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Abstract 

The thermal interface conductance between Al and Si was simulated by a non-equilibrium 

molecular dynamics method. In the simulations, the coupling between electrons and phonons in Al 

are considered by using a stochastic force. The results show the size dependence of the interface 

thermal conductance and the effect of electron-phonon coupling on the interface thermal 

conductance. To understand the mechanism of interface resistance, the vibration power spectra are 

calculated. We find that the atomic level disorder near the interface is an important aspect of 

interfacial phonon transport, which leads to a modification of the phonon states near the interface. 

There, the vibrational spectrum near the interface greatly differs from the bulk. This change in the 

vibrational spectrum affects the results predicted by AMM and DMM theories and indicates new 

physics is involved with phonon transport across interfaces. 
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Introduction 

 

Thermal transport across interfaces is an important issue for microelectronics, photonics, and 

thermoelectric devices and has been studied both experimentally and theoretically in the past.1-8 

Although recent experiments using pump-probe methods are performed on metal/dielectric (or 

semiconductor) interfaces, most simulations are for dielectric/dielectric interfaces for which only 

lattice vibrations are involved. There are three channels for heat transport across 

metal–semiconductor interfaces: 1) direct phonon-phonon coupling between phonons in the metal 

and phonons in the semiconductor; 2) direct coupling between electrons of the metal and phonons 

of the semiconductor; 3) indirect coupling between electrons in the metal and phonons in the 

semiconductor through electron-phonon interactions on the metal side, close to the interface, and 

subsequent phonon-phonon interactions across the interface.9 A few treatments in the past have 

considered the effects of electron-phonon coupling in metal on the thermal boundary resistance 

between a metal and a dielectric.10-14 Sergeev suggested that the second channel is significant for 

conductors with strong electron-phonon coupling, or for an interface with high phonon 

reflectivity.11 Majumdar and Reddy showed that the third channel cannot be ignored and could 

even play a dominant role at high temperatures.12 Mahan presented a theory of heat flow between 

the electrons in a metal and the phonons in an ionic crystal, which interact through the surface 

charges caused by the image potential.14 

The nonlinear forces between atoms in heat transport across interfaces make predictions 

intractable from an analytical point of view. Since models based on diffuse mismatch (DMM) and 



acoustic mismatch (AMM) do not work well above cryogenic temperatures, molecular dynamics 

(MD) simulations have become the method of choice for predicting interface thermal conductance 

over the last decade.1,2 Using the non-equilibrium simulation, Landry and McGaughey show that 

the interface thermal conductance of Si/Ge increases with increasing temperature from 0.33 

GWm-1K-2 (300 K) to 0.67 GWm-1K-2 (1000 K).15 Chalopin et al., on the other hand, used an 

equilibrium MD method to study thermal conductance at Si/Ge interfaces,6 and both the period 

thicknesses dependence and the temperature dependence of thermal conductance in Si/Ge 

superlattices were presented. 

However, there are few MD simulation studies of the interface conductance of 

metal–semiconductor interfaces, because of the inherent difficulty associated with including 

contributions of both electrons and phonons to heat transport in MD simulation.16 Using MD 

simulations, Cruz et al. calculated the thermal interface conductance of Au/Si at 300 K,17 and the 

value of 188 MW/m2-K is in good agreement with the measurement results with values ranging 

between 133 and 182 MW/m2-K.18 Including electron-phonon couplings in MD simulation using 

the method described by Duffy and Rutherford,19 Wang et al. calculated interfacial thermal 

conductance of Cu/Si with values around 400 MW/m2-K, which is in better agreement with 

experimental data compared to those without electron-phonon couplings in MD (~450 

MW/m2-K).20  

In this letter, we calculated the thermal interface conductance of an Al/Si interface using 

non-equilibrium MD (NEMD) simulations, considering both the first and the third channels' 

contribution to heat transfer across interfaces. In section 2, we describe the structure of the model 

followed by the description of MD simulation method, and we present the results of the interface 



conductance and related discussions in section 3. 

Molecular dynamics simulation 

The second nearest-neighbor modified embedded atom method (2NN MEAM) interatomic 

potential, which is based on density functional theory, was used to describe the atomic interactions. 

The detailed parameterization of the potential is presented by Lee et al..21 The 2NN MEAM was 

chosen because it has been applied to a wide range of elements including body-centered cubic 

(bcc), face-centered cubic (fcc), hexagonal close-packed (hcp) metals, manganese, and 

diamond-structured covalent bonding elements, and their alloys using one common 

formalism.17,21-23 Thus, a single potential can be used to describe both of the materials of interest - 

silicon and aluminum. This greatly simplifies the description between the two materials at the 

interface region, compared to treating them with potentials of different functional forms. The 2NN 

MEAM has a relatively long range interaction, and the energy of free surfaces can be described 

more accurately than standard MEAM potential and the widely used Stillinger-Weber potential,24 

which only includes interactions within the first neighbor shell, and consequently fails in 

describing surface reconstruction and therefore may become inaccurate near interfaces. The 

velocity Verlet algorithm is used to integrate the discretized differential equations of motions. 

Electron-phonon scattering of each atom (i) in the metal was introduced into the simulations 

by describing the energy loss via a friction term with coefficient (γi) and the energy gain from 

electrons via a stochastic force term F
~

(t) with random magnitude and orientation:19  
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where N is the total number of atoms in the cell with constant electronic temperature, ΔV is the 

cell volume, and g is the electron-phonon coupling constant. gAl is set as 2.45×1017 Wm-3K-1 for 

300 K, which is obtained from ab-initio electronic structure calculations using density functional 

theory.25 For equilibrium systems the magnitude of the stochastic force is related to the friction 

coefficient by the fluctuation–dissipation theorem and the energy exchange drives the atomic 

system to the temperature of the electronic subsystem (Te) as: 
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Since electrons reach equilibrium much faster than phonons in a simulation cell of several 

nanometers, it is reasonable to assume Te as a constant which is reasonable for nanoscale cell. 

In this paper, we study the thermal interface conductance of Al/Si along [100] direction. As 

shown in Fig.1 (a), different interface distances lead to changes of interfacial energy calculated 

based on 2NN MEAM. The interface distance (defined in Fig.1 (b)) is chosen as 0.26 nm which 

corresponds to the minimum of interfacial energy density. Periodic boundary conditions are 

imposed in both two transverse dimensions (x and y) and the longitudinal direction (z). The mass 

of Si atoms is set randomly in accordance with the natural isotopic abundance (92% 28Si, 5% 29Si 

and 3% 30Si).  

The lattice constants of Al and Si are 0.4047 (aAl) and 0.5431 (aSi) nm, respectively, which 

leads to a lattice mismatch of the cross section. This stress and strain is a general problem when 

simulating two different lattices with periodic boundary conditions. In order to reduce stress, a 

paring with the smallest value of the percentage of cross section mismatch (defined as the 

difference between the cross section area of Al and area of Si over the larger one) is needed. When 

paring 4n×4n (n=1,2,3,…) unit cells of Al and 3n×3n unit cells of Si, the percentage of cross 



section mismatch is 0.12% which smaller than other pairings within the computationally 

affordable range of n. Al 8×8 pairing up with Si 6×6 unit cells is used in our simulation. 

However, there is still a subtle lattice mismatch. To test the effect of this interfacial strain, two 

values, 10.5nm2 (8aAl×8aAl) and 10.6nm2 (6aSi×6aSi), were used as cross section areas of the 

simulation cell. Results show that the difference of values of thermal conductance using these two 

simulation cells is 5%, which indicates that the stress and strain effect on our simulation results is 

not very significant. 

Before calculating the thermal interface conductance, the structure was fully relaxed. The 

atoms moved freely to release the interfacial energy for more than 20 ps in a microcanonical 

ensemble (NVE) process. The atoms were then thermalized to 300 K during a 20 ps interval by 

Nosé-Hoover method,26 and finally kept there for 60 ps before the data were collected. MD 

simulation time step, Δt, is chosen as 1 fs. 

The NEMD method generates a temperature gradient across the simulation cell along the 

direction perpendicular to the interface by introducing heat baths at the two sides of the interface, 

which mimic the conditions of macroscopic experiments. In order to establish a temperature 

gradient along the longitudinal direction, a few atomic layers are controlled by heat baths with 

temperatures TL and TH imposed by using the Nosé-Hoover thermostat.26 Simulations are carried 

out long enough such that the system reaches a steady state. Then, the kinetic temperature 

( = 2/2
iivmT ) at each perpendicular atomic plane (x-y plane) and the heat flux in each thermal 

bath are averaged over nanoseconds. In Fig. 2 we show the typical time-averaged temperature 

profile. In the inner regions, the temperature profile is fitted with a linear function. The 

temperature profiles close to the interface are nonlinear because of the atomic level disorder near 



the interface. 

The interface thermal conductance (G) and heat flux (J) are calculated as 

TA

J
G
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where ΔT is the interface temperature difference and A is the cross section area. The heat 

transferred across the interface can be calculated from 
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where Δε is the energy added to/removed from each heat bath for each time step Δt. We use a 

combination of time and ensemble sampling to obtain better average statistics. The results 

represent averages from 8 independent simulations with different initial conditions. Each case runs 

longer than 1 ns after the system reached the steady state. 

Results and discussions 

To demonstrate the validity of a classical MD simulation with electron-phonon couplings, we 

calculated the phonon thermal conductivity of Al using Green-Kubo methods. The values of 

phonon thermal conductivity of Al are 16.8, 16.3 and 16.4, when the sizes of simulation cell are 4

×4×4, 6×6×6, 8×8×8, respectively. As shown in Table I, our MD results are compared to 

theoretical predictions12,27 and simulation result from others.28 Our results show that the phonon 

thermal conductivity of Al is decreased when considering electron and phonon scatterings. The 

thermal conductivity is decreased to 16.0 Wm-1K-1 when the value of gAl is an artificial value, 2.45

×1018 Wm-3K-1. 

The temperature profile of Al/Si structure is shown in Fig.2. The value of interface thermal 

conductance by NEMD depends on how one defines the temperature drop (ΔT) at the interface, 

shown in Eq.(4). This choice is somewhat arbitrary and therefore difficult to deal with due to 



discontinuous temperature variations close to the boundary region. In general, the interface 

temperature drop could be defined as the temperature difference at the interface of Al and Si based 

on linear fitting to the data further away from the interface, by extrapolating the linear temperature 

gradient in each material to the interface, named as ΔTfit (shown in Fig.2). Another method to 

define the interface temperature difference,29 ΔT’, is to use just the temperature drop across the 

two interfacial layers. The definition of ΔTfit includes both interfacial temperature drop and 

temperature drops inside each material caused by atomic level disorder/mixing near the interface 

(shown in Fig.1(c)). There is a difference between the temperature of the electrons and the 

temperature of lattice in the metal. As the temperature was based on Te in the pump-probe 

experiment,30 we also use ΔTfit,e (shown in Fig.2) to calculated the thermal interface conductance. 

It has been known that NEMD simulations suffer from not only artificial propagation of 

ballistic phonons from the thermostated region, which have an unknown distribution, but also 

convergence with respect to size.15 The size effect comes from internal reflections of phonons 

from the boundaries and insufficient phonon-phonon scattering in the simulation cell, which limit 

their mean free path compared to the true bulk system.26,31-33 For this reason, we have performed 

NEMD simulations with several different lengths using the same cross section and with the same 

temperature. Different from the bulk resistances extracted from the slope, the interface resistances 

are extracted from the discontinuity in the linearized temperature profile at the interface. Bulk 

values of the thermal resistance can be obtained from the calculated resistances with finite size 

and then extrapolated to infinite size according to34 

( ) ( ) C/LLρρ +=∞                               (6) 

where C is a constant, and L is the length of the simulation cell. Similarly, we use the same 



approach to extrapolate the interfacial thermal resistance to infinite length, as 

( ) ( ) C/LL/G/G +=∞ 11                        (7) 

Our results show that the interfacial thermal resistance increases with increasing cell length 

(Fig. 3). Close to the interface, the atomic arrangement is disordered and the interatomic distances 

are slightly contracted or expanded; while the atoms furthest away from the interface maintain 

their respective lattice positions. There are obvious differences in each region’s power spectra 

(shown in Fig.4 (a)), which are responsible for a bigger thermal interface resistance. For a shorter 

supercell, all atoms are close to the interface and their power spectra in the two regions converge 

which corresponds to a smaller thermal interface resistance. 

The linear fits in Fig. 3 can be used to estimate the thermal conductance in the limit of 

infinite length. As ∞→L , the value of thermal conductance is calculated as 0.47 GWm-2K-1  

when there is no electron-phonon coupling in Al, and 0.45 GWm-2K-1 (ΔTfit used) and 0.36 

GWm-2K-1 (ΔTfit,e used) when electron-phonon couplings are included. Using transient 

thermo-reflectance method, the thermal interface conductance value between Al and Si are 

measured to be 0.35 GWm-2K-1 35 and 0.22 GWm-2K-1 36 at 300 K. Hopkins et al. showed that the 

thermal boundary conductance decreases as Si surface roughness increases,37 where the highest 

values the thermal interface conductance between Al and Si is close to 0.2 GWm-2K-1 at 300 K. By 

using DMM and taking into account the full phonon dispersion relationship over the entire 

Brillouin zone, Reddy et al. calculated the thermal interface conductance values of Al/Si as 0.27 

GWm-2K-1 at 300 K.13  

Our simulation results are closer to these measured values and theoretical predictions. The 

interface structure is simulated with disordered structure and isotopic impurities. Collins et al. 



show imperfect surface structures could be an important factor in thermal interface conductance 

reduction.38 When ΔTfit,e is considered, the value is closer to the experimental value.  

In making these comparisons, we should also keep in mind that G is calculated based on the 

extrapolated temperature difference (ΔTfit,e), which is about five times larger than the interfacial 

temperature drop, ΔT’, (shown in Fig. 2) and that, in the pump-probe experiment, the temperature 

was based on that of electrons in the metal side (Te).
30 

To investigate the effect of electron-phonon coupling on the interface thermal conductance, 

we compared the system with and without electron-phonon coupling. Our MD results show that 

the interface thermal conductance is decreased by about 4% with the effect of electron-phonon 

coupling at room temperature (shown in Fig. 3), due to the third channel (mentioned in the 

introduction) of heat transport across Al/Si interfaces. The electron-phonon coupling adds an extra 

resistance to the system if the energy must be relaxed from electrons in Al to phonons in Al and 

then from phonons in Al to phonons in Si forming a series of thermal resistances. That is, 

electrons have two effects: one is to increase resistance due to electron-phonon coupling; the other 

is electron-phonon coupling also influence phonons which impact phonon-phonon interface 

resistances.  

As proposed by Majumdar and Reddy,12 the resistance of electron-phonon in the metal and 

the resistance of interfacial phonon-phonon are in series, ppep 1/1/1/ GGG += . We also use this 

equation to calculate. 0.2g Alph,Alep == κG GWm-2K-1 and 46.0pp =G GWm-2K-1, then 

73.0=G GWm-2K-1, which is close to our MD results. 

To understand the mechanism of interface resistance, the vibration power spectra are 

calculated and displayed in Fig.4 (a), where the grouping of atoms is shown in Fig.1 (a). The 



phonon power spectral density (PSD) describes the power carried by the phonon per unit 

frequency. A high PSD value for a phonon with frequency f means that there are more states 

occupied by it. A zero means there is no such a phonon with f exist in system. The phonon power 

spectrum analysis provides a noninvasive quantitative means of assessing the power carried by 

phonons in a system. The spectra are obtained by Fourier transforming of velocities. In the spectra 

of Si far from interface (Group A), it shows that the frequencies of phonons in Si using 2NN 

MEAM are reproduced with reasonable accuracy, which is much better than results using 

MEAM39 where the frequency of optical modes is too high. The spectrum of Si (Al) at the 

interface, Group B (C), is broader compared to the spectra of Si (Al) far from the interface, Group 

A (D). It shows the atomic level disorder near the interface increase diffusive scatterings, which 

contribute the interface resistance and nonlinear temperature profile close to interface in Fig.2. In 

the case of large interfacial thermal resistance, the broader power spectra can add new anharmonic 

channels through which phonons can be transmitted to the other side. However, in the acoustically 

well-matched case, it does not help. The broadening in spectrum reduces in the low-frequency 

region where there is good acoustic matching, and increases high frequency states which 

contribute very little to the transfer of heat. 

It is intriguing that the Si (Al) atoms close to the interface vibrate at higher frequencies than 

they do far from the interface, where around 17% (22%) of phonons have their frequency higher 

than the highest possible vibration of Si (Al). This translates to new states that do not exist in the 

bulk material. 

After the system is cooled down to 0.01 K by a damping process, the force constant of each 

atom, i, is calculated as:  




=

ΔΔ=Γ
1,2,...,6d

di,di, r/F
6

1
-i                            (8) 

d=1,2,…,6 correspond to rΔ in six directions, ±x ±y and ±z. The lattice structure of Al/Si interface 

(Fig1(c)) is not ideal crystal lattice. For example, a number of Si atoms near the interface have 

coordination numbers that deviate from 4, as is the case in the bulk material. There are bonds that 

can be much shorter or longer than the equilibrium bond length. Depending on the bonds and the 

anharmonic 2NN MEAM potential, force constants at interface become larger or smaller than the 

values of bulk (Fig.4 (b)).  

Due to stiffer bonds at the interface, the highest possible vibration of Si shifts from about 15 

THz to 20 THz, approximately 30% higher. The higher frequency phonons can not participate in 

the energy transport across interface without phonon scatterings, because such modes only exist 

close to the interface and can not well-matched with modes far from the interface. The interface 

atoms have different crystal structure from the bulk due to the force change. 

The popular theories, AMM and DMM, are based on the mismatch of frequency spectra of 

the two materials. This is usually taken as the bulk vibrational spectrum. We find that the 

vibrational spectrum changes near the interface, which would affect the results predicted by AMM 

and DMM theories. The atomic level disorder near the interface is an important aspect of 

interfacial phonon transport, which leads to the interface phonon states greatly differing from the 

bulk states and introduces new physics in researching the phonon transport across the interfaces. 

On investigating the interfacial thermal conductance, one needs to consider the interface states that 

can greatly differ from the bulk states. Despite the well known theories based on the mismatch of 

the bulk properties, our results highlight an important aspect of interfacial phonon transport that is 

essential in understanding realistic surfaces. 



Conclusions and outlook 

The thermal transfer in Al/Si structure was simulated by NEMD methods with/without 

considering electron-phonon coupling as a random noise on Al atoms. The value of thermal 

interface conductance of Al/Si is calculated by extrapolating length to infinity, where the 

electron-phonon scatterings decrease the interface thermal conductance. The results show that the 

interface thermal conductance increases with the decreasing of the system length. The nonlinear 

discontinuity in temperature profile extends a few atomic layers beyond the interface, which could 

be attributed to the confinement of phonons and the interface stress and strain effects on phonon 

transport. Through the difference in power spectra, we find that the atomic level disorder near the 

interface is an important aspect of interfacial phonon transport, which greatly modifies phonon 

states near the interface differ from the bulk states. This change in the vibrational spectrum 

indicates the presence of non-bulk vibrational modes which appear to be involved with phonon 

transport across interfaces. 

The paper deals with thermal interface conductance between metal and semiconductor. Other 

forms of thermal interface conductance are given for example in the Refs. [1,2]. To obtain more 

exact results of thermal interface conductance, it is necessary to include the direct coupling 

between electrons of the metal and phonons of the semiconductor in MD simulation, which is still 

an open question.16,20,40 
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Table I Phonon thermal conductivity (κph) of Al and thermal interface conductance (G) of Al/Si at 

300 K with different methods  

 MD Experiments Theory 

κph,Al 

[Wm-1K-1] 

17.0±0.5(a) 

16.4±0.5(b)(c) 

16.0±0.5(b)(d) 

20.6(a)28 

- 

10~2012 

10~2427 

GAl/Si  

[GWm-2K-1] 

0.47(a)(e) 

0.45(b)(e) 

0.36(b)(f) 

0.3535 

0.237 

0.2236 

0.27(DMM)13 

22.9(AMM)1 

0.37(c)(g) 

(a) MD without electron-phonon coupling in Al 

(b) MD with electron-phonon coupling in Al 

(c) gAl is 2.45×1017 Wm-3K-1 (Ref.[25])  

(d) gAl is 2.45×1018 Wm-3K-1 (artificial) 

(e) ΔTfit is used 

(f) ΔTfit,e is used 

(g) Calculated by ppep 1/1/1/ GGG +=   

 



 

 
 

FIG. 1 (a) The dependence of interfacial energy density on the interface distance. The 
minimum of interface energy density corresponds to the interface distance of 0.26 nm. 
(b) Simulation cell of Al/Si interface structures before relaxation. The cross section of 
simulation cell is Al 8×8 / Si 6×6 unit cells2 (3.26×3.26 nm2). The interface distance 
is defined as dint. Periodic boundary conditions are imposed in three dimensions. (c) 
Al/Si interface structures after relaxation. The atomic level disorders near the 
interface are obvious. 



 
 
FIG. 2 (a) and (b) are the temperature profile of Al 8x8x32 / Si 6x6x24 units3 
without/with considering electron-phonon coupling in Al, respectively. High/Low 
temperature Nose-Hoover heat bath is applied on several center layers of Al (Si). 
Temperature gradients with different direction are built along cross-interface direction. 
There are discontinuous and nonlinear effects close to interfaces, which are caused by 
the atomic level disorder near the interface. Solid lines are linear fitting curves based 
on the data further from interfaces. The red line (Te) in (b) shows electron-phonon 
temperature non-equilibrium in the metal. 



 
 
FIG. 3 The size dependence of thermal interface resistance (1/G) on the inverse of 
length (1/L) at room temperature for Al/Si system by NEMD method. The fitting 
curves are based on Eq.(7). The blue (red) fitting line correspond to using ΔTfit,e (ΔTfit) 

in calculating G with considering electron-phonon couplings on Al atoms. The black 
fitting line is without electron-phonon couplings. 
 



 
 
FIG. 4 (a) Normalized power spectra of atoms in Al/Si structure. (b) Frequency count 
of harmonic oscillator frequency. The harmonic oscillator frequency (f) is calculated 

based on the force constant (Γ) as: ( ) )/(2/ 2/1 πmf Γ= , where m is mass of Al atom 

or Si atom. The number of atoms in group A and B is 576. The number of atoms in 
group C and D is 512. 
 
 


