
Supervisory Control for Collision Avoidance in Vehicular Networks
Using Discrete Event Abstractions

Eric Dallal, Alessandro Colombo, Domitilla Del Vecchio and Stéphane Lafortune

Abstract—We consider the problem of collision avoidance at
vehicular intersections for a set of controlled and uncontrolled
vehicles that are linked by wireless communication. Each vehicle
is modeled by a first order system. We use a disturbance to
account for bounded model uncertainty. We construct a discrete
event system abstraction and formulate the problem in the
context of supervisory control for discrete event systems with
uncontrollable events. This allows us to mitigate computational
limitations related to the presence of continuous dynamics and
infinite state spaces. For solving the resulting supervisory control
problem at the discrete event level, we develop an algorithm
that exploits the structure of the transition map to compute the
supremal controllable sublanguage more efficiently than standard
algorithms. We present implementation results on an intersection
with several vehicles.

I. INTRODUCTION

Vehicle collisions cause, on average, 4156 injuries and 84
deaths per day in the United States [1]. About a quarter of
all reported light vehicle fatalities are due to side impacts,
suggesting collisions at traffic intersections and merges [2]. A
side impact avoidance system at traffic intersections must deal
in real time with multiple vehicles, uncontrolled vehicles, and
model uncertainty.

In this paper, the collision avoidance problem is formulated
in the framework of the supervisory control theory of discrete
event systems [3]. The computational complexity is tamed by
reducing the continuous dynamics of a multi-vehicle system to
a finite representation, namely, a discrete event system (DES).
This approach is commonly known as abstraction. Then,
the control map is synthesized based on the set of allowed
transitions of the DES. Abstraction-based control schemes
were proposed in [4], [5], [6], [7] for incrementally stable
systems, and extended in [8] to general systems, using non-
deterministic DES. In [9], abstraction techniques for safety
enforcement were discussed in the context of reachability
analysis. In [10], the problem of robot control is considered
by applying an abstraction based on triangularization and
designing a low-level (continuous) control to satisfy path spec-
ifications expressed in linear temporal logic (LTL). In [11], the
dynamic properties of common mechanical systems (including
models of vehicle dynamics) were exploited to obtain a safety-
enforcing supervisory control based on a deterministic abstrac-
tion, irrespective of the stability properties of the dynamics. An
alternative solution, based on an equivalence relation between
the collision avoidance problem and a scheduling problem,

Research supported in part by NSF grant CNS-0930081.
E. Dallal and S. Lafortune are with the EECS Dept. at the University of

Michigan, MI, USA [edallal,stephane]@umich.edu
A. Colombo is with the DEIB at Politecnico di Milano, Italy

alessandro.colombo@polimi.it
D. Del Vecchio is with the ME Dept. at MIT, MA, USA ddv@mit.edu

is discussed in [12]. These results are, however, limited to
the case of perfectly known models, and do not address the
presence of uncontrolled agents. A different approach to the
collision avoidance problem is proposed in [13], based on a
centralized scheduling of the intersection crossing times of all
vehicles.

We directly exploit the simple structure of first order ve-
hicle dynamics with model uncertainty to construct a finite
deterministic DES abstraction. In contrast to [11], our results
deal with model uncertainty and handle the presence of un-
controlled vehicles. In particular, we introduce a deterministic
DES that simulates the original continuous system, and such
that the continuous system alternatingly simulates the DES
(see, e.g., [5] for the definitions of similarity and alternating
similarity). The actions of uncontrolled vehicles are modeled
naturally as uncontrollable events. Modeling uncertainty is
handled by adding suitable uncontrollable transitions to the
DES model. We prove that safety at the continuous level
is implied by a notion of safety at the discrete event level.
We then pose the desired collision avoidance problem in
the framework of the theory of supervisory control of DES
[3]. The problem has three requirements: (R1) safety, i.e.,
vehicular collisions must be avoided; (R2) non-blockingness,
i.e., vehicles should not deadlock and must reach their final
destinations, which in this case means they must completely
cross the intersection; and (R3) maximal permissiveness, i.e.,
the supervisory control actions should leave as much autonomy
as possible to the individual vehicles. In the presence of un-
controllable events, the solution is obtained by computing the
supremal controllable sublanguage [14] of the specification
language with respect to the system language and the set of
uncontrollable events.

The resulting supervisory control problem to solve at the
discrete event level is the well-known “Basic Supervisory
Control Problem - Nonblocking case”, or BSCP-NB [15]. Its
solution provably satisfies requirements (R1)-(R3). Instead of
using standard techniques for computing the supremal con-
trollable sublanguage, the key step in solving BSCP-NB, we
develop new algorithmic techniques that are customized to the
specific application under consideration and thereby achieve
greater computational efficiency. Our approach has conceptual
similarities with the “variable lookahead” technique of [16] but
differs in two respects. First, we do not do limited lookahead
but we perform a depth-first search over the entire state space.
This is required as eventually, we want to find the optimal con-
trol action from every (safe) state in the state space. Second, in
our approach, we deal with the uncontrollability resulting from
unmodeled dynamics and uncontrolled vehicles; specifically,
we exploit structural properties of the transition structure of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78062616?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the underlying automaton obtained from the abstraction step.
We present implementation results that illustrate the compu-
tational efficiency of our approach. Finally, we note that the
approach that we follow has the advantage of leaving complete
freedom to the driver over the timing of the intersection
crossing, thus reducing the control action to the minimum
required to enforce safety; this follows from the maximal-
permissiveness of the supremal controllable sublanguage.

The simulation-alternating simulation structure that we ex-
ploit to construct our abstraction is analogous to the one
obtained in [8]. Our results, however, apply to systems with
model uncertainty. Furthermore, our focus here is on determin-
ing the largest subset of transitions of the DES that preserves
requirements (R1) and (R2), something that is not addressed
in [8].

The paper is organized as follows. In Section II, we describe
the continuous model and define the problems we will solve.
In Section III, we construct the DES abstraction. Section
IV presents our customized algorithm for computing the
supervisory controller at the discrete event level. Performance
results from an implementation of this algorithm are presented
in Section V, while Section VI concludes the paper. Due to
space limitations, several proofs are not presented here; they
are available from the authors.

II. MODEL AND PROBLEM FORMULATION

Notation: In the text, the symbol ‖·‖ denotes the infinity norm
of a vector, a subscripted index (e.g., xi) indicates an element
of a vector, and a superscripted index (e.g., xi) indicates a
vector out of a set of vectors. The symbols btc and dte denote
the greatest integer less than or equal to t and the smallest
integer greater than or equal to t, respectively.

Consider a set N = {1, . . . , n} of vehicles, where n =
|N |, moving along p roads, p ≤ n, that intersect at a unique
point. The vehicles are modeled as single integrators and their
collective dynamics are described by the system

ẋ = v + d (1)

where x ∈ X ⊂ Rn is the state, with X compact, v ∈ V ⊂ Rn
is the control input, and d ∈ D ⊂ Rn is a disturbance input
representing unmodeled dynamics. Assume that v ∈ V is a
vector with elements in the finite set {µa, µ(a+ 1), . . . , µb},
with a, b ∈ N and µ ∈ R+, and that d ∈ D = [dmin, dmax]n,
with the vector [0, . . . , 0] ∈ [dmin, dmax]n. We refer to aµ and
bµ as vmin and vmax, respectively. We allow the possibility
that a subset of the vehicles cannot be controlled. To represent
this, we partition the vector v into two subvectors, vc ∈ Vc
and vuc ∈ Vuc, where vc represents the control inputs of the
controlled vehicles, whereas vuc represents the control inputs
of the uncontrollable vehicles, such that v = (vc, vuc) and
V = Vc × Vuc. Assume also that vmin + dmin ≥ µ, so that
µ constitutes a lower bound on the velocity of the vehicles.
Finally, assume that the input v is kept constant over time
intervals [kτ, (k + 1)τ], and discretize the above system in
time, with step τ , obtaining

xk+1 = xk + uk + δk (2)

with xk = x(kτ), uk = v(kτ)τ , δk =
∫ (k+1)τ

kτ
d(t)dt. Calling

U = V τ and ∆ = Dτ , we have that u ∈ U and δ ∈ ∆. As
for the set V , we write U = Uc × Uuc, where Uc is the set
of available actions for the controllable vehicles and Uuc is
the set of actions of the uncontrollable vehicles. We use the
notation u = (uc, uuc) to denote the actions of the controllable
and uncontrollable vehicles for any vector u ∈ U .

Define a grid with hypercubic cells of side τµ covering
X , and consider a regular lattice Q̃ of step τµ such that an
element q of the lattice lies in the centre of each hypercubic
cell. Since both q ∈ Q̃ and x ∈ X are elements of Rn, the
infinity norm defines a distance for any pair (q, x). Take the
function

`(x) := min
q∈Q
{q : ‖x− q‖ ≤ τµ/2}, (3)

where min is taken in the lexicographical order. Assume that
the lattice Q̃ is such that, for all q ∈ Q̃, there exists an x ∈ X
such that `(x) = q. Let W be a set of symbols with cardinality
(ddmax/µe−bdmin/µc+1)n. Now, for each pair (q, u), define
the set of reachable states

Qq,u := {q′ : ∃x ∈ X, δ ∈ ∆ : `(x) = q, `(x+ u+ δ) = q′},

and given a subset Wq,u of W with the cardinality of Qq,u,
define a bijective assignment

Wq,u
q,u⇔ Qq,u.

Finally, define the DES

G̃ := (Q̃, U ×W,ψ,Q0) (4)

with state set Q̃, events set U ×W , and transition function
ψ(q, u, w) defined as follows:

ψ(q, u, w) = q′ iff w ∈Wq,u, and w
q,u⇔ q′. (5)

Hereafter, we write q /∈ Q̃ whenever, for all x such that
`(x) = q, all vehicles have crossed the intersection in state x.
The set Q0 is the initial state set, assumed hereafter to be any
subset of Q̃. In the construction above, a transition is described
by a pair of events, u and w. Events u of the DES are in one to
one relation with the possible control inputs of the continuous
system, whereas events w account for the difference between
the expected reached state and the state that is effectively
reached, due to the effect of the disturbance input. We denote
by L(G̃, q) the language of G starting from state q, that is,
the set of all possible strings of events u1w1u2w2... that can
occur starting from initial state q ∈ Q0. The symbol s is used
to denote a generic string. Also, given a state q ∈ Q̃, we denote
by (q, u, w) a transition of (4) from state q with event u,w, and
by (q, s) an execution of (4) starting from initial state q, with
events string s = u1w1u2w2.... We write ψ(q, s) to denote
the last state reached by an execution. Since each vector u is
itself composed of a subvector of controllable inputs uc and
a subvector of uncontrollable inputs uuc, a string of events s
can also be a sequence of the form s = u1cu

1
ucw

1u2cu
2
ucw

2
Let us now endow system (2) with the observation map

Hx(x) := `(x), and G̃ with the observation map Hq(q) :=
q. With this observation map, we can define the notions of

simulation and alternating simulation, whose definitions have
been adapted from [5] for our context.

Definition II.1. We say that G̃ simulates (2) if
(i) for all x ∈ X there exists a q ∈ Q̃ such that q = `(x),

(ii) for all x ∈ X and q ∈ Q̃ such that q = `(x), Hx(x) =
Hq(q),

(iii) for all x ∈ X and q ∈ Q̃ such that q = `(x), if there
exists (u1, δ) ∈ U×∆ such that x+u1+δ = x′, then there
exists (u2, w) ∈ U ×W such that ψ(q, u2, w) = `(x′).

Definition II.2. We say that (2) alternatingly simulates G̃ if
(i) for all q ∈ Q̃ there exists an x ∈ X such that q = `(x),

(ii) for all x ∈ X and q ∈ Q̃ such that q = `(x), Hx(x) =
Hq(q),

(iii) for all x ∈ X and q ∈ Q̃ such that q = `(x), for all
u1c ∈ Uc there exists u2c ∈ Uc such that for all u2uc ∈ Uuc,
δ ∈ ∆ and q′ = `(x + u2 + δ) there exists u1uc ∈ Uuc
and w ∈ Wq,u1 satisfying ψ(q, u1, w) = q′, where u1 =
(u1c , u

1
uc) and u2 = (u2c , u

2
uc).

Ignoring the fact the state spaces of (2) and G̃ are different,
the intuition behind alternating similarity is that, for any
control decision u1c of system G̃, there exists a control decision
u2c of system (2) such that the set of reachable states in the
latter case is contained in the set of reachable states in the
former case. This is useful for a safety objective where the
goal is to avoid a set of states. In such a case, the safety of
u1c in system G̃ implies the safety of u2c in system (2).

Given the above construction and the definitions of similar-
ity and alternating similarity, we can prove the following.

Lemma II.1. G̃ simulates (2) and (2) alternatingly simulates
G̃.

Proof: (G̃ simulates (2)): In Definition II.1, (i) is true
because the grid defining the lattice Q̃ covers X; (ii) follows
from the definition of the observation maps; (iii) is a conse-
quence of the definition of transitions in (5) by taking u1 = u2.

((2) alternatingly simulates G̃): In Definition II.2, (i) is
true by assumption; (ii) follows from the definition of the
observation maps; (iii) follows by taking u1 = u2 = u and
w = q′ − q − u, which is guaranteed to exist by virtue of the
transition structure of equation (5).

Define a set Πk for each road, and say that vehicle i ∈ Πk

if vehicle i drives along road k. Describe the length of the
portion of each road that belongs to the intersection as an
interval [αk, βk] ⊂ R , and define a safety distance γ ∈ R+,
common to all vehicles. We say that two vehicles i ∈ Πk,
j ∈ Πl with k 6= l undergo a collision whenever xi ∈ [αk, βk]
and xj ∈ [αl, βl] simultaneously. Similarly, we say that two
vehicles i, j ∈ Πk undergo a collision whenever |xi−xj | < γ.
The subset of X of all collision points is called the bad set
B. A trajectory x(t) of (1) is ε-safe provided

inf
t≥0,b∈B

‖x(t)− b‖ ≥ ε.

Let X/` denote the quotient set of X by the equivalence
classes induced by `. We aim to design a supervisor σ : X/`→

2Vc for (1) that enforces 0-safety, where Vc = Uc/τ . More
precisely, we aim to solve the following problem.

Problem II.1. Given X/`, define a supervisor that associates
to each x(kτ) ∈ X a set of inputs vc ∈ Vc allowed for the
interval [kτ, (k + 1)τ] and constant over this time interval,
with the following properties:

• if vc(t) ∈ σ(x(bt/τcτ)) for t ∈ [kτ, (k + 1)τ], then x(t)
is 0-safe in the same time interval (0-safety)

• if σ(x(kτ)) 6= ∅, vc(t) ∈ σ(x(bt/τcτ)) for t ∈ [kτ, (k +
1)τ], and x((k + 1)τ) ∈ X , then σ(x((k + 1)τ)) 6= ∅
(non-blockingness)

• if σ̃ 6= σ and σ̃ satisfies the two properties above,
then σ̃(x(kτ)) ⊆ σ(x(kτ)) for all k ≥ 0 (maximal
permissiveness).

By reducing (2) to a finite abstraction, we can reduce
Problem II.1 to the problem of selecting a particular set T
of executions of G̃. Given such a set T , construct a supervisor
map for each time interval [kτ, (k + 1)τ] as follows

σT (x(kτ))

:=

{
vc ∈ Vc : ∃(`(x(kτ)), u1cu

1
ucw

1u2cu
2
ucw

2...) ∈ T
with u1c = τvc

}
.

(6)

Intuitively, we would like T to be selected as the set of
executions that should be allowed by the system in order to
preclude only unsafe behavior.

Definition II.3. A set T of executions is suffix-closed if
(q1, u1w1s) ∈ T implies that (ψ(q1, u1, w1), s) ∈ T .

Definition II.4. A set T of executions is non-escaping if
(q1, u1cu

1
ucw

1s) ∈ T implies that, for all u1′uc ∈ Uuc and
w1′ ∈Wq1,u1 , ∃s′ such that (q1, u1cu

1′
ucw

1′s′) ∈ T .

The non-escaping property implies that the presence or
absence of an execution from T should depend only on the
controllable events uc. Otherwise, the supervisor σT could
potentially allow executions that are not in the set T , due to
uncontrollable events uuc or w. This property is the analogue
of the controllability property of DES [15].

We introduce the following definitions of safety for G̃.

Definition II.5. Given functions ε1 : [0, τ] → Rn and ε2 :
[0, τ]→ Rn, a transition (q, u, w) such that ψ(q, u, w) = q′ is
(ε1, ε2)-safe if @b ∈ B : ε1(t)−µτ/2 < b− [q+t(q′−q)/τ] ≤
ε2(t)+µτ/2, where µ = {µ, . . . , µ} ∈ Rn and the inequalities
are taken component-wise. An execution (q, s) is (ε1, ε2)-safe
if all the transitions that compose it are (ε1, ε2)-safe.

The above definition captures the idea that the interpolated
trajectory from q to q′ (given by q + t(q′ − q)/τ) must be a
certain (potentially time-dependent) distance away from any
point in the bad set. Let ε and ε be defined as follows:

εq,u,w(t) =

{
[vu − (q′ − q)/τ] t, t ≤ tq,u,w
[(q′ − q)/τ − vu] (τ − t), t ≥ tq,u,w

(7)

tq,u,w =
τvu − q′ + q

vu − vu
(8)

εq,u,w(t) =

{
[vu − (q′ − q)/τ] t, t ≤ tq,u,w
[(q′ − q)/τ − vu] (τ − t), t ≥ tq,u,w

(9)

tq,u,w =
q′ − q − τvu
vu − vu

(10)

vu = u/τ + dmin (11)
vu = u/τ + dmax (12)

where dmin = (dmin, . . . , dmin) ∈ Rn and similarly for
dmax.

We have shown that for these definitions of ε and ε (which
depend on q, u, and w), (ε, ε)-safety of a transition implies
0-safety of the corresponding trajectory x(kτ + t) for t ∈
[0, τ] when `(x(kτ)) = q, DE control decision uc is issued
at time kτ , the uncontrolled vehicles take action uuc, and the
disturbance is w.

Lemma II.2. If T is a set of suffix-closed and (ε, ε)-safe
executions, and is non-escaping, then σT in (6) enforces 0-
safety.

Then, let us define forward-maximal executions as follows.

Definition II.6. An execution (q, s) =
(q, u1c , u

1
uc, w

1, .., umc , u
m
uc, w

m) is forward-maximal if
ψ(q, u1c , u

1
uc, w

1, .., unc , u
n
uc, w

n) ∈ Q̃ for all n < m, and
ψ(q, u1c , u

1
uc, w

1, .., umc , u
m
uc, w

m) /∈ Q̃.

This definition ensures that we allow only executions that
eventually reach some goal (e.g., crossing the intersection). By
this definition and the fact that (2) alternatingly simulates G̃,
we can prove the next result.

Lemma II.3. If T is a set of forward-maximal executions,
suffix-closed and non-escaping, then σT in (6) is non-blocking.

From the above results, we can conclude that

Theorem II.4. If T is selected as the largest set of (ε, ε)-safe,
suffix-closed, non-escaping and forward-maximal executions
of (4), then the supervisor (6) solves Problem II.1.

Proof: 0-safety and nonblockingness follow from Lem-
mas II.2 and II.3 and maximal permissiveness is ensured by
taking T as the largest set satisfying all required conditions.

In the following sections, we present an algorithm to con-
struct T in order to enforce safety in the case of unmodeled
dynamics and in the presence of uncontrolled vehicles. Specif-
ically, we propose an algorithm to construct sets of executions
T to solve the three following problems:

Problem II.2. Determine the largest set T of (ε, ε)-safe suffix-
closed, non-escaping and forward-maximal executions when
dmin = dmax = 0 and vehicles k+ 1, ..., n are uncontrolled.

Problem II.3. Determine the largest set T of (ε, ε)-safe suffix-
closed, non-escaping and forward-maximal executions when
dmin, dmax 6= 0 and all vehicles are controlled.

Problem II.4. Determine the largest set T of (ε, ε)-safe suffix-
closed, non-escaping and forward-maximal executions when
dmin, dmax 6= 0 and vehicles k + 1, ..., n are uncontrolled.

III. DISCRETE EVENT SYSTEM PROBLEM
FORMULATION

By fixing the initial state of the automaton to be q ∈ Q0,
the resulting language, denoted by L(G̃, q), is in a one-to-
one relation with the set of all possible executions (q, s),
that have q as initial condition1. In order to simulate multiple
possible initial states, we introduce a “dummy” state with no
physical meaning, denoted by q0, and for each q ∈ Q0, we
create a transition with label eq from q0 to q. We denote by
EQ the set of all such events eq: EQ = {eq : q ∈ Q0}.
Mathematically, we define the transition function ψ acting on
state q0 by ψ(q0, eq) = q for any eq ∈ EQ.

To represent the states reached by (4) when a transition
leaves Q̃, we define the set of marked (in standard DES
terminology) states Qm

Qm :={
q′ : q′ /∈ Q̃ and ∃q ∈ Q̃, (u,w) ∈ U ×W,ψ(q, u, w) = q′

}
The set Qm satisfies Q̃ ∩ Qm = ∅ and allows us to translate
Definition II.6 into a non-blocking condition on the DES.
Intuitively, a forward-maximal execution is an execution that
extends forward in time as much as possible in Q̃. By
definition of Qm it is clear that ψ(q, s) ∈ Qm whenever
ψ(q, s) is forward-maximal. As previously stated, we write
U = Uc × Uuc, where Uc consists of the discrete-event (DE)
controlled input and Uuc consists of the DE uncontrolled input.
Events in the set Uc correspond to controllable events and
events in the sets Uuc or W correspond to uncontrollable
events. Since each event must take us to a new state, we
define sets of intermediate states QI1 and QI2 along with
intermediate transition functions ψ1 : Q̃ × Uc → QI1,
ψ2 : QI1×Uuc → QI2, and ψ3 : QI2×W → Q̃∪Qm. These
are defined only by ψ(q, uc, uuc, w) = ψ(q, (uc, uuc), w) =
ψ3(ψ2(ψ1(q, uc), uuc), w). With these additions, we redefine
G as the complete DES

G := (Q,Uc × Uuc ×W ∪ EQ, ψ, q0, Qm) (13)

where Q = {q0} ∪ Q̃ ∪Qm ∪QI1 ∪QI2. Note that G has a
single initial state, the dummy state q0. Note also that the set of
events EQ are considered controllable. Finally, note that QI1
and QI2 are disjoint from Q̃. This is done in order to enforce
the strict alternation of controllable and uncontrollable events.
Mathematically, the language L(G) ⊆ EQ(UcUucW)∗.

The first step in computing the desired set T is finding the
set T̂ of all executions (not necessarily forward-maximal) that
are (ε, ε)-safe executions of system (13). From T̂ , we obtain
the language La, called the safety specification, by mapping

1We use standard DES notations, as in [3], [15].

executions to strings (an execution (q, s) maps to the string
eqs and vice-versa). Note that La ⊆ L(G) and is prefix-closed.
Next, we define the set Lam of marked strings as the subset
of La corresponding to forward-maximal executions. From the
way we have defined Qm, we see that Lam = La∩Lm(G). As
seen above, dealing with problems II.2, II.3 and II.4 results in
the introduction of uncontrollable events. This means that it is
possible for there to exist some pair of strings s1 and s2 such
that s1 ∈ La and s2 = s1e /∈ La, for some uncontrollable
event e ∈ Uuc or e ∈ W . This is called a control conflict
since we wish to allow s1 but allowing it makes it impossible
to prevent s2, which we do not wish to allow. The solution to
this problem is to “shrink” the language to the largest possible
subset that has no control conflicts. This problem always has
a unique solution, which is called the supremal controllable
sublanguage and is denoted by the operation ↑ C on languages
[15]. The safety specification in our problem is completely
expressible in terms of safe states and/or safe transitions over
G at the discrete event level. Therefore, La and Lam are
generated and marked, respectively, by a subautomaton of G.
In this case, without loss of generality, we can define the
domain of the DE supervisor to be the state set of G, Q,
instead of the domain L(G) used in the development of the
results in supervisory control theory. Since we also require the
solution to be non-blocking, we have to solve at the discrete
event level the basic supervisory control problem in the non-
blocking case (BSCP-NB), as defined in [15]:

Problem III.1. Given system G with event set E, uncontrol-
lable event set Euc ⊆ E, and admissible marked language
Lam ⊆ Lm(G), find a non-blocking DE-supervisor S : Q →
2U (that chooses which events to allow in each state) such
that:

1) Lm(S/G) ⊆ Lam
2) Lm(S/G) is “the largest it can be”, that is, for

any other non-blocking DE-supervisor Sother such that
Lm(Sother/G) ⊆ Lam, Lm(Sother/G) ⊆ Lm(S/G).

In the above, L(S/G) is defined to be the set of strings s ∈
L(G) that are allowed by the DE-supervisor S and Lm(S/G)
is the subset of those strings that are marked. A unique
solution exists when Lam satisfies Lam = Lam ∩ Lm(G),
the so-called Lm(G)-closure condition [15]. This is always
the case when Lam = La ∩ Lm(G), as it is here. The unique
solution in this case is Lm(S/G) = L↑Cam and L(S/G) = L↑Cam.
Finally, the set T consist of those executions that correspond
to strings in L↑Cam. The (ε, ε)-safety of T can be ensured by
properly defining safety of the transitions of G and its suffix-
closure is guaranteed by the structure of languages. Non-
escapingness of T is ensured by the fact that L↑Cam will be
free of control conflicts and forward-maximality is ensured by
the non-blocking property of L↑Cam. Finally, T is the largest set
satisfying the above properties because L↑Cam is the supremal
controllable sublanguage of Lam. The supervisor σ can be
computed from S as follows:

σ(x(kτ)) = {uc/τ : uc ∈ S(`(x(kτ)))} (14)

IV. CONTROL OF THE DISCRETE EVENT SYSTEM

In principle, the solution to BSCP-NB can be computed
using the standard iterative algorithm for computing L↑Cam, or
the linear-time version that applies to livelock-free systems
(DES G is livelock-free if every cycle in G contains a marked
state), such as the one in [16]. We chose to develop our
own customized algorithm because the special structure of
our problem allows us to do even better in the presence of
a disturbance or of uncontrollable vehicles. Specifically, it can
be shown that, to verify the safety of DE control decision uc
from DE state q, we do not need to check safety of every
transition of the form (q, ψ(q, uc, uuc, w)). Instead, we can
use a single test with a running time of O(n2) by computing
the set of positions which the vehicles could be in at time
t ∈ [kτ, (k+ 1)τ] when DE control decision uc is made from
DE state q at time kτ . In this section, we provide theorems
that establish the basis for our algorithmic solutions.

Definition IV.1. The set of reachable states from state q
given DE control decision uc is defined by R(q, uc) :=
{ψ(q, uc, uuc, w) : uuc ∈ Uuc ∧ w ∈W}.

Definition IV.2. Given t ∈ [0, τ], let the set Aq,u,w(t) ⊆
X denote the set of points xd such that it is possible for
x(kτ+ t) = xd when `(x(kτ)) = q, DE control decision uc is
issued at time kτ , the uncontrolled vehicles take action uuc,
and the disturbance is w.

From the above definition, we can see that a transition from
q to q′ is 0-safe in the continuous domain if Aq,u,w(t) does
not cross the bad set for t ∈ [0, τ].

Definition IV.3. Given t ∈ [0, τ], let the set Aq,uc
(t) ⊆ X

denote the set of points xd such that it is possible for x(kτ +
t) = xd when `(x(kτ)) = q and DE control decision uc is
issued at time kτ .

Clearly, Aq,uc
(t) = (q − µτ/2 + vuc

t, q + µτ/2 + vuc
t],

where vuc
and vuc

are as given in equations (11) and (12)
for the controlled vehicles and are equal to vmin + dmin and
vmax+dmax, respectively, for the uncontrolled vehicles. Thus,
Aq,uc

(t) is the analogue of Aq,u,w(t) when we do not fix uuc
and w. By the above two definitions, it must be that Aq,uc

(t) =⋃
uuc∈Uuc

⋃
w∈W Aq,u,w(t).

The set Aq,u,w(t) has a non-trivial shape and it is not simple
to check whether it crosses the bad set. Also of importance
is the fact that Aq,u,w(t) does indeed have a dependence on
u so that the safety of an individual transition is not uniquely
determined by its start and end state. Instead, we can determine
if DE control decision uc is safe from DE state q by checking
if the set Aq,uc

(t) crosses the bad set for some t ∈ [0, τ],
which can be done in O(n2) time. The idea is to verify
intersection for each pair of vehicles, since the bad set reduces
to a rectangle in this case. Thus, rather than determining the
safety of each of the |Uuc||W | transitions that could result
from DE control decision uc ∈ Uc, it suffices to make a
single safety test for each control decision. Hence we make
|Uc| safety tests instead of |Uc||Uuc||W | safety tests.

Theorem IV.1 (Basis for Depth-First Search). Let S be
the minimally restrictive non-blocking DE-supervisor. Then S
must satisfy the following, for all q ∈ Q, q 6= q0:

uc ∈ S(q)⇔ SafeDECon(G, q, uc) and
∀q′ ∈ R(q, uc), [q′ ∈ Qm ∨ S(q′) 6= ∅],

(15)
where SafeDECon(G, q, uc) is true if and only if the set
Aq,uc(t) does not cross the bad set for any t ∈ [0, τ].

The above theorem suggests that computing the set S(q)
for some q ∈ Q can be done by checking, for each uc ∈ Uc,
whether taking DE control decision uc from DE state q could
result in the bad set being crossed during the following interval
of time τ and, for each q′ ∈ R(q, uc), whether q′ is either
terminal or non-deadlocked. Since checking whether q′ is non-
deadlocked requires determining whether S(q′) = ∅, this can
be accomplished through recursion. This forms the basis for
the use of depth-first seach to compute the DE-supervisor S.

A. The algorithm
Algorithm 1 shows pseudo-code for the algorithm which

computes the DE-supervisor S defined in Section III and hence
solves each of the four problems of Section II. The subroutine
“Terminal(G, q)” checks if all the vehicles have crossed the
finish line (if q ∈ Qm). The variable “Done(q)” is true if and
only if the algorithm has already been called with position q.
The variable Safe(q) is true if q was determined to be safe,
which means that S(q) 6= ∅. The variable Safe(q) is valid
only if Done(q) is true. Finally, the subroutine SafeDECon(G,
q, uc)” checks if the set Aq,uc

(t) does not cross the bad set
for any t ∈ [0, τ].

Although the pseudo-code for the solution to all problems
is the same, each of the four problems will result in differ-
ent ways of computing the set R(q, uc) and therefore each
problem will have small differences in implementation of the
algorithm. The call to DoDFS(G, q) computes the set S(q)
and returns true if and only if q ∈ Qm ∨ S(q) 6= ∅. It is thus
readily observed that lines 9-20 of the algorithm implement
equation (15) and hence correctly computes S. The running
time is dependent on the size of the set R(q, uc) and is
given by the expression O(|Q̃||Uc|n2 + |Q̃||Uc||R(q, uc)|).
The values for each of the four cases are given in Table I.
In the last case, k is the number of controlled vehicles, and
φ = ddmax/µe − bdmin/µc+ 1, so that |W | = φn.

Case Running Time
no uncontrollable vehicles

O(|Q̃||U |n2)no disturbance
uncontrollable vehicles

O(|Q̃||Uc|n2 + |Q̃||U |)no disturbance
no uncontrollable vehicles

O(|Q̃||Uc|n2 + |Q̃||Uc||W |)disturbance
uncontrollable vehicles O(|Q̃||Uc|n2)

disturbance +O(|Q̃||Uc|φk(b− a+ φ)n−k)

TABLE I
RUNNING TIMES IN EACH OF THE FOUR PROBLEM SCENARIOS

The standard algorithm for computing the supremal control-
lable sublanguage works by first constructing an automaton

H representing the legal language specification and taking the
product G ×H , then performing an iterative procedure until
convergence, which runs in time quadratic in the size of G×H .
Let XG and XH be the state spaces of G and H , respectively,
and E be the set of events. Recalling that verifying safety
of a transition takes time O(n2), the asymptotic running time
will therefore be O(|XG||E|n2) to construct H (step 1), and
O(|XG|2|XH |2|E|) for the iterative process (step 2). Algo-
rithm 1 achieves better asymptotic complexity in three ways.
First, as previously mentioned, we can use a linear time algo-
rithm since our system is livelock-free. Second, because our
legal language specification is represented by a sub-automaton
of G at the outset (rather than merely being a sublanguage
of L(G)), the product automaton G × H is isomorphic to
H . The running time of step 2 is therefore O(|XH ||E|). In
our context, that gives the expression O(|Q̃||Uc||Uuc||W |). For
step 1, the running time would be O(|Q̃||Uc||Uuc||W |n2) in
our context. Third, by making only a single test of safety for
each control decision, we reduce the running time of step 1
to O(|Q̃||Uc|n2).

Algorithm 1 The Algorithm
1: procedure DODFS(G, q)
2: if Terminal(G, q) then
3: return true
4: else if Done(q) then
5: return Safe(q)
6: end if
7: Safe(q)← false
8: S(q)← Uc
9: for all uc ∈ Uc do

10: if not SafeDECon(G, q, uc) then
11: S(q)← S(q) \ {uc}
12: continue
13: end if
14: for all q′ ∈ R(q, uc) do
15: if not DoDFS(G, q′) then
16: S(q)← S(q) \ {uc}
17: break
18: end if
19: end for
20: end for
21: if S(q) 6= ∅ then
22: Safe(q)← true
23: end if
24: Done(q)← true
25: return Safe(q)
26: end procedure

V. PERFORMANCE OF THE ALGORITHM
We have implemented the algorithm presented above as an

interactive Java application. Sample trajectories are shown in
the three panels of Figure 1. In all cases, we took µ = τ = 1.
The intersections are at the same position on each road and
are shown in gray. The first panel corresponds to the model
with Uc = U , dmin = dmax = 0, n = 6 and V = {1, 2}n.

The number of states and DE control decisions were |Q̃| ≈
4.80×108 and |U | = 64, and it took 15.3 seconds to compute
the solution. The second panel corresponds to the model with
Uc = U , dmin = −1, dmax = 1, n = 5 and V = {2, 3, 4}n.
The number of states and DE control decisions were |Q̃| ≈
6.12×105 and |U | = 243, and it took 0.81 seconds to compute
the solution. The third panel corresponds to the model with
one uncontrolled vehicle (dotted and blue), dmin = dmax = 0,
n = 5 and V = {1, 2}n. The number of states and DE control
decisions were |Q̃| ≈ 6.83 × 104 and |U | = 32, and it took
0.034 seconds to compute the solution. All simulations were
run on a 1.6GHz laptop computer and used under 300MB of
memory.

Fig. 1. Sample trajectories for various parameters and model types. (a):
Zero disturbance, no uncontrolled vehicles. (b): No uncontrolled vehicles,
disturbance with parameters dmin = −1, dmax = 1. (c): Zero disturbance,
one uncontrolled vehicle. Trajectories of the same color represent vehicles
on the same road. Dashed trajectories represent uncontrolled vehicles. The
intersection is represented by a gray area.

VI. CONCLUSION

We have considered the problem of collision avoidance
in vehicular networks as a supervisory control problem for
a discrete event abstraction of the underlying continuous
dynamics modeled by a first order system with model uncer-
tainty. We have demonstrated that our abstraction methodology
guarantees that the supervisor designed at the discrete event
level, when lifted to the continuous level, satisfies the desired
safety property, i.e., collisions are avoided. By considering
the effect of unmodeled dynamics and uncontrolled vehicles
as uncontrollable events at the discrete event level, we have
been able to leverage the concepts and techniques of the
theory of supervisory control of DES, in particular the non-
blockingness and maximal permissiveness properties of the
supremal controllable sublanguage of the marked version of
the safe language. Moreover, we have exploited the structural
properties of the transition structure of the discrete event model
obtained by abstraction and developed a new algorithm for
computing the supremal controllable sublanguage customized
to this particular application, which achieves greater efficiency
than the standard one. This work constitutes a new application
area of DES theory, beyond those in manufacturing and
software for instance (see, e.g., [17], [18], [19], [20]), with
the distinctive feature that the DES model is obtained by
abstraction from a continuous one, not by direct modeling
of the discrete transition structure. Current issues of interest

include refinement of our methodology to handle contin-
uous models with second order dynamics, imperfect state
information, acceleration constraints, and further algorithmic
improvements.

REFERENCES

[1] U. S. DOT National Highway Traffic Administration (NHTSA). Traffic
safety facts. 2009.

[2] (2011) Vehicle safety and fuel economy rulemaking
and research priority plan 2011-2013. [Online]. Avail-
able: http://www.nhtsa.gov/staticfiles/rulemaking/pdf/2011-2013 Vehicle
Safety-Fuel Economy Rulemaking-Research Priority Plan.pdf

[3] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM J. Control and Optimization, vol. 25,
no. 1, pp. 206–230, Jan. 1987.

[4] P. Tabuada, “An approximate simulation approach to symbolic control,”
IEEE Trans. Autom. Control, vol. 53, pp. 1406–1418, 2008.

[5] ——, Verification and control of hybrid systems. Springer-Verlag, 2009.
[6] A. Girard, G. Pola, and P. Tabuada, “Approximately bisimilar symbolic

models for incrementally stable switched systems,” IEEE Trans. Autom.
Control, vol. 55, pp. 116–126, 2010.

[7] M. Broucke, M. D. Di Benedetto, S. Di Gennaro, and A. Sangiovani-
Vincentelli, “Efficient solution of optimal control problems using hybrid
systems,” SIAM J. Contr. Opt., vol. 43, pp. 1923–1952, 2005.

[8] M. Zamani, G. Pola, M. Mazo Jr., and P. Tabuada, “Symbolic models for
nonlinear control systems without stability assumptions,” IEEE Trans.
Autom. Control, vol. 57, pp. 1804–1809, 2012.

[9] R. Alur, T. Dang, and F. Ivancic, “Predicate abstraction for reachability
analysis of hybrid systems,” ACM Trans. on Embedded Computing
Systems, vol. 5, pp. 152–199, 2006.

[10] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. Pappas,
“Symbolic planning and control of robot motion [grand challenges of
robotics],” Robotics Automation Magazine, IEEE, vol. 14, no. 1, pp. 61
–70, march 2007.

[11] A. Colombo and D. Del Vecchio, “Supervisory control of differentially
flat systems based on abstraction,” in 50th IEEE Conference on Decision
and Control, 2011.

[12] ——, “Efficient algorithms for collision avoidance at intersections,” in
Hybrid Systems: Computation and Control, 2012.

[13] H. Kowshik, D. Caveney, and P. R. Kumar, “Provable systemwide safety
in intelligent intersections,” IEEE Trans. Veh. Technol., vol. 60, pp. 804–
818, 2011.

[14] W. M. Wonham and P. J. Ramadge, “On the supremal controllable
sublanguage of a given language,” SIAM J. Control and Optimization,
vol. 25, no. 3, pp. 637–659, May 1987.

[15] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems. Springer-Verlag, 2008.

[16] N. Ben Hadj-Alouane, S. Lafortune, and F. Lin, “Variable lookahead
supervisory control with state information,” IEEE Trans. Automatic
Control, vol. 39, no. 12, pp. 2398–2410, Dec. 1994.

[17] B. Brandin, “The real-time supervisory control of an experimental
manufacturing cell,” Robotics and Automation, IEEE Transactions on,
vol. 12, no. 1, pp. 1 –14, feb 1996.

[18] T. Kelly, Y. Wang, S. Lafortune, and S. Mahlke, “Eliminating concur-
rency bugs with control engineering,” Computer, vol. 42, no. 12, pp.
52–60, 2009.

[19] R. Leduc, M. Lawford, and P. Dai, “Hierarchical interface-based su-
pervisory control of a flexible manufacturing system,” Control Systems
Technology, IEEE Transactions on, vol. 14, no. 4, pp. 654 – 668, july
2006.

[20] T. Moor, K. Schmidt, and S. Perk, “Applied supervisory control for a
flexible manufacturing system,” Proceedings of the 10th International
Workshop on Discrete Event Systems - WODES’10, pp. 263–268, Sep.
2010.

