategy can significantly

reduce stochastic noise and improve computational effi-

ciency, particularly in problems where temperature differen-

ces are small.30

V. VALIDATION

In this section, we discuss some of the tests used to vali-

date the method described in Sec. IV. More extensive valida-

tion tests can be found elsewhere.60

A. Thermal conductivity of infinitely large graphene
sheets

The thermal conductivity of an infinity large graphene

sheet can be calculated by solution of

vi � rxf 0
i ¼

X
j

Bijf
d
j ; (26)

which models a homogeneous material under the action of a

temperature gradient. In previous work,9,12,14 a related equa-

tion was solved using deterministic approaches. We repeated

this (deterministic) calculation in order to validate our mate-

rial model and the associated matrix B: specifically, we
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solved Eq. (26) using the deterministic iterative method of

Omini and Sparavigna.9,12,43

Our results are shown in Table II. As the discretization

is refined, the thermal conductivity converges towards a

value of approximately 3500 W/m K, with no boundary or

isotope scattering. We exclude the latter for clarity, and

because it is reported to have a small effect in graphene.14

Table II also shows results obtained from the SMRT

approximation defined by

BSMRT
ij ¼ Bijdij: (27)

This approximation severely under predicts the thermal con-

ductivity when calculated from actual scattering rates (i.e.,

using Eq. (27), as opposed to treating the relaxation times as

adjustable parameters—see also Refs. 9 and 13).

Table III shows iterative solution results in the presence

of additional homogeneous scattering33,43,46,71 of the form

Bcirc
ii ¼ Bii þ

vi

Lb

(28)

modeling2,72,73 a Corbino membrane of diameter Lb; here,

vi ¼ jjvijj. The results are in reasonable agreement with pre-

vious ab initio thermal transport simulations using empirical

potentials and DFT/DFPT based force constants. We note

that steps we took to enforce symmetry upon our transition

rate matrix (see Eq. (8)) may account for the slightly lower

thermal conductivities obtained with this method.

Figure 3 shows a comparison of our membrane results

for a Corbino membrane with experimental measurements at

various temperatures. Despite the large uncertainty in the ex-

perimental data due to uncertainties in the experimental

procedure,2 our results fit well within the trend of the data,

similarly to previous ab initio BPE solutions.9,12

B. Homogeneous time-dependent problems

Is this section, we validate our simulation methodology,

and the scattering operator treatment of Sec. IV B 2, in

particular, by comparing the LAIP-LVDSMC solution of a

homogeneous problem described by

@f d
i

@t
þ vi � rxf 0

i ¼
X

j

Bijf
d
j ; (29)

to a solution obtained using a simple Euler integration

(deterministic) method. As in Eq. (26), the term vi � rxf 0
i is

a known “source term” representing an (externally) imposed

temperature gradient, making this problem the time-

dependent extension of the problem studied in Sec. V A.

Figure 4 shows the resulting heat flux in the direction of

the applied temperature gradient for the initial condition

f d
i ðt ¼ 0Þ ¼ 0; the agreement between the two solutions is

excellent. We also note that, although not shown in the

figure, both transient solutions asymptotically (t!1)

TABLE II. Convergence of the iterative solution thermal conductivity with

respect to discretization Nside.

Nside jxx;SMRT jyy;SMRT jxx jyy

5 586.18 579.74 1474.41 1434.02

11 468.97 481.62 2584.32 2533.65

21 510.51 530.40 3099.31 3013.94

31 515.51 535.35 3272.60 3160.60

41 513.87 533.38 3345.17 3237.89

51 515.01 534.18 3467.55 3336.47

61 514.84 533.81 3539.02 3397.62

71 514.42 533.30 3554.41 3401.23

81 513.13 531.91 3591.68 3444.19

TABLE III. Thermal conductivity (along the C to M line where available)

from this work and other sources as well as the relative importance of each

branch in terms of total energy carried.

Source j ZA (%) TA (%) LA (%) ZO (%)

Nside ¼ 81; Lb ¼ 1 3592 86.10 9.12 2.48 2.37

Nside ¼ 81; Lb ¼ 10lm 2984.1 82.96 10.83 3.60 2.65

Empirical potential12 3216 89 8 3 0

Empirical potential9 3435 76 15 9 0

DFT/DFPT14 3288–3596 76 15 8 0

FIG. 3. Temperature dependence of the iterative solution thermal conductiv-

ity compared to various recent experimental measurements (red circle,19

blue square,18 yellow triangles,2 green stars,3 and magenta cross73).

Calculations used the symmetrized interaction term (8) and the Corbino

membrane scattering rate (28) with Lb ¼ 10lm.

FIG. 4. Comparison of LAIP-LVDSMC simulation with a deterministic

scheme for a time-dependent homogeneous problem.
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match the solution of (26) obtained in Sec. V A. The latter is

used to normalize the results and is denoted in the figure by

JEðt ¼ 1Þ.

C. Comparison with analytical solution of an SMRT
model

Additional validation is provided using the closed form

solution of the BPE for infinitely long ribbons with the

SMRT scattering operator defined in (27).50,74 Specifically,

for an infinitely long ribbon of finite width we expect f d
i to

be a function of only the n coordinate (see Figure 5). At

steady state and under the SMRT approximation, Eq. (7)

then reduces to

vi sin hið Þ
df d

i

dn
þ vi cos hið Þ

dT

dg
@f BE xi; Tð Þ

@T

���
T0

¼ Biif
d
i ; (30)

where hi is the angle between the wavevector and the g axis,

as shown in Figure 5, and dT=dg is the imposed temperature

gradient. The solution of this equation subject to diffuse

boundary conditions is

f d
i nð Þ ¼

f d;1
i 1� exp � n

Kni sin hið Þ

	 
	 

0 � hi < p

f d;1
i 1� exp � n� 1

Kni sin hið Þ

	 
	 

p � hi < 2p

8>>><
>>>:

(31)

where the mode specific Knudsen number is given by

Kni ¼
vi

BiiW
: (32)

Here,

f d;1
i ¼ �B�1

ii vi cos hið Þ
dT

dg
@f BE xi; Tð Þ

@T

���
T0

: (33)

Consequently, the exact solution for the width-averaged

heat flux ð�JSMRT
E ¼ 1=W

Ð 1

0
JSMRT

E dnÞ for a ribbon of volume

LWd is60

�J
SMRT
E ¼

XNstates

i¼1

vif
d;1
i

� 1�Knijsin hið Þj 1�exp � 1

Knijsin hið Þj

	 
	 
	 

:

(34)

This expression must still be evaluated using the reciprocal

space discretization; in order to make the comparison with

simulation as precise as possible, we use the same reciprocal

space discretization as in the particle simulation, namely,

Nstates ¼ 5397.

Figure 6 shows a comparison between the prediction of

Eq. (34) for the axial heat flux �J
SMRT
E;g and spatially dependent

(SMRT) LVDSMC results for the same problem. Note that

the simulation only considers the transverse ribbon direction

by utilizing an axially variable control temperature (see

Eq. (17)) to impose the axial temperature gradient. As

expected, the analytical solution and the simulation are in

essentially perfect agreement (less than 1% discrepancy). A

comparison of profiles of the axial component of the heat

flux for various ribbon widths is also shown in Figure 7. The

small error present is due to the statistical uncertainty associ-

ated with the Monte Carlo and the finite spatial discretization

of the Monte Carlo simulation.

D. Additional validation

Additional validation can be found in Sec. VI B, where

it is demonstrated that LAIP-LVDSMC simulations recover

the analytically known75,76 ballistic limit for infinitely wide

but short ribbons subject to an axial temperature gradient.

VI. SIMULATION OF HEAT TRANSPORT IN GRAPHENE
RIBBONS

We now discuss computational results for heat transport

along graphene ribbons with diffusely reflecting transverse

boundaries (see Figure 5) at room temperature (300 K).

These results are obtained using the LAIP-LVDSMC meth-

odology developed in this paper, and described in Sec. IV

which uses the linearized ab initio scattering operator (3). In

other words, transport is explicitly resolved in the ribbon

geometry and boundaries are explicitly treated rather than

being approximated by additional homogeneous scattering.

Specifically, the longitudinal boundaries are modeled as

prescribed temperature boundaries, while the transverse

boundaries are modeled as diffuse adiabatic (see Figure 5).

FIG. 5. Schematic of graphene ribbon with diffuse boundaries. Coordinates

g and n are normalized by L and W, respectively, such that 0 � g; n � 1. In

the infinitely long case, the prescribed temperature boundaries are replaced

by a temperature gradient.

FIG. 6. Comparison between the analytical solution for the axial heat flux in

long graphene ribbon with diffusely reflecting boundaries under the SMRT

approximation (34) and (SMRT) LAIP-LVDSMC results. Both results are

normalized by the axial heat flux for a homogeneous material ðJSMRT
E;homo;gÞ

under the same temperature gradient. The error is defined as the absolute

value of the difference between the two results.
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Size effects will be quantified by defining an effective ther-

mal conductivity

jeff ¼ �
�JE;gL

DTg
; (35)

where �JE;g is the width-averaged heat flux in the ribbon axial

direction and DTg is the temperature difference applied along

the ribbon (Th � Tc in Figure 5).

We expect kinetic effects to be dependent on the length-

based and width-based Knudsen numbers, KnL ¼ K=L and

KnW ¼ K=W, respectively. Here, the mean free path was

defined and calculated from

K ¼
XNstates

i

vin
0
i

Bii

.XNstates

i

n0
i : (36)

For fine discretizations, the mean free path depends weakly

upon the reciprocal space discretization and essentially con-

verges to K � 0:6lm at a discretization of Nstates ¼ 38387,

in good agreement with other predictions of the graphene

mean free path.4 We also note that our computational results

presented below indicate the presence of a diffusive to ballis-

tic transition regime between the lengthscales of 5 lm and

50 nm, which is consistent with this mean free path estimate.

To scale out any dependence on reciprocal space discre-

tization, in what follows, our results will be normalized by

bulk properties calculated using the same discretization. For

example, in Sec. VI A discussing infinitely long ribbons of

finite width, the heat flux will be normalized by the expected

value of this quantity for an infinitely wide ribbon, obtained

using the same reciprocal space discretization and denoted

JW!1;E. Similarly, in all sections except Sec. VI C, values

of the effective thermal conductivity will be normalized by

the bulk thermal conductivity, j, (obtained using the same

reciprocal space discretization). The effect of this normaliza-

tion was investigated by numerical experiments, which show

that at KnW � 1 the normalized effective thermal conductiv-

ity, jeff=j, changes by less than 2.5% when the discretization

is increased from Nstates ¼ 5397 to Nstates ¼ 14 997. All

results presented below are calculated using Nstates ¼ 5397.

A. Infinitely long ribbons

In this section, we consider ribbons that are sufficiently

long (KnL ! 0) that they can be approximated as having

infinite length. As explained in Sec. V C (where the SMRT

scattering operator was applied to the same geometry), simu-

lation of this geometry can be simplified by using a variable

control temperature in the axial direction and solving only

for variations in the transverse ribbon dimension.

Figure 8 shows (cell averaged) heat flux profiles

obtained from our simulations of such systems, for various

values of the Knudsen number KnW ¼ K=W.

Figure 9 shows how the resulting effective conductivity

of the ribbon, jeff ¼ j
Ð 1

0
ðJE=JW!1;EÞdn, varies as a function

of KnW . This figure compares MC simulation results with

those obtained using the iterative solution of the homogene-

ous Boltzmann equation,46 in which the transverse boundaries

are accounted for by augmenting phonon self-scattering with

an additional scattering rate; for a rectangular ribbon this

additional rate is given77 by 2vij sinðhiÞj=W. The figure shows

that the homogeneous approximation underpredicts the ther-

mal conductivity by as much as 30% near KnW ¼ 1.

B. Infinitely wide ribbons

In this section, we consider infinitely wide ribbons (L
finite and W !1) subject to an axial temperature gradient

via prescribed temperatures of Th and Tc at g¼ 0 and g¼ 1,

respectively. Figure 10 shows our simulation results for the

ribbon effective thermal conductivity for a wide range of

KnL. The effective thermal conductivity approaches the

homogeneous material value in the KnL � 1 limit and the

ballistic (no intrinsic scattering) analytical result75,76 in

the KnL 	 1 limit.

Our results also show that the approach to the ballistic

limit is very slow (e.g., at KnL ¼ 10, the difference between

the theoretical ballistic limit and simulation results is on the

order of 30%), presumably due to the very wide range of

free paths associated with the ab initio scattering operator.

C. Ribbons of finite length and width

In this section, we consider graphene ribbons with finite

length and width (0:1 < KnW ;KnL < 10). In particular, we

simulate axial heat transport due to an applied temperature

FIG. 7. Axial heat flux variation in the transverse direction in infinitely long

graphene ribbons of various widths. Comparison between the analytical so-

lution (lines) from Eq. (31) and the (SMRT) LAIP-LVDSMC results

(symbols).

FIG. 8. LAIP-LVDSMC simulation results of the axial heat flux across gra-

phene ribbons of various widths.

163502-8 C. D. Landon and N. G. Hadjiconstantinou J. Appl. Phys. 116, 163502 (2014)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

18.80.3.157 On: Wed, 22 Oct 2014 15:41:24



gradient using prescribed temperature boundaries as in the

case of infinitely wide ribbons, but explicitly simulate trans-

verse boundaries as diffusely reflecting walls. Because a

bulk thermal conductivity value is not available from the

experiments, in order to compare with the experimental

results, in this section, we report unnormalized values of

jeff . We note that the difference in bulk thermal conductivity

with Nstates ¼ 5397 and the approximately converged value

in Table II is 9%, which is well within the uncertainty of the

experimental measurements.

We use our simulations to investigate the effect of finite

ribbon width and, in particular, the approximation introduced

by Xu et al.,8 who performed experiments with ribbons of

width 1.5 lm (KnW � 0:4) as approximations to infinitely

wide ribbons. Comparison of LAIP-LVDSMC simulations

of infinitely wide ribbons (data in Figure 10) and ribbons of

width 1.5 lm (data in Figure 11) show that the error inherent

in this approximation is acceptable for short ribbons, but not

necessarily for long ribbons. Specifically, our simulations

show that for KnL > 1 the error (that is, the difference in

effective thermal conductivity between ribbons with KnW ¼
0:4 and ribbons with KnW ! 0) is on the order of 5%. On

the other hand, this difference continues to grow as KnL

decreases and becomes on the order of 20% at KnL � 0:1.

Figure 11 shows a comparison between the experimental

results of Xu et al.8 (at a temperature of 300 K and assuming

11.5% contact resistance) and our simulations of ribbons of

varying length and fixed width (1.5 lm). The two sets of

results are in good agreement, particularly for short ribbons.

This level of agreement is encouraging considering the very

large scatter in both numerical and experimental data

published over the last few years and verifies that significant

kinetic (ballistic) effects are present in graphene ribbons

with length scales from hundreds of nanometers to nearly

tens of microns. Additional simulation results for ribbons of

finite length and width can be found in Ref. 78.

VII. DISCUSSION

We have presented a method for solving the Boltzmann

equation with ab initio scattering for temporally and spatially

varying problems. Dispersion relations and transition rates

were obtained from DFT calculations. The scattering algo-

rithm developed is exactly energy conserving—a feature that

is highly desirable in particle simulation methods, but

incompatible with numerically derived scattering rates that

do not strictly conserve energy. We presented an approxi-

mate method for reconciling these differences, and note

that, provided scattering rates strictly conserve energy,

LAIP-LVDSMC can use force constants calculated from

DFT, empirical potentials, and possibly other methods.

Clearly, the fidelity of the simulated results will depend on

the quality of the material model. We hope that the present

work will spur the development of highly accurate and self-

consistent (energy conserving) scattering rates.

The method was used to simulate heat transport in

graphene ribbons. We have considered very long ribbons of

finite width, very wide ribbons of finite length and ribbons of

finite length and width. For infinitely long ribbons, our

results show that using a homogeneous scattering approxi-

mation underpredicts the effective thermal conductivity in

the transition regime 0:1 � KnW � 10 by an amount on the

order of 10%, with a maximum of 30% at KnW � 1. Our

simulations of two dimensional ribbons of finite length and

width have been found to be in good agreement with the

recent experimental data of Xu et al.8 The level of agreement

is particularly encouraging, considering the very large scatter

in both numerical and experimental data published over the

last few years. One of the major reasons for this large scatter

is the number of approximations introduced as a means of

FIG. 9. Effective thermal conductivity for an infinitely long ribbon.

Comparison between LAIP-LVDSMC simulation results and deterministic

solution of the homogeneous BPE (augmented self-scattering).

FIG. 10. Effective thermal conductivity of finite length ribbon calculated

from the LAIP-LVDSMC method. Also shown is the analytic ballistic limit76

as well as the homogenous material limit, both for the same discretization.

FIG. 11. Comparison between LAIP-LVDSMC results (dashed line) and the

experiments of Xu et al.8 in finite-size graphene ribbons.

163502-9 C. D. Landon and N. G. Hadjiconstantinou J. Appl. Phys. 116, 163502 (2014)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

18.80.3.157 On: Wed, 22 Oct 2014 15:41:24



making these calculations or experiments possible. For

example, in the case of Xu et al., experiments were per-

formed on ribbons of width 1.5 lm that were assumed to be

sufficiently wide that width effects could be neglected; how-

ever, our results show that this approximation leads to an

underestimation of the thermal conductivity by as much as

20% at KnL � 0:1. Efficient Boltzmann solutions methods

using ab initio scattering will be invaluable in the future for

providing means of analyzing transport in two-dimensional

but also three-dimensional materials.

We note that the method for treating the ab-initio collision

operator developed here is general and does not rely on assump-

tions about the material dimensionality; as a result, in principle

it can be readily extended to three dimensions. Similarly, the

particle formulation for integrating the advection part of the

Boltzmann equation readily extends to three dimensions. The

cost of the method will clearly be larger in three dimensions, pri-

marily due to the increase of states in the reciprocal space dis-

cretization; we note, however, that despite their large

computational cost, calculations involving three dimensional

scattering operators are already being performed for determinis-

tic solutions of spatially homogeneous problems.42,46,47

In closing, we note that Monte Carlo methods, as

opposed to deterministic approaches, do not need to discre-

tize reciprocal space. In this work, reciprocal space was dis-

cretized to allow for tabulation of the interaction term
~V 3ðk; k0; k00Þ, since real-time calculation of this term in con-

tinuous reciprocal space is prohibitively costly. Development

of an efficient continuous representation of ~V 3ðk; k0; k00Þ
and a corresponding particle method for the scattering—as

described by the linearized operator used in this work or its

non-linear counterpart (Eq. (2))—could lead to significantly

more efficient Monte Carlo algorithms and be particularly

useful for three dimensional problems.
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