
Cooperative Collision Avoidance at Intersections:
Algorithms and Experiments

Michael R. Hafner, Drew Cunningham, Lorenzo Caminiti and Domitilla Del Vecchio

Abstract—In this paper, we leverage vehicle-to-vehicle (V2V)
communication technology to implement computationally effi-
cient decentralized algorithms for two-vehicle cooperative col-
lision avoidance at intersections. Our algorithms employ formal
control theoretic methods to guarantee a collision free (safe)
system, while overrides are applied only when necessary to pre-
vent a crash. Model uncertainty and communication delays are
explicitly accounted for by the model and by the state estimation
algorithm. The main contribution of this work is to provide
an experimental validation of our method on two instrumented
vehicles engaged in an intersection collision avoidance scenario
in a test-track.

I. I NTRODUCTION

In the United States, vehicular collisions kill on average
116 and injure 7,900 people per day [22]. In 2009, more than
33,800 people were killed in police-reported motor vehicle
traffic crashes and about 2.2 million people were injured [2],
with an estimated economic cost of$230 billion. The situation
in the European Union is similar, with about 43,000 deaths and
1.8 million people injured per year, for an estimated cost of
¤160 billion [9]. In 2009, light vehicle crashes accounted for
68% of all U.S. motor vehicle fatalities and, of those light
vehicle fatalities, 26% were from side impacts [2], suggesting
crashes at intersections or on roadways close to and leading
to intersections. These statistics clearly indicate that crashes
at intersections have a major impact on the total number of
crashes and fatalities in the United States. Furthermore, unlike
other high-percentage crashes, such as road departure and
rear end, for which radar and camera-based forward collision
systems are now available, there is currently no established
technology to address side-impact collisions at intersections.

Vehicle to vehicle (V2V) and vehicle to infrastructure
(V2I) communication are setting the basis for establishingthis
missing technology by having vehicles cooperate with each
other and with the surrounding infrastructure, sharing informa-
tion about the environment, and improving overall situational
awareness. Therefore, intelligent transportation systems (ITS)
for inter-vehicle cooperative (active) safety have been subject
of intense research world-wide in government and industry
consortia, such as the Crash Avoidance Metrics Partnership
(CAMP) and Vehicle Infrastructure Integration Consortium
(VIIC) in the U.S., the Car2Car Communications Consortium
in Europe, and the Advanced Safety Vehicle project 3 (ASV3)
in Japan.

Since cooperative active safety systems are life-critical, ad
hoc algorithms for preventing collisions are not acceptable.
Instead, there is a compelling need for employing methodolo-
gies that provide formal safety guarantees, such as found in

the control theory and computer science literature [18, 24,26].
Specifically, the collision avoidance problem can be addressed
by computing the set of states, called backward reachable set
or capture set, that lead to an unsafe configuration (a collision)
independently of the input choice [26]. Then, a feedback map
is computed that restricts the control inputs when necessary
to prevent entrance in the capture set. While this approach is
theoretically appealing because it ensures safety by construc-
tion and applies overrides only when necessary, its practical
applicability is often limited by the complexity associated
with the computation of the capture set [15, 27]. Researchers
have been tackling computational issues by, among other
approaches, focusing on restricted classes of systems [3, 11,
13, 14].

In this work, we employ the techniques of [14], which
lead to linear complexity algorithms that are implementable
in real-time applications. Furthermore, the results of [14], as
opposed to the others, guarantee safety in the presence of
imperfect state information, due, for example, to sensor noise
or communication delays, and only need a coarse model of
the vehicle dynamics. We focus on a two-vehicle collision
avoidance scenario at intersections and develop a decentralized
control algorithm that uses V2V communication to determine
whether automatic control is needed to prevent a collision.
We prevent a collision through automatic control by actuating
only brake and throttle, but not steering, and assuming drivers
follow nominal paths as established by the driving lanes. Inour
intersection collision avoidance (ICA) application, the drivers
retain full control of the vehicle until the system configuration
hits the capture set. At this point, a control action is necessary
to prevent a collision, and automatic throttle or brake are
applied to both vehicles in a coordinated fashion so that one
vehicle enters the intersection only after the other has exited.
After the crash has been prevented, the driver regains control
of brake and throttle. We report on the implementation of our
algorithms on two instrumented Lexus IS 250 test vehicles
engaged in a collision avoidance scenario at a test intersection
at the Toyota Technical Center of Ann Arbor, MI.

Related Work. The employment of formal methods in
intelligent transportation has been previously applied bythe
California PATH project in the 90s. The objective of the
automated highway systems (AHS) project was to deploy fully
autonomous highway systems incorporating vehicle platoons
to increase traffic throughput, safety, and fuel efficiency [4].
More recently, work that employs job scheduling techniques
[8, 17] and optimal control [19] for intersection collision
avoidance has appeared. Collision warning algorithms have
also been proposed for general traffic scenarios [7, 28] and
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for intersections [6, 12]. Although different in scope, related
to our work is also research on collision mitigation through
emergency braking [16]. Directly related to this paper are
experimental works on full scale vehicle test-beds focusing on
collision avoidance/warning at intersections, which leverage
V2V communication [20, 21]. Specifically, in [20] a fuzzy
controller to manage vehicles crossing an intersection is
proposed. In [21], an on-board vehicle hazard detection that
uses V2V is developed to warn the driver about dangerous
situations. In these papers, formal safety guarantees are not
provided and cooperation between vehicles is not leveragedto
provide least restrictive warnings/overrides. Here, we bridge
the gap between formal methods and cooperative collision
avoidance systems at intersections by developing/testingan
experimental cooperative collision avoidance system based on
formal control theoretic techniques.

II. PROBLEM OVERVIEW

We consider the intersection scenario depicted in Figure
1(a), in which two vehicles approach an intersection and can
potentially collide in the indicated red shaded area. A collision
may occur for a number of reasons, including a distracted
driver not seeing the incoming vehicle, under-estimating the
vehicle speed, and violating red lights or stop signs. We seek
to design controllers on board of each vehicle that use V2V
communication in order to negotiate the intersection and apply
automatic control only when it is absolutely necessary to
prevent a collision.

We assume that, after making high level route decisions,
drivers follow predefined (known) paths as established by
driving lanes. Under this assumption, the methodology that
we propose can be applied to any paths geometry at an
intersection. Here, we consider the specific intersection sce-
nario of Figure 1(a) to be consistent with the geometry of
the test intersection employed in the experiments (Figure
1(d)). Collisions between two vehicles are prevented by only
controlling the longitudinal velocity and displacement ofeach
vehicle along its path, never controlling vehicle steering. We
assume each vehicle is equipped with sensors for state mea-
surement (absolute position, heading, velocity, acceleration,
brake torque, and pedal position), V2V communication, and
the ability to automatically actuate the throttle and brake.
We assume our collision avoidance system is active well
before the vehicles approach the intersection, preventinginitial
vehicle configurations generating unavoidable collision.Under
the above assumptions, the safety algorithms that we illustrate
here guarantee that the vehicles will never collide.

A. Test vehicles and test track

The test vehicles used in this work are modified Lexus
IS 250 (2007) test vehicles (Figure 1(c)). The modifications
include: computer running a Linux operating system; Differen-
tial Global Positioning System (DGPS) for position, absolute
time and heading measurement; Denso Wireless Safety Unit
(WSU) capable of V2V and Vehicle-to-Infrastructure (V2I)
Dedicated Short-Range Communications (DSRC); connection
to the Controller-Area Network (CAN) bus to read information

(a) (b)

(c) (d)

Fig. 1. (a) Intersection collision avoidance scenario withthe red area denoting
the bad (collision) set. Vehicle displacement is considered along the path.Li

determines the lower limit of the bad set along vehiclei path, while U i

determines the upper limit of the bad set along vehiclei path. (b) Bad set
in the state spaceX: it is the interval ]L1,H1[ × ]L2,H2[ in the X1

(displacement) space for every value of the speeds (vertical axis) of the two
vehicles. (c) Modified Lexus IS 250 vehicles used in the experiments. (d)
Top-down view of the test-track where the experiments were performed.

from vehicle sensors (velocity, acceleration, brake pedalposi-
tion, transmission state, etc.); CAN bus interface with brake
and throttle actuators.

The computer system is affixed inside the wheel well.
The purpose of this system is to interface with all on-board
vehicle sensors and actuators, in a manner that allows for rapid
development, deployment and testing of software applications.
The computer runs an Ubuntu Linux distribution, and consists
of a Intel Core-Duo 2.0 GHz processor, 1 GB RAM, 150
GB hard drive, and a motherboard with on-board ethernet and
USB ports. A USB video card is connected to the vehicle
navigation display unit, and a wireless keyboard is used to
control the computer from the passenger seat. The computer
can read and write to the CAN bus via a USB adapter. To
communicate between vehicles and interface with a DGPS
unit, a Denso Wireless Safety Unit (WSU) is connected via
ethernet, which is an after-market industry standard (planned)
in communication and control for vehicle-to-vehicle (V2V)
and vehicle-to-infrastructure (V2I) safety systems [23].

The on-board DGPS unit is capable of 0.45 m accuracy
for absolute position, 1.5o accuracy for absolute heading, and
0.1 s accuracy for absolute time. The measurement update
rate is 10 Hz. Other sensors include: (i) accelerometer, based
on MEMS technology, capable of 0.5 m/s2 accuracy; (ii)
speedometer, measuring average speed at the wheel, capable
of 0.5 m/s accuracy; (iii) throttle pedal measurement, capable
of 0.5 % accuracy; (iv) brake torque applied at wheel, capable
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of 0.5 Nm accuracy. The vehicle brake controller is modified
to accept brake commands from the computer via CAN bus
messages. The drive-by-wire (sends ECU electric signals over
CAN bus) throttle pedal, is modified to allow computer issued
commands via CAN bus messages to create throttle pedal
signals to the ECU. Communication is carried out by the
Denso WSU unit. The message standard is the Dedicated
Short-Range Communication (DSRC), which is broadcast at
the 5.9 GHz band, which is dedicated to V2V and V2I
communication. The WSU is connected to a top mounted
antenna (Figure 1(a)). Communication is carried out with a
broadcast network topology, that is, messages transmittedby
a sender can be received by any listener in-range.

III. SOLUTION APPROACH

The general solution approach is based on formally encod-
ing the requirement of no-collision into a bad set of vehicle
speed and position configurations to be avoided. Then, based
on the vehicles dynamical model, we calculate the capture set,
which is the set of all vehicle configurations that enter the bad
set independently of any throttle/brake control action. Once the
capture set is computed, we determine a throttle/brake control
map for both vehicles that keeps the system state outside of
the capture set at all times. This control map applies throttle
and brake inputs only when the system configuration hits the
boundary of the capture set. Otherwise, no control action is
applied and the driver has full control of the vehicle.

The computations of the capture set and of the control map
are usually very demanding, require an exact description of
the system dynamics, and assume perfect information on the
state of the system. In this section, we illustrate the approach to
compute the capture set and the control map developed in [14],
which exploits the specific structure of the application domain
to overcome these limitations. Specifically it provides efficient
algorithms, allows a coarser model obtained from suitable
experiments, and is robust to imperfect state information due
to sensor uncertainty and especially to communication delays.

A. System model and safety specification

We model each vehicle as a systemΣi for i ∈ {1, 2},
describing the longitudinal dynamics of vehiclei along its
path. Each systemΣi is an input-output system, defined by
the tupleΣi := {X i,Oi,U i,Di, f i, hi}, whereX i ⊂ R

2 is
the state space describing position and speed,Oi ⊂ R

m is the
output measurement space,U i := [ui

L, u
i
H ] ⊂ [0, 1]× [0, 1] is

the control input space representing the percentage the brake
and throttle pedal are depressed,Di := [diL, d

i
H ] ⊂ R

m is the
disturbance input space, which can be employed to account for
unmodeled dynamics,f i : X i × U i × Di → X i is the vector
field modeling the dynamics of the vehicle, andhi : Oi

⇉ X i

is the output set-valued map that provides the set of states
compatible with an output measurement. We letxi

1 ∈ X i
1

denote the longitudinal displacement of vehiclei along its
fixed path andxi

2 denote the longitudinal speed of vehiclei
along its path. We denote the continuous flow of systemΣi

asφi(t, xi,ui,di), wheret denotes the time,xi denotes the
initial state,ui denotes the control input signal anddi denotes

the disturbance signal. In this paper, we will denote in bold
signals, which are functions of time.

The two-vehicle system is modeled as the parallel com-
position of the two systems, denoted asΣ = Σ1||Σ2 =
{X,O,U ,D, f, h}, in which X = X1 ×X2, O = O1 ×O2,
U = U1×U2, D = D1×D2, f = (f1, f2), andh = (h1, h2).
Accordingly, we will let x = (x1, x2), u = (u1, u2), and
d = (d1, d2). Furthermore, we letx1 = (x1

1, x
2
1) ∈ X1 denote

the pair of two-vehicle displacements. The safety specification
for Σ is described in terms of a subset of the state space that
needs to be avoided to prevent a collision. Specifically, we call
such a set thebad setB ⊂ X and we will say that the system
is safe if the flow never enters the bad setB. For some initial
statexo, the system is safe if there exists some control input
signalu such that for all disturbance input signalsd and time
t, we have thatφ(t, xo,u,d) /∈ B.

From the construction of the state space and the fact that a
collision between two vehicles results when they are both in
the red shaded area of Figure 1 (a),B ⊆ X can be defined as

B := {x ∈ X | (x1
1, x

2
1) ∈ ]L1, H1[ × ]L2, H2[}, (1)

whereLi < Hi for i ∈ {1, 2} (see Figure 1 (a)-(b)). We also
denoteL = (L1, L2) andH = (H1, H2).

The safe controller is based on computing a subset of the
state space, called thecapture set, denotedC ⊆ X . The capture
set is the set of all initial conditions, such that no controlinput
can prevent a collision. The mathematical definition is given
by

C := {x ∈ X | ∀ u, ∃ t, ∃ d s.t. φ(t, x,u,d) ∈ B}. (2)

The approach of our solution to the safety control problem
is to compute the capture set, and through the application
of feedback control, prevent the flow from ever entering the
capture set. By the definition of the capture set, safety is
guaranteed if the flow never enters the capture set.

Computing the capture set is in general a difficult problem.
In the next sections, we show how exploiting the structural
features of the specific system under study allows us to
compute this set and handle imperfect state information.

B. Computation approach exploiting partial orders

In this section, we illustrate the main result of [14] to
compute the capture set. This approach relies on (i) the state
and input spaces of the systemΣi being partially ordered
and (ii) the flow of the systemΣi being an order preserving
map. Specifically, for the state spaceX i ⊆ R

2, we consider
elements to be partially ordered according to component-wise
ordering , that is, forzi, wi ∈ X i we have thatzi ≤ wi

provided zi1 ≤ wi
1 and zi2 ≤ wi

2. Further, we consider
the partial ordering between input signals defined for signals
u
i,vi asui ≤ v

i ⇔ u
i(t) ≤ v

i(t) for all t. The inequality
u
i(t) ≤ v

i(t) is defined such thatui
1(t) ≥ v

i
1(t) and

u
i
2(t) ≤ v

i
2(t). We assume that the flow of each systemΣi is

an order preservingmap. Mathematically, this means that for
initial conditionszi, wi ∈ X i, inputsui,vi and disturbances
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d
i,bi, the following implication holds

zi ≤ wi ∧ u
i ≤ v

i ∧ d
i ≤ b

i ⇒

φi(t, zi,ui,di) ≤ φi(t, wi,vi,bi) ∀ t. (3)

In terms of the vehicle dynamics, this assumption implies that
greater initial displacement, greater initial velocity, and greater
inputs will lead to greater displacements and speeds at any
time. The validity of this assumption for the vehicle dynamics
is discussed in detail in Section IV, where the vehicle model
is introduced. A liveliness condition is introduced by requiring
that for at least onei f i

1(x
i, ui, di) > 0 for all xi, ui anddi.

From a practical point of view, this requires that vehiclei does
not go in reverse and does not stop.

The order preserving property of the dynamics along with
the structure of the bad set can be exploited to compute the
capture set for systemΣ = Σ1||Σ2 with an algorithm that
has linear complexity with respect to the state dimension. The
algorithm is based on therestrictedcapture set, which for a
fixed input signalu, is defined asCu := {x ∈ X | ∃ t ≥
0, ∃ d s.t. φ(t, x,u,d) ∈ B}. This set represents the set
of initial conditions that are taken into the bad set under the
fixed input signalu. Define the fixed input signalsuL,uH, as
uL(t) := (u1

H , u2
L) anduH(t) := (u1

L, u
2
H) for all t. Then,

we have ([14])

C = CuL
∩ CuH

. (4)

The capture set can be computed by only computing the
two restricted capture sets corresponding to maximum and
minimum inputs. The restricted capture sets are simpler to
compute, since they can be obtained by just integrating the
dynamics under fixed control inputs. This is in contrast with
the capture setC, whose computation requires the solution of
a differential game between the control and the disturbance.

Based on the expression of the capture set given in (4), the
feedback control map is given by

g(x) :=







(u1
H , u2

L) if x ∈ CuL
andx ∈ ∂CuH

,

(u1
L, u

2
H) if x ∈ ∂CuL

andx ∈ CuH
,

U otherwise,
(5)

in which CuH
denotes the closure ofCuH

. The controller
allows the driver to chose any input until the flow hits the
boundary of the capture set. The driver retains control once
the flow no longer touches the boundary of the capture set. A
visual interpretation of the feedback map is provided in Figure
2.

In the presence of communication delays and/or uncertain
sensor readings the vehicles will not have access to the exact
value of the system state but to a set of possible current system
states. This can be easily incorporated in the above described
control strategy [14]. Let the set of possible current system
states be denoted̂x ⊂ X , which can be constructed using
output measurementz ∈ O as explained in Section V-A. The
safety specification is now posed in terms of preventing the
state uncertaintŷx from intersecting the bad setB. That is,
the system is safe if̂x(t) ∩B = ∅ for all t ∈ R+. It has been
shown that this is the case if and only ifx̂(t) never intersects
both CuL

and CuH
at the same time [14]. The feedback set-

Fig. 2. Feedback mapg(x) shown for two separate trajectories. The orange
region represents a slice of the capture set in position space corresponding to
a pair of vehicles speeds. When the flow touches the upper boundary of the
capture set, geometrically asx ∈ CuL

andx ∈ ∂CuH
, the feedback controller

commands the input(u1

L
, u2

H
), corresponding to vehicle 1 applying maximum

brake while vehicle 2 applies maximum throttle. When the flowtouches the
lower boundary of the capture set, geometrically asx ∈ CuH

and x ∈
∂CuL

, the feedback controller commands the input(u1

H , u2

L), corresponding
to vehicle 1 applying maximum throttle while vehicle 2 applies maximum
brake.

valued mapg, as defined in (5) can still guarantee this as long
as it is extended to set̂x as follows

g(x̂) :=







































(u1
H , u2

L) if x̂ ∩ CuH
6= ∅ and

x̂ ∩ ∂CuL
6= ∅ and

x̂ ∩ CuL
= ∅,

(u1
L, u

2
H) if x̂ ∩ CuL

6= ∅ and
x̂ ∩ ∂CuH

6= ∅ and
x̂ ∩ CuH

= ∅,
U otherwise.

(6)

If the set of admissible control inputs evaluated byg(x̂) is
U , the driver is free to apply any input. The interpretation of
this feedback set-valued map is that control is applied when
the state uncertainty has non-empty intersection with either
CuL

or CuH
, and simultaneously is touching the boundary

of the other. We remark that by construction, feedback map
g is order reversing with respect to partial order established
by set inclusion, that is,A ⊂ B ⇒ g(A) ⊃ g(B). This
property implies that the larger the state uncertainty, themore
conservative the controller will be.

C. Algorithmic Implementation

In this section, we provide a summary of the algorithms that
compute the restricted capture set for the case in which the
first component of the vector fieldsf i do not depend on the
xi
1 coordinate (displacement) [14]. This assumption is satisfied

by the vehicle dynamics considered in the next section. The
algorithms are implemented on-board the vehicle computer,
therefore they must use a discrete-time model of the dynamics.
For n > 0 and step size∆T > 0, the discrete-time flow of
systemΣ is given byΦ(n, x,u,d) and is generated by the
forward Euler approximation of the continuous time dynamics,
mathematically given byΦ(n + 1, x,u,d) = Φ(n, x,u,d) +
∆Tf(Φ(n, x,u,d),u[n− 1],d[n− 1]), with initial condition
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Φ(0, x,u,d) = x, and sampled signalsu[n] := u(n∆T ) and
d[n] := d(n∆T ).

The feedback mapg is implemented in discrete time, which
requires an alternate definition of the capture set boundary.
We will say that the set̂x[n] ⊂ X intersects the boundary
and not the interior of the restricted capture setCu provided
x̂[n] ∩ Cu = ∅ and x̂[n + 1] ∩ Cu 6= ∅. This states that̂x[n]
intersects the boundary and not the interior of the restricted
capture set if it is currently outside of the set, but it will be
inside the set at the next time step.

To compute the capture setCu, we can compute asliceof it
in the displacement space, denotedCu ⊂ X1, corresponding
to the current two-vehicle velocity(x1

2, x
2
2). Due to the order

preserving properties of the dynamics with respect to state
and input, and the structure of the bad setB, the restricted
capture set slice is computed through the back propagation of
the upper and lower bounds of the bad set, i.e.,L,H ∈ X1.
Specifically, define the sequences

L(n, x, u) := L+ x1 − Φ1(n, x,u,dH),
H(n, x, u) := H + x1 − Φ1(n, x,u,dL),

(7)

wheredL(k) := (d1L, d
2
L) anddH(k) := (d1H , d2H) for all k.

Given current state estimate setx̂, the restricted capture set
slice Cu can be written as (Algorithm 1)

Cu =
⋃

k∈N

]L(n, sup x̂,u), H(n, inf x̂,u)[.

Algorithm 1 Cu = CaptureSetSlice(x̂,u)

Input : (x̂,u) ∈ 2X × S(U)

n = 1
loop

if inf x̂1 ≤ H(n, inf x̂,u) and inf x̂1 /∈
]L(n, sup x̂,u), H(n, inf x̂,u)[ then
n = n+ 1

else
return Cu =

⋃

k≤n]L(k, sup x̂,u), H(k, inf x̂,u)[.
end if

end loop

Output : Cu ⊂ X1.

We can determine non-empty intersection of the capture set
with the state uncertainty by using the equivalencex̂1 ∩Cu =
∅ ⇔ x̂ ∩ Cu = ∅. The closed-loop implementation of the
feedback map (6), in discrete time, is provided in Algorithm
2, whereu = FeedbackMap(x̂[n+ 1], x̂[n]).

Note that for evaluating the control map, we only need
to calculate the sequencesL(n, x, u) andH(n, x, u) for two
extremal constant inputsuL = (u1

H , u2
L) anduH = (u1

L, u
2
H).

Hence, we do not require the detailed model of the systemΣ,
we just need to know how the system responds to these two
extremal constant inputs. As we will see in Section IV, this
can be achieved through a series of experiments where these
constant inputs are applied for a set of different initial speeds.

Algorithm 2 u = FeedbackMap(x̂[n+ 1], x̂[n])

Input : (x̂[n+ 1], x̂[n]) ∈ 2X × 2X

Construct capture set slices for state prediction.
CuL

= CaptureSetSlice(x̂[n + 1],uL), CuH
=

CaptureSetSlice(x̂[n+ 1],uH)

Check if predicted statêx[n+1] intersects both capture set
slices.
if x̂[n+ 1] ∩ CuL

6= ∅ and x̂[n+ 1] ∩ CuH
6= ∅ then

Construct capture set slices for current state.
CuL

= CaptureSetSlice(x̂[n],uL), CuH
=

CaptureSetSlice(x̂[n],uH)

Determine control according to equation (6).
if x̂1[n] ∩ CuL

= ∅ and x̂1[n] ∩ CuH
6= ∅ then

u = uL

else if x̂1[n] ∩ CuL
6= ∅ and x̂1[n] ∩ CuH

= ∅ then
u = uH

else
u = uL

end if

else
No control specified.
u ∈ U

end if

Output : u ∈ U .

IV. V EHICLE DYNAMICS

The vehicle dynamics, which take throttle and brake as
inputs and provide longitudinal displacement as output, is
the cascade of the powertrain system and the vehicle model
(Figure 3(a)). The powertrain system (Figure 3(b)) generates
the wheel torque inputs in response to throttle and brake
inputs. The vehicle model takes throttle and brake inputs
and produces longitudinal displacement as output according
to Newton’s law. In this section, we describe each of the two
subsystems and illustrate how the cascade of the two generates
a flow that is an order preserving map when throttle inputs do
not change with time. Then, we perform a system identification
procedure to determine the dynamics of the cascade system
only in response to maximal throttle and maximal braking,
which is sufficient for the implementation of the control map
as described in Section III.

A. Vehicle Model

The longitudinal displacement of the vehicle along its path
is denoted byp and the longitudinal velocity is denoted by
v ∈ [vmin, vmax], wherevmin ≥ 0. The controlled forces that
act on the vehicle are the brake inputfb ∈ Fb = [fmin, 0]
with fmin < 0 and engine inputfe ∈ Fe = [0, fmax] with
fmax > 0. The brake forcefb is controlled by the driver via
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(a)

(b)

Fig. 3. (a) Block diagram representing the cascade of the powertrain model
and the vehicle model. Here,p denotes longitudinal displacement andv
denotes longitudinal speed. The powertrain model (b) takesthe inputsu and
velocity v to produce engine torque at the wheelfe. The static mapπ takes
the brake pedal percentage inputu1 to produce brake torquefb. The vehicle
model takes the brake forcefb and engine forcefe as inputs. (b) Powertrain
system. The Engine Control Unit (ECU) is a means of controlling the fuel
injection rate and the gear stateq of the transmission. The output signals of
the ECU are the fuel injection ratei and the gear resetR. The second block
is the Internal Combustion Engine (ICE), which is where the fuel combustion
takes place based on the fuel injection ratei, and produces an output torque
τ at the flywheel. The next block is the transmission, which converts torque
at the flywheelτ to torque at the transmission outputτq as a function of the
gear stateq. The drivetrain is the last block, which transfers torque from the
gearboxτq to force at the wheelfe.

the surjective-monotone mapπ : U1 → Fb that takes brake
pedal percentageu1 as an input, while the engine forcefe
is supplied by the powertrain (Figure 3(a)). The longitudinal
dynamics are given by

dv

dt
=

R2

Jw +MR2
(fe + fb −

ρair
2

CDAfv
2

−CrrMg) =: f̃(v, fb, fe), (8)

whereR is the wheel radius,M is the vehicle mass,ρair
is the air density,CD is the air drag coefficient,Af is the
projected vehicle cross section, andCrr is the coefficient of
rolling friction [29].

The longitudinal dynamics (8) generate a flow
(p(t, po, vo, fb, fe), v(t, vo, fb, fe)) that is an order preserving
map with respect to brake force input signalfb, engine force
signalfe, and initial conditions(po, vo). That is, larger forces
fb and fe will result in greater displacements and speeds;
larger initial conditions(po, vo) will also result in larger
displacements and speeds. On the input space, we use the
partial order defined by byu ≤ v providedu1 ≥ v1 and
u2 ≤ v2. Consequently, we haveuL = (1, 0) anduH = (0, 1).
Since the brake force mapπ : U1 → Fb is monotone, the
flow is an order preserving map also with respect to the brake
input u1. In the next section, we illustrate the components of
the powertrain.

B. Powertrain

The dynamics of the powertrain take as control inputsu =
(u1, u2) ∈ [0, 1]× [0, 1], where the first componentu1 denotes
the brake pedal percent input, and the second componentu2

denotes the throttle pedal percent input [5]. In our application,
these inputs can be administered either by the driver or by the

automatic controller. The output of the system is assumed tobe
the torque applied at the wheel of the vehiclefe. An overview
of the system is provided in Figure 3(b).

The first component of the powertrain is the Engine Control
Unit (ECU). This sub-system determines the fuel injection
rate i ∈ [0, 1] into the Internal Combustion Engine (ICE),
and the current gearq ∈ {1, 2, 3, 4, 5, 6} of the gearbox.
The inputs to this block consist of the current velocity of the
vehiclev, the throttle pedal inputu2 and the brake pedal input
u1. The second component of the powertrain is the Internal
Combustion Engine (ICE). The output of this system is the
torque τ applied by the flywheel, and the input is the fuel
injection rate administered by the ECU. The third component
of the powertrain is the gearbox. This module consists of the
transmission with a fixed gear ratio. All switching logic is
determined by the ECU, which sends a reset inputR to the
gearbox when a gear shift has been determined. The gearbox
takes torque at the flywheelτ and converts it to the torque
τq based on the current gear. The last component of the
powertrain is the drivetrain. This component transfers torque
at the gearboxτq to force applied at the wheelfe. This module
consists of the flywheel, torque converter, variable gear ratio
transformer, propeller shaft, final drive and drive shaft (details
can be found, for example, in [29]).

For the powertrain model, the order preserving property of
the outputfe with respect to throttle inputu2 does not hold in
general. This is due to the complexity of the ECU, which
controls the fuel injection rate in a manner that optimizes
a set of performance metrics, such as emissions, engine
thermodynamic efficiency, with transients that can be quite
complex and non-monotone [5]. By design, however, this is
performed in a manner that generates monotone input-output
behavior atsteady-state[10].

Therefore, the dynamics of the vehicle system that take
brake u1 and throttleu2 commands as inputs and provide
speed and displacement as output are order preserving with re-
spect to constant throttle input at least after an initial transient.
Hence, we restrict the control commands to be constant with
time, so that the system dynamics generate an order preserving
flow with respect to the inputs after an initial transient time ǫ.
In the next section, we illustrate how to identify the vehicle
dynamics for the maximal braking and throttle inputs, which
is the only knowledge on the model required by our algorithm.

C. System Identification

In order to model how the powertrain responds to constant
control inputs (maximal braking and maximal throttle), in
principle one should model the details of all the blocks in
Figure 3(b). Rather than modeling this level of detail, we
exploit the fact that the approach illustrated in Section III
allows for disturbance inputs, which we use here to account
for unmodeled dynamics. For the input signalu and velocity
signal v, define the non-deterministic engine force trajecto-
ries Fe(u,v) as the set of all possible output engine force
trajectories applied at the wheel given an input signal and
velocity signal. When the powertrain model is combined with
the vehicle physics, the vehicle velocityv and engine force at
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the wheelfe are coupled through the longitudinal dynamics
introduced in (8). To capture this dependency, we say a system
evolution isrealizableif the velocity trajectoryv(t, v0,u1, fe)
and engine torque trajectoryfe([0, t]) satisfy (8) at all time
and the inclusion

fe([0, t]) ∈ Fe(u([0, t]),v([0, t], v0, π(u1), fe)). (9)

Let ǫ ∈ R+ denote the maximum delay between initial
changes in driver inputu and steady state vehicle acceler-
ation v̇. This is the consequence of delays in:(1) software
subsystems of the drive-by-wire throttle system; (2) delays
in the powertrain due to chemical combustion; (3) gear shift
delays; and (4) delays imposed by the Engine Control Unit
(ECU) for filtering and environmental reasons. For a speed
x2, input u∗, and time-delay constantǫ ≥ 0, the permissible
accelerationset, denotedΥ(x2, u

∗, ǫ) ⊂ R, is the collection
of all accelerations given by

Υ(x2, u
∗, ǫ) :=

{f̃(v(t, v0, π(u∗
1), fe), π(u

∗
1(t)), fe(t)) ∈ R |

∃ fe([0, t]) ∈ Fe(u
∗,v([0, t], v0, π(u

∗
1), fe)),

∃ t ≥ ǫ, ∃ v0 s.t. x2 = v(t, v0, π(u
∗
1), fe)},

(10)

whereu∗(t) = u∗ for all t.

This is the set of all possible accelerationsα =
f̃(x2, π(u

∗
1), fe(t)) achievable at velocityx2 after t ≥ ǫ sec-

onds have elapsed under the constant input signalu
∗. Letting

x1 = p andx2 = v, we construct the vector fieldf(x, u, d) of
Section III-B for a fixed inputu = u∗ as f1(x, u

∗, d) :=
x2, f2(x, u

∗, dH) := supΥ(x2, u
∗, ǫ), f2(x, u

∗, dL) :=
inf Υ(x2, u

∗, ǫ). For the case of maximum disturbancedH
(minimum disturbancedL), the interpretation off2(x, u∗, dH)
(f2(x, u∗, dL)) is that it represents thegreatestacceleration
(leastacceleration) that can possibly be achieved at the veloc-
ity x2 after the constant inputu∗ has been applied forat least
ǫ ≥ 0 seconds. IfΥ(x, u∗, ǫ) = ∅, then find the minimizer
x∗
2 := argminy2∈X2

{||y2 − x2|| | Υ(y2, u
∗, ǫ) 6= ∅} and set

f(x, u∗, d) = f((x1, x
∗
2), u

∗, d).

For implementing the feedback map of Section III-B,
it is enough to identify experimentallyf2(x, uL, dH) and
f2(x, uH , dL). The identification procedure is as follows. To
identify f2(x, uL, dH), we conducted a set of experiments
calledbraking trials, in which, starting from an initial constant
velocity, maximal brakinguL = (1, 0) is applied and vehicle
acceleration afterǫ = 0.7s is recorded to provide data points
for Υ(x2, uL, ǫ) for the values of speedx2 reached afterǫ.
The value of ǫ was chosen to be enough for the vehicle
to reach a steady state acceleration. Several trials for the
same initial speed were performed and the infimum of these
data points for every speedx2 was computed to provide the
value off2(x, uL, dH). The set of initial velocities chosen is
V0 :=

{

1

4
vmax,

1

2
vmax,

3

4
vmax, vmax

}

, in which vmax = 8
m/s for vehicle 1 (Blue IS 250) andvmax = 17 m/s for
vehicle 2 (Grey IS 250). A brake trial consists of the following
steps (1) accelerate each vehicle to a nominal constant velocity
v0 ∈ V0 on the vehicle path; (2) maintain velocityv0 for at
least 2 seconds, so transmission comes to a steady state; (3)
apply brake inputuL := (1, 0) via computer issued command,

(a) (b)

Fig. 4. (a) A summary of all the experimental data for identifying
f2

2
(x2

2
, u2

L
, d2

H
) (black solid line) of vehicle 2. (b) A summary of all the

experimental data for identifyingf2

2
(x2

2
, u2

H
, d2

L
) (black solid line) of vehicle

2.

driver does not override command until vehicle reaches rest.
Similarly, to identify f2(x, uH , dL), we conducted a set

of experiments calledthrottle trials, in which starting from
an initial constant velocity, maximal throttleuH = (0, 1)
for the vehicle 1 anduH = (0, 0.5) for the vehicle 2 was
applied. The set of initial velocities are given byV0 :=
{

0, 1

4
vmax,

1

2
vmax,

3

4
vmax

}

, in which vmax = 8 m/s for
vehicle 1 andvmax = 17 m/s for vehicle 2. A throttle trial
consists of the following steps: (1) accelerate each vehicle to a
nominal constant velocityv0 ∈ V0 on vehicle path, ifv0 = 0,
leave vehicle in idling state; (2) maintain velocityv0 for at
least 2 seconds, so transmission comes to steady state; (3)
apply acceleration input via computer issued command, driver
does not override command until vehicle reaches maximum
velocity vmax.

For vehicle 1, which hasU1 = [0, 1] × [0, 0.5] and
x1
2 ∈ [0, 8.8] m/s, along path 1 (as shown in Figure 1(c)),

we obtainedf1
2 (x

1
2, u

1
L, d

1
H) = −3.1 and

f1
2 (x

1
2, u

1
H , d1L) =

{

3.0 x1
2 ∈ [0, 7),

1.75 x1
2 ∈ [7,∞).

(11)

For vehicle 2, which hasU2 = [0, 1]× [0, 1] andx2
2 ∈ [8.8, 20]

m/s, along path 2 (as shown in Figure 1(c)), we obtained
f2
2 (x

2
2, u

2
L, d

2
H) = −3.1 and

f2
2 (x

2
2, u

2
H , d2L) =

{

3.9 x2
2 ∈ [0, 13),

2.5 x2
2 ∈ [13,∞).

(12)

Figure 4 shows the system identification results for vehicle2.
Similar plots were obtained for vehicle 1.

V. SOFTWARE IMPLEMENTATION

The major software components of the ICA application are
estimation, communication, and control (Figure 5).

A. Estimation

State estimation consists of several modules: longitudinal
state measurement construction from raw measurements in
UTM coordinates; calculation of the universal time; Kalman
filter for local state prediction; and a full state estimatorto
construct the current state estimate setx̂(t) ⊂ X for the whole
system. We denote with superscript “L” quantities computed
on the local vehicle while with superscript “R” we denote
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Fig. 5. Software system overview for the local vehicle. In the figure, we let the superscript L denote the local vehicle while the superscript R denotes
the remote vehicle. The estimator (delimited by a green box)takes as inputs the UTM time and position information (yUTM and tUTM ), the vehicle path
informationPL, the local vehicle timetL, the local vehicle inputuL, and time/state information of the remote vehicle{xR, tR,AR

t }, and provides a set of
possible position/speed configurations for the two-vehicle system̂x ⊂ X. The communication system (delimited by the blue box) is a module that continuously
sends to and receives information from the remote vehicle. The control system takes as input the state estimate setx̂ computed locally and information from
the control evaluation from the remote vehicle and returns the control input applied to the vehicle.

quantities of the remote vehicle that the local vehicle re-
ceives through the wireless communication. The measurement
projection block is used to compute the longitudinal state
measurementyk from GPS and CAN measurementsyUTM

(heading and position from GPS, velocity from CAN). The
global time is computed by using a local time measurement
tL from the vehicle PC, and drift is removed by using the
universal time tUTM from the GPS system. The Kalman
filter combines the longitudinal state measurementyk and
the pedal inputsuL to compute the state estimatexL and
acceleration profileAL

t . This information is sent both to the
communication system, and to the full state estimator. The
full state estimator takes the current state estimate, timeand
acceleration profile{xL, tL,AL

t }, and combines this with the
remote state information{xR, tR,AR

t } to construct the full
state estimatêx[k] for use by the controller.

The time measurements available to each vehicle consist
of the global timetUTM , taken from the GPS system, and
the local timetL taken off the vehicle PC. The global time
tUTM is accurate, however only is received at a rate of 10
Hz, and can sometimes be unavailable due to message loss.
The local timetL is available at a higher rate of 1.5 GHz to a
precision of 1 ms, however it is not accurate globally due to
inherent drift in the crystal oscillator used to calculate time.
To accurately compute a global time with update rate equal
to 1.5 GHz, we combine the global timetUTM with the local
time tL to produce the timet with using a simple moving
average, where the moving average is updated every time a
new global timetUTM is made available.

The measurement projection block constructs a longitudinal
state measurement from raw sensors on-board the vehicle.
This involves projecting raw measurements onto the vehicle’s
path stored locally inPL. The source of absolute position
and heading measurements is the GPS system, which provides
updates at a fixed broadcast rate of 10Hz.

1) Kalman filter: For the Kalman filter, the longitudinal
dynamics are assumed to be linear and hybrid, where the
transmission stateq ∈ {1, 2, 3, 4, 5, 6} is assumed to be known
at all time as obtained from the CAN bus. To model rolling
friction, we add a fictitious frictional input, which takes values
based on the sign of velocity, given byu3 = sgn(x2). Since
we seek to estimate also the acceleration, we add the engine
torque at the wheels as a third state. Specifically, the Kalman
filter state isê ∈ R

3, where the first component is longitudinal
displacement, the second component is longitudinal velocity
and the third component is the engine torque applied at the
wheels. The output measurement isyk ∈ R

3, and incorporates
longitudinal displacement, longitudinal velocity, and accelera-
tion measured from the on-board accelerometer. The output is
a discrete time signal indexed byk ∈ N with constant time-
step∆T > 0, where the correspondence to timet is given by
t = k∆T . The process dynamics are given by

˙̂e(t) = A(q(t))ê(t) +B(q(t))u(t) + w(t),

yk = Ckê(k∆T ) +Dku(k∆T ) + vk,

where w(t) ∼ (0, Q) is continuous-time white noise with
covarianceQ, and vk ∼ (0, R) is discrete-time white noise
with covarianceR.

Let the matrixP (t) denote the estimated state error co-
variance, which is initialized to the identity matrix. Then, the
prediction step of the filter is given by the following update
equations, which represent a forward Euler approximation of
the continuous time dynamics

ê(t) = ê(t−) + t∆(A(q(t))ê(t
−) +B(q(t))u(t))

P (t) = P (t−) + t∆(A(q(t))P (t−) +

P (t−)A(q(t))T +Q),

wheret− is the time of the previous update, andt∆ := t− t−.
A prediction step is performed every time the software system
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updates the current state, therefore, in general the time-stept∆
is not constant. The correction step occurs only when a new
longitudinal state measurementy is available and consists of
the following update equations

Kk = P (t−)CT (CP (t−)CT +R)−1

ê(t) = ê(t−) +Kk(yk − (Cê(t−) +Du(t)))

P (t) = (I −KkC)P (t−)(I −KkC)T +KkRKT
k .

By nature of the fixed rate of measurements (discrete-time)
and continuous-time inputs, the filter is said to be hybrid [25].

The matricesA, B, C, andD, have been identified from
data for every gearq employing the system identification
toolbox within MATLAB. In particular, we used a gray-box
technique, where the system identification determines a vector
of parameters, given a matrix structure derived from first
principles. In particular, we have a second order system with
rolling friction and inputs. We assume a multiplicative gear
ratio from engine input to change in wheel torque. Therefore,
the matrices are of the following form

A(q) =





0 1 0
0 0 1
0 0 a(q)



 , B(q) =





0 0 0
b1 0 b2
0 α(q)b3(q) 0



 ,

C(q) =





1 0 0
0 1 0
0 0 1



 , D(q) =





0 0 0
0 0 0
b1 0 α(q)b3(q)



 .

Data to preform this identification task was taken from four
driving trials with varying input signals. The input signals
were chosen by the driver to ensure an adequate sweep of the
vehicles dynamic range under consideration. Each trial was
taken on the path for which the vehicle normally drives on.

From the experimental data collected, we obtained forq = 1
that a(q) = −2.5, b1 = −5, b2 = −0.1, b3(q) = 5, and
b1 = 0.002. For q ∈ {2, 3, 4, 5, 6}, we obtained thata(q) =
−1, b1 = −5, b2 = −0.1, b3(q) = 5, and b1 = 0.002. The
gear ratios are given byα(1) = 3.5, α(2) = 2.0, α(3) =
1.5, α(4) = 1.2, α(5) = 1, andα(6) = 0.8, which were
taken from a technical data sheet [1]. This model was validated
by comparing simulations obtained with an experimental input
signal with the experimental trajectories.

To implement the Kalman filter, we chose the process and
output noise covariance matrices to maximize noise rejection
while still maintaining satisfactory bandwidth. We assumeall
noise processes are independent and identically distributed
and have no mode dependency, therefore, the covariance
matrices are all diagonal. The matrices are given asR =
diag(0.5, 0.3, 1) andR = diag(0.5, 1, 1).

The Kalman filter is used to construct a state prediction.
This is accomplished by computing theacceleration profile
At̄, a set-valued signal containing all possible acceleration
trajectories for future timest ≥ t̄. This allows to predict
the set of possible speedŝe2(t) for t ≥ t̄. Mathematically,

this is given asê2(t) ∈ ê2(t̄) +
t
∫

t̄

At̄(τ)dτ. As mentioned

in Section III-C, Algorithm 2 requires a two-vehicle state
prediction, which has a tunable time-step∆p, which can be
chosen by the test engineer, assumed to be less than 1.5 sec

in total. With such a short time scale, it is reasonable to
assume the input stays constant, that isu(t) = u(t̄) for all
t ≥ t̄. To account for the error of this assumption, we add a
configurable window parametrized by the parameterβ ∈ R+

to the resulting acceleration. Asβ is taken to 0, the prediction
is assumed to be exact. The calculation is carried out, to obtain
upper and lower bound sequences[lk, hk], with the Hybrid
Kalman filter as

êk = êk−1 +∆T (A(q(t̄))êk−1 +B(q(t̄))u(t̄)),

[lk, hk] = [0 0 1](Cêk +Du(t̄)) + k[−β, β],

where set addition is understood in the sense of the Minkowski
sum. The acceleration profileAt̄(t) is found by taking the
zero-order hold approximation of the sequence[lk, uk].

2) Full state estimator:The Kalman filter output is the esti-
mate of position and speed, which are the first two components
of ê, denoted byxL for the local vehicle and byxR for the
remote vehicle, the estimate of global timet, and the accel-
eration profileAt̄(t). The full state estimate is constructed by
combining local state estimation from the Kalman filter with
received remote vehicle state information. In accordance with
feedback mapg(x̂), as defined in Algorithm 2, evaluating con-
trol involves discretizing the flow and constructing the current
state estimatêx[n] and a prediction̂x[n+1]. We now define the
algorithm for computing the full state estimate and prediction,
with arguments local state information(xL, t,AL

t̄L
), remote

state information(xR, tR,AR
t̄R
), and prediction time-step∆P .

The state estimate is found withFullStateEstimate, defined
in Algorithm 3,which returns the current state estimatex̂[n]
and state prediction estimatêx[n+ 1].

Algorithm 3 (x̂[n], x̂[n + 1]) =
FullStateEstimate(xL, xR, t, tR,∆P ,AL

t̄L
,AR

t̄R
)

Input : (xL, xR, t, tR,∆P ,AL
t̄L
,AR

t̄R
) ∈ 2X

L

×2X
R

×R
3
+×

S(2R)× S(2R)× R+

Synchronize remote state due to transmission delay
x̂R
1 [n] = xR

1 + (t − tR)xR
2 , x̂R

2 [n] = xR
2 + (t −

tR)[inf AR
t̄R
(tR − t̄R), supAR

t̄R
(tR − t̄R)]

x̂[n] = xL × x̂R
1 [n]× x̂R

2 [n]

Construct prediction
x̂L
1 [n + 1] = x̂L

1 [n] + ∆px̂
L
2 [n], x̂L

2 [n + 1] = x̂L
2 [n] +

∆p[inf AL
t̄L
(t− t̄L), supAL

t̄L
(t− t̄L)]

x̂R
1 [n + 1] = x̂R

1 [n] + ∆px̂
R
2 [n], x̂R

2 [n + 1] = x̂R
2 [n] +

∆p[inf AR
t̄R
(t− t̄R), supAR

t̄R
(t− t̄R)]

x̂[n+1] = x̂L
1 [n+1]× x̂L

2 [n+1]× x̂R
1 [n+ 1]× x̂R

2 [n+1]

Output : (x̂[n+ 1], x̂[n]) ⊂ 2X × 2X .

B. Communication

The state prediction performed by the estimator is necessary
to account for communication delays and avoid control to be
evaluated on old information. Communication delay comprises
all delay experienced from the instant measurement data is
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populated on-board the local vehicle until the remote vehicle
uses this state information to construct a capture set for
control evaluation. This can be broken down into the following
major components: (1) ICA application acquisition of state
information from the local state estimator; (2) construction of
a remote data message as commanded by the ICA application;
(3) interface with communication layer Denso WSU radio; (4)
physical delay in the wireless transmission of the information;
(5) reception of the message from the remote vehicle commu-
nication layer; (6) population of this state information into
the ICA application for use in capture set construction and
subsequent control evaluation. From experimental results, we
have found that the worst case delay is 0.4 seconds. Hence
the multiple predictions performed to determinex̂[n + 1] are
such that the time∆p ≈ 0.4 seconds.

C. Control

The set-valued feedback mapg is computed locally on each
vehicle. To accommodate delay in the system arising from
communication, software and actuators (as discussed before,
we evaluate the feedback controller for a set of state estimate
predictions). Let the state estimatêx[n]i ⊂ X represent the
estimate on-board vehiclei at timet. Algorithm 3 can be used
recursively to construct more state estimate predictions.Define
the prediction horizon countNp ∈ N, which is a configurable
design parameter. We construct the state estimate predictions
on-board vehiclei, given by x̂[n + j]i for 1 ≤ j ≤ Np, as
follows (x̂[n+j]i, x̂[n+j−1]i) = FullStateEstimate(x̂[n+j−
1]i, t+j∆p, t

R+j∆p,∆p,AL
t̄L
,AR

t̄R
), where the local vehicle

refers to vehiclei ∈ {1, 2}. We then use the set of predictions
to evaluate the feedback mapg on-board vehiclei ∈ {1, 2},
implemented asg(x̂[n]i) :=

⋂

1≤j≤Np
FeedbackMap(x̂[n +

j]i, x̂[n]i).

Before applying control, the two vehicles should reach an
agreement on the control commands to apply. In general, we
have thatx̂[n]1 6= x̂[n]2. However, both sets contain the true
system statex by construction. As a consequence, we have
that g(x̂[n]i) ⊆ g(x) given the order reversing property of the
map g. As a consequence, we can takeg(x̂[n]1) ∪ g(x̂[n]2)
as the set of all possible safe control choices. In practice,
we implement this with a handshake mechanism to guarantee
that both vehicles choose the same actions. Specifically, the
handshake module remains in the trivial initial state until
a collision is predicted on-board the local vehicle. From
Algorithm 2, a collision is predicted on-board vehiclei when
g(x̂[n]i) 6= U , at which point a message is sent to the remote
vehicle indicating a collision has been predicted. Vehiclei then
waits for a message indicating a collision has been predicted
on-board the second vehiclej. If no such message is received,
the application sleeps for 10 ms and then re-sends the message
denoting a collision has been predicted (in case the message
was not received). This process continues until a message has
been received from vehiclej, or it times out. If a message is
received, then a consensus control is chosen and applied to
the local actuator of both vehicles.

VI. I NTERSECTIONCOLLISION AVOIDANCE EXPERIMENTS

A. Experiment Setup

Experiments were conducted at the TEMA test track in
Ann Arbor, Michigan employing two modified Lexus IS 250
vehicles (Figure 1(c)). Both vehicles run ICA as they approach
the intersection. The velocity of approach is not fixed, however
it must be within safe limits. Each path is stored as a list
of UTM co-ordinates on the respective vehicle. The speed
limits for path 1 arevmin = 0 m/s andvmax = 8.8 m/s,
while the speed limits for path 2 arevmin = 8.8 m/s and
vmax = 18 m/s. The bad set parameters chosen areL1 = 55
m, L2 = 75 m, H1 = 65 m and H2 = 85 m. These
values can be changed as they are only input parameters to
the algorithm. For the specific implementation, we chose them
in such a way that sufficient separation would be maintained
by the vehicles when crossing the intersection. The input sets
are chosen to beU1 := [u1

L, u
1
H ] = [0, 0.3] × [0, 0.5] and

U2 := [u2
L, u

2
H ] = [0, 0.3] × [0, 1], which represent extremal

inputs that maintain comfortable driving conditions. In general,
these are design parameters that engineers have the freedom
to change based on road surfaces, vehicle capabilities and
general intersection dependent considerations. However,these
need to remain fixed during the course of an experiment or
implementation.

We consider two real-world scenarios, which we refer to as
“use cases”. For use case A, we assume a merging vehicle en-
ters the intersection without properly surveying for oncoming
traffic. Since the vehicle has already entered the intersection
(or the speed is too high such that this is unavoidable), the
only solution is for the merging vehicle to apply throttle
and the straight vehicle to brake. A visualization of this is
provided in Figure 6(a). For use case B, we assume a merging
vehicle is approaching an intersection at high speed, and likely
misjudging the speed of oncoming traffic. The solution in this
case is for the merging vehicle to apply brake while the straight
vehicle applies the throttle. A visualization of this is provided
in Figure 6(b). We performed a total of 28 trials, 15 for use
case A and 13 for use case B.

B. Experiment results

All trajectories generated by the experiments are provided
in Figure 7 in the displacement plane. As it is apparent
from the plots, no trajectory ever entered the bad set, hence
all collisions were averted. Also, the trajectories pass fairly
close to the bad set, indicating that the control algorithm is
non- conservative as expected from theory. In order to better
quantify the performance, we calculated the distance of the
trajectory of the system from the capture set, denotedγ, and
the distance of the trajectory from the bad set, denotedζ.
Table I provides the summary of the results. This table shows
that the trajectory never entered the capture set nor the bad
set in any trial, which follows from the non-zero values of
∧ζ and ∧γ. This is expected from theory as the controller
guarantees that trajectories starting outside of the capture set
remain outside of the capture set. Furthermore, the distances
of the trajectories from the capture set are very small and can
be decreased by decreasing the prediction horizon∆p and
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(a) (b)

Fig. 6. (a) Use case A involves a merging vehicle entering the intersection without first checking oncoming traffic. The figure shows a top
down cartoon of this scenario along with the system configuration related to the capture set in the position planeX1 for a fixed pair of
vehicle speeds. (b) Use case B involves a merging vehicle approaching the intersection while misjudging the speed of oncoming traffic. The
figure shows a top down cartoon of this scenario along with theconfiguration of the system related to the capture set in theX1 plane.
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Fig. 7. All trajectories from all trials. The safety specification is
maintained given that the flow of the system never entered thebad
setB during any trial.

# Np ∆p Info ζ(∧, µ) γ(∧, µ) (A,B)
4 3 0.4 P 0.9, 3 0.7 , 2.8 2, 2
4 4 0.2 P 0.6, 0.9 0.1, 0.6 2, 2
14 3 0.4 I 2, 5.9 2, 5.8 9, 5
6 4 0.2 I 0.7, 1.7 0.5, 1.4 2, 4

TABLE I
THE FIRST COLUMN INDICATES THE NUMBER OF TRIALS, THE SECOND

COLUMN THE NUMBER OF PREDICTION STEPSNp (SECTION V-C), ∆p IS

THE PREDICTION TIME (ALGORITHM 3),“P” DENOTES PERFECT STATE

INFORMATION (β = 0 IN THE PREDICTION STEP OFSECTION V-A) AND

“I” DENOTES IMPERFECT STATE INFORMATION(β = 0.2), ζ AND γ ARE
THE DISTANCES OF THE TRAJECTORY FROM THE BAD SETB AND FROM

THE CAPTURE SETC , RESPECTIVELY, WITH ∧ DENOTING THE MINIMUM

VALUE AND µ DENOTING THE AVERAGE VALUE ACROSS THE TRIALS IN

UNITS m.

removing the state uncertaintyβ. Larger prediction horizons
lead the system to override sooner and as a consequence
the distances from the capture set and from the bad set are
larger. With no state uncertainty (β = 0), the trajectories pass
closer to the capture set and to the bad set, indicating an
aggressive and non-conservative controller. When uncertainty
is introduced, the distances of the trajectory from the capture
set and from the bad set increase because the algorithm applies
control to keep an empty intersection between the predicted
state uncertainty and the capture set. Our algorithms hence
also provide a number of design parameters to compromise
how aggressive the controller is (measured by how close to
the bad set the trajectories go) with the control conservatism
(the controller acts sooner than it could have). This trade off
is relevant in practice because overriding the driver can be
justified only if it is needed to keep the system safe.

Figure 8 shows an experimental trial with perfect state
information (β = 0) and with use case A, while Figure 9
shows a trial for use case B and imperfect state information
(β 6= 0). In use case A (Figure 8), the merging vehicle (vehicle
1) approached the intersection at a cruising speed of 6 m/s,
while vehicle 2 approached the intersection at an accelerating
speed of around 14 m/s. To avoid the collision, the drivers were
overridden at time 19.7 sec when the state prediction hit the
boundary of the capture set. At this time, automatic throttle
was applied to vehicle 1 and automatic brake was applied
to vehicle 2. This control results in vehicle 2 entering the
intersection only (and immediately) after vehicle 1 has cleared
the intersection. Vehicle 1 reached the speed limitv1max while
applying throttle, after which time, the controller held the
speed constant. The test ended after the merging vehicle
exited the intersection, after which time, automatic control was
deactivated and the driver retained control. While conducting
this experiment, the system trajectoryx̂(t) was at least within
0.7 m of the capture set, while never actually entering it, which
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Fig. 8. An experimental trial for use case A. Here, perfect state information is assumed. (a) Snapshots showing the configuration of the
vehicles at different times. The upper row shows the configuration of the vehicles (indicated by the cross) in the displacement space along
with the capture set sliceC (delimited by the black line) corresponding to the current vehicle speeds. The bad set is the red box. The solid
blue line indicates the trajectory in the displacement space. The portion of this line ahead of the cross indicates the state prediction. The
lower row shows the vehicle positions as they appear from a top-down view of the experiment. The red area corresponds to the bad set (red
box in the upper row plots). (b) Signals for vehicle 1 are shown in the upper row, while the bottom row shows signals for vehicle 2. At
time 19.7 sec, the state prediction hits the boundary of the capture set and hence vehicle 1 applies throttle and vehicle 2applies brake.

implies safety was maintained and the control actions were not
conservative.

In use case B (Figure 9), imperfect state information was
considered usingβ = 0.2 m/s2. In this trial, the merging vehi-
cle (vehicle 1) started at rest, while vehicle 2 approached the
intersection at an accelerating speed of around 8 m/s. Vehicle
1 attempted to violently accelerate and enter the intersection.
To avoid the collision, the drivers were overridden at time 47.2
sec, when the set prediction hit the boundary of the capture
set. In this case, automatic brake was applied to vehicle 1 and
automatic throttle was applied to vehicle 2. This control results
in vehicle 1 entering the intersection only (and immediately)
after vehicle 2 has cleared the intersection. The merging
vehicle reached the speed limitv1min while applying brake,
after which time, the controller held the vehicle at rest. The
straight vehicle reached the speed limitv2max while applying
throttle, after which time, the controller held the vehicleat

a constant speed. The test ended after the straight vehicle
exited the intersection, after which time, automatic control was
deactivated and the driver retained longitudinal control.While
conducting this experiment, the system trajectoryx̂(t) was
within 0.6 m of the capture set, while never actually entering
it, which implies safety was maintained and the control actions
were not conservative.

VII. C ONCLUSIONS

In this paper, we have presented algorithms and experi-
mental validation on prototype vehicles for cooperative col-
lision avoidance at intersections based on a formal control
theoretic approach. Since the application considered is life-
critical, algorithms for collision avoidance should have safety
certificates. The proposed approach provides these certificates
guaranteeing that the system stays collision free and that
automatic control is not applied until absolutely necessary.
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Fig. 9. An experimental trial for use case B. Imperfect state information is considered here (β 6= 0). The upper row shows the configuration
of the vehicles (indicated by the cross) in the displacementspace along with the capture set sliceC (delimited by the black line) corresponding
to the current vehicle speeds. The bad set is the red box. The solid blue line indicates the trajectory in the displacementspace. The portion
of this line ahead of the cross indicates the state prediction set. In this experiment,Np = 3 and∆p = 0.4 and the resulting uncertainty in
position is very small (about 0.1 m), so it is hardly visible in the plot. However, the uncertainty on the speed is significant and it is about 0.5
m/sec. The velocity signal displays the estimate velocityxL

2 resulting from the Kalman filter. The lower row shows the vehicle positions as
they appear from a top-down view of the experiment. The red area corresponds to the bad set (red box in the upper row plots).(b) Signals
for vehicle 1 are shown in the upper row, while the bottom row shows signals for vehicle 2. At time 47.2 sec, the state prediction hits the
boundary of the capture set and hence vehicle 2 applies throttle and vehicle 1 applies brake.

This is achieved by keeping the system state always outside
the capture set, the set of all states from which a collision is
unavoidable given the vehicle dynamics and the limitationson
the control efforts. A number of parameters can be chosen by
the designer, including the maximal and minimal brake and
throttle efforts for automatic control, maximal and minimal
speeds, the size of the collision set (bad set), the bounds
on the modeling uncertainty, the communication delay, and
the bounds on the uncertainty on the driver control actions.
For example, if acceleration is not considered suitable for
preventing a collision, one can set the upper and lower bounds
of the throttle input to zero in the calculation of the capture set
and the control map, so that evasive maneuvers will consider
only braking. Of course, the control action will be more
conservative in this case as the capture set will be larger.

Similarly, the size of the bad set is an input parameter to
the algorithm and it can be changed by the user depending on
the specific intersection geometry. Experimentally, we have
shown how to tune the prediction horizon and the number
of prediction steps in order to adjust the conservatism, that
is, how soon the controller decides that automatic control
is needed to prevent an imminent collision. The later the
automatic control acts, the less conservative the algorithm is,
but the closer the system trajectories come to a collision (while
still averting it). This trade off can be decided depending on
the system specifications. The experiments finally illustrate
that the (linear complexity) algorithms for evaluating the
capture set and control actions are fast enough for real-time
implementation, a feature that is necessary for the practical
applicability of our approach. A number of future research
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avenues are left to explore. These include incorporating a
warning phase that gives the opportunity to the driver to
react before automatic control becomes necessary. Scalability
to more than two vehicles needs to be studied and initial
results are promising [8]. Our approach can be applied where
vehicles are on known crossing or merging paths, such as at
intersections or when a vehicle merges onto a road from a
parking lot or on the highway. Investigation should be carried
out to extend the approach to road topologies other than
intersections and merges, and to situations where intended
vehicle paths and collision zones cannot be identifieda priori.
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