
SIAM J. COMPUT. c© 2015 David R. Karger and Matthew S. Levine
Vol. 44, No. 2, pp. 320–339

FAST AUGMENTING PATHS BY RANDOM SAMPLING FROM
RESIDUAL GRAPHS∗

DAVID R. KARGER† AND MATTHEW S. LEVINE‡

David Karger wishes to dedicate this work to the memory of Rajeev Motwani. His
compelling teaching and supportive advising inspired and enabled the line of

research [12, 19, 13, 16, 20] that led to the results published here.

Abstract. Consider an n-vertex, m-edge, undirected graph with integral capacities and max-
flow value v. We give a new Õ(m + nv)-time maximum flow algorithm. After assigning certain
special sampling probabilities to edges in Õ(m) time, our algorithm is very simple: repeatedly find
an augmenting path in a random sample of edges from the residual graph. Breaking from past work,
we demonstrate that we can benefit by random sampling from directed (residual) graphs. We also
slightly improve an algorithm for approximating flows of arbitrary value, finding a flow of value (1−ε)

times the maximum in Õ(m
√

n/ε) time.

Key words. minimum cut, maximum flow random graph, random sampling, connectivity, cut
enumeration, network reliability

AMS subject classifications. 05C21, 05C40, 05C80, 68W25, 68W40, 68Q25, 05C85

DOI. 10.1137/070705994

1. Introduction. In this paper we consider the problem of finding maximum
flows in undirected graphs with small integral edge capacities. We give an extremely
simple algorithm that finds a maximum flow of value v inO(m+nv) time by repeatedly
sampling from and finding augmenting paths in the residual graph; our approach
gives the first demonstration of the benefits for flow problems of random sampling
from directed (residual) graphs. Our techniques also offer some small improvement to
approximate max-flow algorithms in arbitrary-capacity graphs.

1.1. Background. The study of algorithms for graphs with small integer ca-
pacities is as old as the study of the general maximum flow problem. In fact, the
original O(mv)-time Ford–Fulkerson algorithm [6] is still the best known and most
efficient deterministic algorithm for sparse graphs with sufficiently small flows. Here
m is the number of edges, v is the value of the maximum flow, and n is the number
of nodes. The algorithm works by repeatedly finding augmenting paths from source
to sink in the residual graph defined by an existing, nonmaximal flow and adding flow
along those paths in order to increase the value of the existing flow. Finding one
augmenting path takes time O(m) and increases the flow value by one; the overall
O(mv)-time bound follows.

The dominant factor in the Ford–Fulkerson algorithm is the linear-time search for
an augmenting path. Once the path is found, actually modifying the flow along its (at
most n) edges is relatively quick. In one attempt to take advantage of this difference,

∗Received by the editors October 21, 2007; accepted for publication (in revised form) December
13, 2013; published electronically March 31, 2015. A preliminary version of this work appeared
previously as [18].

http://www.siam.org/journals/sicomp/44-2/70599.html
†Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technol-

ogy, Cambridge MA 02139 (karger@mit.edu, http://people.csail.mit.edu/∼karger). The work of this
author was supported in part by a grant from the National Science Foundation.

‡Akamai Technologies, 8 Cambridge Center, Cambridge, MA 02139 (mslevine@akamai.com).

320

c© 2015 David R. Karger and Matthew S. Levine

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78062451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.siam.org/journals/sicomp/44-2/70599.html
mailto:karger@mit.edu
http://people.csail.mit.edu/~karger
mailto:mslevine@akamai.com

RANDOMIZED AUGMENTING PATHS 321

Table 1

Summary of algorithms. The long history of Ω̃(mn)-time algorithms, which are still best for
large v, has been compressed.

Source Year Time bound Capacities Directed Determ.

Ford–Fulkerson [6] 1956 O(mv)
√ √ √

Even–Tarjan [5] 1975 O(mn2/3)
√ √

O(m3/2)
√ √

Karger [14] 1997 Õ(m2/3n1/3v)

Goldberg–Rao [9] 1997 Õ(mn2/3 log v)
√ √ √

Õ(m3/2 log v)
√ √ √

Goldberg–Rao [8] 1997 O(n
√
nm)

√

Karger [15] 1998 Õ(v
√
nm)

√

Karger–Levine [17] 1998 O(nm2/3v1/6)
√

Õ(m + nv3/2)
√ √

Õ(m + nv5/4)
√

Õ(m+ n11/9v)
√

Karger–Levine [18] (detailed here) 2001 Õ(m + nv)
√

Kelner et al. [21], Sherman [26] 2013 Õ(mv2/3)
√

Lee–Rao–Srivastava [22] 2013 Õ(m5/4v1/4)

Madry [24] 2013 Õ(m10/7)
√

Lee–Sidford [23] 2014 Õ(m
√
n log2 U)

√ √

the technique of blocking flows [4] was developed; it uses a single linear-time scan
to find and augment multiple paths simultaneously, thus amortizing the cost of the
scans. This approach yields faster algorithms for moderately large flow values [27, 1].
However, in the worst case for small flows it might find only one augmenting path
path per blocking phase.

Karger [13] developed a different approach for undirected graphs. He showed that
random samples from the edges of an undirected graph have nice connectivity proper-
ties, so that most of the necessary augmenting paths can be found by scanning small
random subsets of the edges in o(m) time. Applying this idea in a series of increas-
ingly complex algorithms yielded a sequence of peculiar time bounds: Õ(mv/

√
c)-time

for graphs with global minimum cut c [13], then Õ(m2/3n1/3v)-time for simple (unit-
capacity, without parallel edges) graphs [14], then Õ(m1/2n1/2v)-time [15]. Later
Karger and Levine [17] achieved time bounds of Õ(m + nv5/4) and Õ(m + n11/9v).
See Table 1 for a history of algorithms for small flow values.

In order to show which algorithms have the best performance for different values
of m and v relative to n, we have drawn figures: one for deterministic algorithms only
(Figure 1) and one including randomized algorithms (Figure 2). A point in the figure
represents the value of m and v relative to n. Specifically, (a, b) represents v = na,
m = nb. Each region is labeled by the best time bound that applies for values of
m and v in that region. Note that the region m > nv is uninteresting because the
sparsification algorithm of Nagamochi and Ibaraki [25] can always be used to make
m ≤ nv in O(m) time. The shaded region in Figure 2 corresponds to the algorithm
given in this paper.

In Figure 1, note that the O(nm2/3v1/6)-time deterministic algorithm (which is
the fastest algorithm for the region surrounded by a dashed line) is the only determin-

c© 2015 David R. Karger and Matthew S. Levine

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

322 DAVID R. KARGER AND MATTHEW S. LEVINE

m m

mn }

nm v

nv

Uninteresting

log m

nv

mv

log v
0 1

1

2

n

3/2

n

2/3 1/6

2/3

3/2

Fig. 1. Pictures of the best deterministic bounds (see text for explanation).

Uninteresting

10

1

2

log m
n

log vn

m m

mn 2/3

nv

Fig. 2. Pictures of the best randomized bounds (see text for explanation).

istic one in the picture that cannot handle capacities or parallel edges. If capacities
are being considered, then this algorithm should be removed from the picture; if only
simple graphs are being considered, then the picture should end at v = n. In a
similar vein, in Figure 1 dashed lines outline areas covered by two randomized algo-
rithms [24, 22] that apply only to unit-capacity graphs.

The complexity of these diagrams and recent significant improvements in max-
flow suggests that more progress can yet be made.

1.2. Our contribution. Our work closes a chapter in this line of research on
sampling, finally achieving a natural Õ(m+nv)-time bound, or amortized Õ(n)-time
per augmenting path. Since a flow path can have as many as n− 1 edges whose flow
value must be updated, this is arguably the best result (up to logarithmic factors)
that one can hope to achieve by edge sparsification alone.1

Our key advance is taking random samples of the edges of residual graphs. All the
previous work built on the fact that many augmenting paths could be found by taking
disjoint random samples from the original undirected graph edges. But once these

1On the other hand, it has been shown [17] that there exists a solution in which most augmenting
paths are short.

c© 2015 David R. Karger and Matthew S. Levine

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

RANDOMIZED AUGMENTING PATHS 323

paths are found and a nonzero flow established, we end up with a residual graph that
is directed, so we can no longer apply undirected graph-sampling results. This paper
shows that a residual graph remains similar enough to the original undirected graph to
let sampling be applied iteratively. With the exception of computing an “importance”
measure known as edge strength [2] in near-linear time at the beginning, our algorithm
is just this simple iteration: sample edges according to their strengths and find an
augmenting path, repeating until done.

Our approach has several additional applications. The factor of m represents a
preprocessing step that need be applied only once; afterwards, any max-flow cal-
culation runs in time Õ(nv). Using this fact, we show that a Gomory–Hu tree
representing all s-t min-cuts in a graph, which can be constructed using n max-
flow computations, can be built using our algorithm in Õ(mn) time on unweighted
undirected graphs (the Gomory–Hu algorithm computes a sequence of flows of value
vi such that

∑
vi = O(m); we show how using our flow algorithm takes time

O(m +
∑

nvi) = O(nm)). We also generalize the Benczúr–Karger smoothing tech-
nique to residual graphs. This lets us find a flow of value (1− ε) times the maximum
in Õ(m

√
n/ε) on graphs with arbitrary edge capacities, improving on the Benczúr–

Karger [2] result of Õ(m
√
n/ε). That in turn lets us slightly improve the ε-dependence

for s-t min-cut approximation as well.

1.3. Outline. The rest of this paper is organized as follows. In section 2 we
review some notation and basic definitions. In section 3 we give a simple algorithm
(with a worse time bound) that demonstrates our key idea of sampling from residual
graphs. In section 4 we incorporate the idea of nonuniform sampling based on edge
strengths [2] and give the main algorithm and its running time analysis. In section 5
we prove the key sampling theorem on which the algorithm depends. In section 6 we
generalize this approach to compute approximate max-flows on capacitated graphs.
We conclude and discuss some open questions in section 7.

A preliminary version of this work was published previously [18]; here we flesh out
details and intuition, give cleaner proofs, and add results on approximate max-flow.

2. Notation and definitions. We use the following notation:
G the graph
v the value of a maximum flow
n the number of nodes
m the number of (undirected) edges
s the source
t the sink
f a flow or its value, as determined by context
Gf the residual graph of G with respect to f
e an edge
ue or u(e) the capacity of edge e
uf (e) the residual capacity of edge e given flow f
ke the strength of edge e (defined below)
X the set of edges that cross a given cut

It is common to define a cut as a nonempty proper subset of the vertices. For
convenience, in our proofs we often use a shorthand of referring to a cut by the set
of edges that cross the cut, for which we have used the symbol X . In particular, in
several cases where we wish to sum over the edges that cross a cut, we write

∑
e∈X .

c© 2015 David R. Karger and Matthew S. Levine

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

324 DAVID R. KARGER AND MATTHEW S. LEVINE

Note that the graph has m undirected edges, but that each undirected edge rep-
resents two directed ones.

For graphs G with edge weights xe and H with edge weights ye and scalar value
α, we define H + αG to be the graph with edge weights ye + αxe.

We say that an event occurs with high probability if the probability that it does
not occur (when we are considering graphs of size n) is inverse polynomial in n; in
general, the polynomial can be made as large as we like by appropriate choice of
constants in the algorithm.

We recall the following classical result.
Lemma 2.1. Given a graph G and s-t flow f , every s-t cut in Gf has capacity

(from the s side to the t side) exactly f less than its value in G.
Proof. The proof is immediate by flow conservation [27].
For our proofs, it will be helpful to consider relative rather than additive changes

in cut values, as shown next.
Corollary 2.2. If G has minimum s-t cut v, then every s-t cut in Gf has

residual capacity at least (v − f)/v times its value in G.
Proof. If the original cut value was v′, then, by Lemma 2.1, its residual value is

v′ − f = v′(v′ − f)/v′ ≥ v′(v − f)/v since v′ ≥ v.

3. A simple algorithm. We begin with a simple algorithm that demonstrates
sampling from a residual graph. Karger [13] used undirected-graph sampling for an
algorithm with running time Õ(mv/

√
c) in graphs with global minimum cut c; we

show that by applying sampling to residual graphs we can improve this running time
to Õ(mv/c). To analyze this algorithm, we need a slight variant of the Reliability
Lemma (Lemma 3.5) from [2].

Reliability Lemma 3.1 (after [2]). Let G be an n-vertex weighted undirected
graph, and let c1, c2, . . . be a list of the values of all the cuts, with c = min ci the
minimum cut. If α−c ≤ n−2, then∑

i

α−ci = O(n2α−c).

Proof. This is a restatement of the reliability lemma from [2] with all pe = α,
since in that case maxC

∏
e∈C pe = α−c.

We now use the above lemma to prove a sampling theorem for residual graphs.
Theorem 3.2. If G is a c-connected unweighted graph, f is a flow, and

(6mv/c)(lnnv)/(v − f) edges of Gf are chosen at random, then with high probability
there is an augmenting path in the sample.

For simplicity, the theorem assumes sampling with replacement. Of course, a
duplicate sample has no impact on whether the sampled edge set has an augmenting
path.

Proof. There is an augmenting path in the sample if and only if every s-t cut has
a sampled residual edge crossing it (from the s side to the t side). We show that the
probability of any s-t cut not having an edge sampled is small. Consider any s-t cut of
original value r. By Corollary 2.2 the cut has capacity r(v−f)/v in Gf . The residual
graph has at most 2m directed edges, so for each sampled edge the probability that
we choose one of the cut edges is at least r(v − f)/2mv. With the given number of
samples, the probability that no edge of the cut is sampled is therefore(

1− r(v − f)

2mv

)(6mv/c)(lnnv)/(v−f)

≤ exp

(−3r(lnnv)

c

)

= (nv)−3r/c.

c© 2015 David R. Karger and Matthew S. Levine

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

RANDOMIZED AUGMENTING PATHS 325

The sum of this quantity over all s-t cuts union-bounds the probability that any cut
is empty. But that sum has the form of Reliability Lemma 3.1, with α ≥ (nv)3/c.
This means α−c = (nv)−3, so the conditions of Lemma 3.1 apply. We conclude that
the sum is O(n2α−c) = O((nv)−1), meaning that no cut is empty with high probabil-
ity.

Suppose for now that c and v are known. Consider the following algorithm:

initially f is the empty flow
repeat v times

sample (6mv/c)(lnnv)/(v − f) edges from Gf

find an augmenting path in the sample and augment it

Theorem 3.2 proves that this algorithm is correct with high probability: in each
iteration, an augmenting path will exist in the sample with probability 1− (nv)−1, so
after v iterations we will reach f = v with probability 1− 1/n.

Now we turn to the running time. If we store the edges in an array, it is straight-
forward to choose a random subset of them by probing random positions in the array,
taking O(1) time per sampled edge. Note that, as we augment, certain edges may
“reverse direction” in the residual graph, but they can continue to occupy the same
array locations for sampling. Using this sampling scheme, the time to sample and the
time to compute (and augment) an augmenting path are both linear in the number of
sampled edges. With this implementation, the running time of the algorithm becomes

O

⎛
⎝v−1∑

f=0

(mv/c)(lnnv)/(v − f)

⎞
⎠ = O

⎛
⎝(mv/c)(lnnv)

v−1∑
f=0

1/(v − f)

⎞
⎠

= O(mv(ln nv)(ln v)/c)

= O(mv(log2 nv)/c).

The algorithm just given assumes a knowledge of v and c, but that is not needed.
The number of edges that needs to be sampled in each iteration is clearly between n
and m. Start by sampling n edges, and then repeatedly double the sample size until
an augmenting path is found. Theorem 3.2 asserts that this will happen with high
probability as soon as the sample size exceeds (6v/c)(lnnv)/(v − f), which means it
will be at most twice that. Since sampling and augmenting takes time proportional
to the number of sampled edges, this repeated doubling work is dominated by the
final stage (with the “correct” sampling rate), whose running time has already been
accounted for in the previous analysis.

4. A faster algorithm with nonuniform sampling. The simple algo-
rithm above used residual-graph sampling to improve max-flow computation from
Õ(mv/

√
c) [13] to Õ(mv/c). However, it still exhibits a dependence on c—if m is

large and c is small, the running time is large. Benczúr and Karger [2] showed how to
fix this problem, effectively replacing m/c by n. We combine that approach with our
residual sampling ideas to get an Õ(m+ nv) running time for our exact algorithm.

Definition 4.1. The strength of an edge e, denoted ke, is the maximum value
of k such that a k-edge-connected vertex-induced subgraph of G contains e. We say
e is k-strong if its strength is k or more, and k-weak otherwise. The strength of
a residual-graph edge is the strength of the underlying undirected edge of which it is
a part. The connected components induced by the k-strong edges are the k-strong
components.

c© 2015 David R. Karger and Matthew S. Levine

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

326 DAVID R. KARGER AND MATTHEW S. LEVINE

Benczúr and Karger [2] give an algorithm for estimating edge strengths in
O(m log2 n) time on unweighted graphs (and O(m log3 n) given arbitrary graph
weights). More precisely, they compute approximate lower bounds k′e on those
strengths that satisfy the key properties we will need.

Our algorithm is easy to state. With the possible exception of the first step,
it ought to be correspondingly easy to implement. It is of course difficult to know
whether it will perform well in practice without actually implementing it.

1. run the Benczúr–Karger algorithm [2] to compute good lower bounds
k′e on the edge strengths.

2. α = 1.
3. while αn < m,

(a) sampling according to weights ue/k
′
e, choose αn edges from

Gf (with replacement, but ignoring duplicates).
(b) find and augment an augmenting path among the sampled edges

(which is also an augmenting path in G).
(c) if no path is found, double α.

4. find and augment paths in the entire residual graph until none remain.

The correctness of the algorithm is obviously guaranteed by the last step. Analysis
of the running time is not obvious; it is the subject of the remainder of the section.

4.1. How to sample.

4.1.1. Cumulative sums. We must fill in some details on how to sample. Con-
sider a set of m items, each with a weight we, with weights summing to a total W .
We wish to choose a single item e with probability we/W . Order the items arbitrarily.
Compute cumulative sums of prefixes of the order, producing m+1 cumulative sums.
An item can be sampled by generating a random number in the range [0,W] and
finding its position between two adjacent values in the cumulative sum array. The
most obvious way to find the position is through binary search; this selects an item
in O(logm) time.

A faster sampling method precomputes the positions in the array of m evenly
spaced marker values kW/m for k = 1, . . . ,m (i.e., the two array indices between
which each of the marker values falls) and stores the corresponding indices in a sep-
arate size-m array. The markers divide the number range [0,W] into m equal-sized
marker intervals of length W/m that contain the cumulative sums; each marker in-
terval is subdivided into smaller subintervals by the cumulative sums it contains. We
can choose a random edge by first choosing a marker interval uniformly at random
and then choosing a random offset uniformly from the range [0,W/m] within the
interval and locating the resulting quantity among the cumulative sums inside the
selected interval. Assuming we can generate a random number in constant time (or
using the rounding technique of the first method), we can choose a marker interval in
constant time using the secondary array and then find a subinterval within it using
binary search in time proportional to the log of the number of subintervals in that
marker interval. Since there are m marker intervals and m cumulative sums, each
interval contains on average one cumulative sum. So finding the right subinterval
of an interval takes O(1) time in expectation. Since the maximum time for a single
sample is O(logm), a standard Chernoff bound shows that, over the large number of
trials in this algorithm (at least n), the time will average to O(1) per sample with

c© 2015 David R. Karger and Matthew S. Levine

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

RANDOMIZED AUGMENTING PATHS 327

high probability.2

4.1.2. Numerical precision. One might be concerned about the numerical
computations involved in summing fractional edge weights. To address this, scale
all the edge weights by nm2(m + nv)/max k′e so that the sum W > nm2(m + nv).
Then round all fractions to the nearest integer. Now summing weights and sampling
is straightforward, and we have introduced a perturbation of at most m to any sum.
If we imagine the weights defining adjacent lengths on the real line, then these per-
turbations move the boundaries between the lengths. A particular sampling outcome
is changed by these perturbations only if one of the boundaries is perturbed across
the random number that defines the sample. Since there are only m boundaries and
each is perturbed by at most m, only m2 total length is traversed by the perturbed
boundaries, so the probability that a particular sample hits some of this length is at
most m2/nm2(m+ nv) = 1/n(m+ nv).

We will soon prove that the algorithm takes only Õ(m + nv) time. Thus the
probability that any of the Õ(m + nv) samples taken during the execution of the
algorithm is different than it would have been using exact arithmetic is Õ(1/n), so
this possibility can be ignored.

We can reduce the probability of a “faulty” sample further, to any polynomially
small value, by increasing the scaling factor by a corresponding polynomial amount.

4.1.3. Sampling the residual graph. Our algorithm needs to choose residual
graph edges according to weights ue/ke. This would not seem to fit the algorithm
just described, since the set of residual edges changes each time. Note, however, that
when we augment flow through an edge, we simply move some of the capacity from
an edge to its reverse edge. Thus, the total capacity on the two directions of an edge,
which we can associate with the undirected edge between the same endpoints, does
not change. Similarly, the quantity

∑
ue/ke, which serves as W , does not change. We

can therefore use the above scheme to choose from among the undirected edges; we
then choose a direction for that edge by flipping a coin biased according to the current
residual capacity in the two directions along that edge. Alternatively, when we select
an undirected edge, we may simply include both directions of it in the sample—this
only doubles the number of edges taken, and only increases the probability of any
edge being chosen, so our runtime analysis still applies.

4.2. The runtime analysis. The foundation of our analysis is the following
theorem, which extends the main theorem of Benczúr and Karger [2] to residual
graphs.

Theorem 4.2. Consider graph G with s-t max-flow v and some s-t flow f . Let
β = 32v lnnv

v−f . Given the estimated edge strengths k′e, if a sample of βn residual-graph

edges are chosen according to weights ue/k
′
e, then with high probability there is an

augmenting path in the sample.
This result holds whether we sample with or without replacement. In our algo-

rithm for simplicity we sample with replacement. This means we may get the same
edge multiple times. But we ignore duplicate samples without affecting the presence
of an augmenting path.

We will prove the theorem in section 5. Given the theorem, we add up the times

2More generally, one can prove that the number of (random) bits needed to sample from a
distribution is equal to the entropy of this distribution in expectation; since our distribution has only
m elements, its entropy is at most logm; i.e., a single random “machine word” suffices to choose one
edge.

c© 2015 David R. Karger and Matthew S. Levine

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

328 DAVID R. KARGER AND MATTHEW S. LEVINE

for each step of our algorithm to get the total running time. The first step, computing
edge strengths, requires O(m log2 n) time, or O(m log3 n) time if the input graph has
superpolynomial capacities [2]. Then, in each iteration of the loop we need to select
αn edges and search for an augmenting path.

As discussed in section 4.1, the time to sample edges will, after O(m) preprocess-
ing, average to O(1) per edge with high probability. Thus, the time to sample as well
as the time to seek an augmenting path is linear in the number of sampled edges.
The quantity α is initially small and is doubled when we fail to find an augmenting
path. Theorem 4.2 asserts that with high probability this doubling will happen only
when α < β from Theorem 4.2. It follows that in each augmentation, α < 2β. Thus,
sampling and searching for an augmenting path takes O(αn) = O(βn) time. Since the
amount of remaining flow is v−f , we can spend at most O(βn(v−f)) = O(nv lognv)
time before we run out of augmenting paths and double α. We can double α only
lg(m/n) times before α = m/n and we move to the final cleanup step of the algo-
rithm, so the total time for the loop is O(nv lognv logm/n). When α = m/n, it
must be the case that β > m/2n so v/(v − f) = Ω(m/(n lognv)). In other words,
v − f = O((nv lognv)/m), which means that the time for the cleanup step is only
O(m(v−f)) = O(nv lognv). Therefore, the total running time is O((m+nv) log2 nv)
for unweighted graphs (with an additional O(m log3 n) term for weighted graphs).

Note that, so long as there is a residual path (f ≤ v − 1), we have β ≤ 16v lnnv.
Thus, when sampling 16nv lnnv edges, we will find an augmenting path with high
probability. However, with the Nagamochi–Ibaraki preprocessing step [25], we can
always arrange for m ≤ nv, so we will never get to this high a sampling rate in our
algorithm.

4.3. Algorithm variants. The algorithm as stated above is the cleanest to
analyze; however, several variants of the algorithm can be considered that have inter-
esting implications or may work better in practice. For those interested only in the
Õ(m+ nv) bound, this section can be skipped.

4.3.1. Lazy sampling. The original algorithm explicitly maintains a sampling
rate α, but this is not necessary. Consider the algorithm in Figure 3. This algorithm
chooses exactly as many random edges as are needed to find an augmenting path. It
can be seen as a lazy version of the previous algorithm that reveals the sampled edges
one at a time and terminates the process as soon as the path is found. Therefore, it
chooses no more edges than are chosen by the previous version of the algorithm, so
the previous bound on edges sampled applies.

Since this variant just samples edges until an augmenting path is found, there is
no need to explicitly maintain the quantity α that controls the size of the samples—
the algorithm can simply keep augmenting until an augmentation step samples all
edges without finding an augmenting path.

As for runtime, note that each vertex gets marked and each edge scanned when
it can be reached from s. When t gets marked, the marks can be traced backward
(since each node is marked with its predecessor) to find the augmenting path. Since
each sampled edge is scanned only once, the total time is linear in the number of
sampled edges. The runtime bound of the previous algorithm therefore applies here.
In practice, this lazy version might check fewer edges and outperform the previous
one.

4.3.2. Local termination. Alternatively, we can effect a more local search.
In each iteration, perform a standard augmenting path search. But each time we

c© 2015 David R. Karger and Matthew S. Levine

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

RANDOMIZED AUGMENTING PATHS 329

Procedure scan(vertex u, vertex v, graph H).
if v is marked

return
else

mark v with u
for each (v, w) in H

scan(v,w,H)

Procedure augment(Gf).
make an empty graph H on the vertices of Gf

unmark all vertices
mark s
repeat until t is marked or all edges of Gf are sampled

choose a random edge (v, w) from Gf (biased according to ue/k
′
e)

add (v, w) to H
if v is marked then

scan(v, w, H)

Fig. 3. A lazy sample-and-augment algorithm.

encounter a new vertex, we flip coins to decide which of its outgoing edges are part
of the current iteration’s sample. We then limit the continuation of the augmenting
path search to those edges that were chosen. Looked at this way, we can think of
our algorithm as nothing more than an augmenting path search that chooses random
outgoing neighbors and applies “early termination” of the search at each vertex. This
will waste less time generating samples for vertices we don’t visit.

4.3.3. Nonadaptive sampling. As was discussed in the original algorithm,
we sample directed edges by sampling their underlying undirected edges and then
choosing a direction based on the residual capacity in each direction. The ue/k

′
e

sampling probabilities of the undirected edges do not change in the residual graphs.
Thus, if we take both directions, which only doubles the sampled graph size, then
our sample becomes independent of the particular residual graph and can be chosen
without regard to it. Thus, one can plan out the sampling schedule (which edges
are included in which iteration) before doing any of the augmentations. And this
schedule can remain fixed even if multiple distinct max-flows are computed, as in the
Gomory–Hu tree algorithm below.

4.4. Gomory–Hu trees. A particular application of our time bound is to
Gomory–Hu trees. The Gomory-Hu tree [10] is a single tree that represents all

(
n
2

)
terminal-pair min-cuts in a graph—each edge in the tree is given a weight, and the
maximum flow from u to v is equal to the minimum weight on the path from u to
v in the tree. A Gomory–Hu tree always exists and can be found by performing n
max-flow calculations in the graph. Our algorithm can be applied to those max-flow
calculations. Since on simple graphs the maximum flow is bounded by the maximum
degree n, a bound of Õ(m+n3) is immediate for computing the n max-flows for such
graphs. But an observation of Hariharan et al. [11] shows a stronger result, as follows.

Lemma 4.3 (see [11]). The sum of edge weights in the Gomory–Hu tree of an
unweighted graph is at most 2m.

c© 2015 David R. Karger and Matthew S. Levine

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

330 DAVID R. KARGER AND MATTHEW S. LEVINE

Proof. Root the Gomory–Hu tree anywhere. Observe that the edge from vertex
u to its parent v has weight equal to the maximum flow from u to v, which is upper
bounded by the degree of u. It follows that the sum of edge weights is upper bounded
by the sum of vertex degrees, which is at most 2m.

Corollary 4.4. In unweighted undirected graphs, a Gomory–Hu tree can be
built in Õ(mn) time with high probability.

Proof. The Gomory–Hu tree construction algorithm computes a series of maxi-
mum flows in the graph. Each maximum flow computation discovers an edge of the
Gomory–Hu tree T whose weight is equal to the value of the maximum flow com-
puted. The total time to compute all maximum flows using our algorithm can be
broken into the time to compute edge strengths in each of the n flow calculations,
which is Õ(mn), plus the time to use our algorithm to find each max-flow, which is
Õ(n

∑
e∈T we), where we is the weight of edge e in T . The previous lemma shows

that
∑

we = O(m), and the result follows.
We can simplify this algorithm (and shave some logarithmic factors) by observing

that edge strengths need be computed only once, at the beginning of the algorithm,
and can then be used in all phases. This is not immediate because the Gomory–
Hu algorithm, each time it finds an edge of the Gomory–Hu tree, contracts the two
endpoints of that edge into a single vertex. This can change edge strengths. Fortu-
nately, contraction never decreases edge strengths (cf. [2]). Thus, the original k′e are
still valid-strength lower bounds, which is sufficient for use in sampling (as will be
discussed in section 5).

Hariharan et al. [11] achieve the same Õ(mn) time bound; however, their con-
struction is based upon a Steiner connectivity calculation that uses tree packing. Our
algorithm uses the traditional sequence-of-max-flowsmethod, simply accelerating each
max-flow calculation.

5. Proof of the residual sampling theorem. It remains to prove Theorem
4.2. This is essentially a combination of the compression theorem from Benczúr and
Karger [2, Compression Theorem 6.2] (on sampling nonuniformly using edge strengths
from undirected graphs) with our Theorem 3.2 (on sampling uniformly from directed
residual graphs). As in the proof of Theorem 6.2 of [2], we show that edges inside
well-connected subgraphs can be sampled with lower probability without disrupting
connectivity. As in Theorem 3.2 here, we show that increasing the sampling proba-
bility makes up for the capacity consumed by the existing flow.

Our analysis considers the assignment of sampling weights to the edges of G and
the value of the minimum cut in the resulting weighted graph; care must be taken
to distinguish between (original graph) capacitated cut values and what we shall
hereafter refer to as weighted cut values.

5.1. Supporting lemmas. Before we can prove the main theorem, we need
some supporting lemmas from the companion article [2].

Lemma 5.1 (Corollary 4.9 of [2]). An n vertex graph has at most n − 1 strong
components.

Lemma 5.2 (Lemma 4.10 of [2]). The graph in which edge e is given weight ue/ke
has weighted minimum cut at least 1. Similarly, each of the strong components of the
graph, considered on its own, has weighted minimum cut at least 1.

Lemma 5.3 (Lemma 4.11 of [2]). In the undirected graph G the edge strengths ke
satisfy

∑
ue/ke ≤ n− 1.

c© 2015 David R. Karger and Matthew S. Levine

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

RANDOMIZED AUGMENTING PATHS 331

Corollary 5.4. In the residual graph Gf the edge strengths satisfy∑
uf(e)/ke ≤ 2n.

Proof. Total capacity is conserved in the residual graph since augmentations only
change the direction of some capacity. Each undirected edge of G contributes its
capacity in both directions initially, which gives the factor 2.

Lemma 5.5 (Decomposition Lemma 5.3 of [2]). Any graph G can be decomposed
as a positive weighted sum of graphs

∑
αiGi, where each Gi is one of the at most n

strong components of G with edge e given weight ue/ke.

5.2. Proof of the main theorem. We combine all the above pieces to prove
Theorem 4.2. To keep the proof clean, we start with the simplifying assumption that
all edge strengths ke are known exactly and used for sampling. Given this assumption,
we set β = 8v ln(nv)/(v − f) (which is 1/4th of its value in Theorem 4.2). At the
end of the analysis, we will show how relaxing the assumption costs only the constant
factor 4.

We give a preliminary application of the above lemmas to prove our sampling
theorem for the case f = 0 (so β = 8 lnnv). To model sampling with probabilities
ue/ke, define the weight of edge e as we = ue/ke, so that we sample each edge with
probability proportional to its weight.

Corollary 5.4 says that the total weight
∑

ue/ke ≤ 2n. Thus, when we choose a
directed edge from the graph (using weights ue/ke), the probability that we choose
an edge from a cut of weight r is at least r/2n. Thus, over βn = 8n lnnv choices, the
probability that we fail to choose any edge from that cut is at most (1−r/2n)8n lnnv ≤
e−4r lnnv = (nv)−4r . Since by Lemma 5.2 the graph has minimum weighted cut 1,
this quantity is at most (nv)−4 for any cut. Summing this quantity over all cuts
union-bounds the probability that we fail to sample an edge from some cut. Thus
the conditions of Reliability Lemma 3.1 apply (with α = (nv)−4 and c = 1), implying
that the sum over cuts is O((nv)−2), meaning that every cut has a sampled edge with
high probability. But this implies that there is an augmenting path.

This argument applies not only to the entire graph, but also to each of the (at
most n by Lemma 5.1) strong components of the graph. In other words, every cut
of each strong component will also have an edge sampled. This is immediate from
Lemma 5.2 that each strong component has weighted minimum cut 1.

Let us now consider later iterations of the algorithm. The flow running through
the graph can decrease the capacity of cuts, but we would like to argue that the
increased sampling probability (by a factor of v/(v−f)) makes up for the lost capacity.
This was relatively straightforward under the uniform-sampling approach of section 3,
but the use of edge strengths complicates the issue. While we can bound the amount
of lost capacity using Corollary 2.2, we cannot immediately bound the amount of lost
sampling weight, i.e., strength, associated with the flow. It is possible that the flow
consumes all of the low strength (and thus high sampling weight) edges. However, we
will invoke Lemma 5.5, which writes G as a sum of well-connected graphs, and argue
that moving flow around cannot make them all badly connected at the same time.
Generalizing Corollary 2.2, we have the following result.

Lemma 5.6. Any s-t cut induces, in some strong component of G, a cut whose
residual edges have total sampling weight at least (v − f)/v times the original weight
of that cut.

Proof. Lemma 5.5 asserts that G =
∑

αiGi, where edge e in each Gi is given
weight ue/ke. Thus

∑
Gi�e αi = ke. Let G′

i denote the graph on strong com-

c© 2015 David R. Karger and Matthew S. Levine

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

332 DAVID R. KARGER AND MATTHEW S. LEVINE

ponent Gi in which edge e is given weight uf(e)/ke. Then
∑

Gi�e αiuf (e)/ke =
(uf (e)/ke)

∑
Gi�e αi = uf(e) for every e, so

∑
αiG

′
i = Gf and, in particular, the

capacity of cut C in Gf is the αi-weighted sum of the weights of C in the G′
i.

Suppose for contradiction that there is some cut C where every strong component
Gi fails the claim of the lemma, meaning that the weight of C in G′

i is less than
(v − f)/v times its original (prior to subtracting flow) weight. Then the capacity of
C in Gf , which is a weighted sum of those capacities in G′

i, must also be less than
(v − f)/v times its original capacity. This contradicts Corollary 2.2.

We will refer to any cut of some k-strong component whose residual weight is at
least (v − f)/v times its original weight as a heavy cut ; the lemma above states that
any s-t cut induces a heavy cut in some strong component. It follows that if an s-t
cut is left empty when we sample, the heavy cut it induces must also be left empty.

So consider any heavy cut with original sampling weight w. By definition its
residual weight is at least (v − f)w/v. Thus, since the total graph weight is at most
2n by Corollary 5.4, the probability that a random edge is chosen from the cut when
sampling by weight is at least (v − f)w/2nv. Theorem 4.2 considers sampling βn
edges from the graph; thus the probability that it fails to choose an edge from the
heavy cut is (1− (v − f)w/2nv)βn ≤ e−4w lnnv = (nv)−4w .

We now apply a union bound over all heavy cuts, which we compute by adding a
union bound taken in each strong component separately. In a particular component,
heavy cut i of original weight wi contributes value (nv)−4wi to the sum, so we can
upper bound the sum by summing (nv)−4wi over all cuts. (Note that we are summing
based on original weights; summing all cuts based on residual weights would fail, as
residual weights on nonheavy cuts can be very small.) By Lemma 5.2, the minimum
wi in the strong component is 1. Thus, by Reliability Lemma 3.1, the sum is at most
O(n2(nv)−4) = O((nv)−2). It follows that over all n components (Lemma 5.1) the
probability of failing to sample from any heavy cut is O((nv)−1).

This completes our proof of Theorem 4.2: every s-t cut induces a heavy cut in some
strong component, and every heavy cut has an edge sampled with high probability;
thus every s-t cut has an edge sampled with high probability.

One detail remains. We performed the entire analysis using exact edge strengths.
We do not know how to compute exact edge strengths quickly. However, Benczúr and
Karger [2] give an algorithm that computes lower bounds k′e on the edge strengths
such that

∑
1/k′e ≤ 4n. If we use the quantities 1/k′e in our algorithm, then, since

the total weight of edges is at most 4 times that claimed in Corollary 5.4, and since
each edge weighs no less than assumed in the analysis above, we conclude that the
probability of a given edge being chosen is at least 1/4 of the probability assumed in
our analysis. Therefore, if we choose 4 times as many edges, the probability of any
edge being chosen rises to match the value used in the analysis above. Increasing the
constant from the 8 we used in our proof to 32 in Theorem 4.2 provides the needed
factor of 4 increase.

6. Approximate flows by graph smoothing. Benczúr and Karger [2] also
developed a “smoothing” technique for approximating max-flows. They showed how
to split apart high-strength edges so that a uniform random sample of the resulting
graph preserved cut values. Our previous sampling theorem for residual graphs (The-
orem 4.2) proves a weaker result—that the sample contains an augmenting path. In
this section we show that it is also possible to smooth a residual graph so that the
values of residual cuts, and not just their nonemptiness, is preserved. This result
is stronger than what we stated above, but the proof is somewhat messier and not

c© 2015 David R. Karger and Matthew S. Levine

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

RANDOMIZED AUGMENTING PATHS 333

necessary for that algorithm. However, we can use this stronger result to give a faster
approximation algorithm for max-flows of arbitrary value in capacitated graphs.

In terms of time bounds, this material is rendered obsolete by the recent work
of Kelner et al. [21] and Sherman [26]. However, the techniques are entirely different
and may find other applications.

6.1. Sampling from smooth graphs.
Definition 6.1. Given a graph G, let G(p) denote a random graph constructed

by choosing each edge independently at random with probability p.
Note that if G is a capacitated graph, we choose (or don’t) each edge as a whole;

we don’t treat it as a bundle of separately sampled unit-weight edges.
Definition 6.2 (see [2]). A graph G with edge capacities ue and edge strengths

ke is c-smooth if, for every edge, ke ≥ cue.
Theorem 6.3. Let G be a c-smooth graph with max-flow v, and let f be any flow

on it. Let p = 2ρε

c
v

v−f , where ρε = 16(lnn)/ε2 for ε < 1/2. If p < 1, then with high

probability, the minimum s-t cut in Gf (p) exceeds p(v − f)(1− ε).
This theorem generalizes [2, Smooth Sampling Theorem 7.2] to residual graphs.

Our theorem scales up the sampling rate by a factor of 2v/(v − f) from the original.
Generalizing to residual graphs raises the same two issues as in Theorem 3.2.

First, the flow of value f has subtracted f capacity from every s-t cut. This is easy
to handle. If the original minimum cut was v, then as stated in Corollary 2.2 every
residual cut has value at least a (v − f)/v fraction of its original value. Thus, scaling
up all sampling probabilities by 2v/(v−f) as specified in the theorem cancels out this
decrease in capacity. The second problem is more complicated: the flow can move
capacity around, taking it from edges of low strength (which are sampled with high
probability) to edges of high strength (which are sampled less). This suggests that
we may not be able to guarantee to sample enough capacity. However, aside from
the already handled loss of f capacity, the capacity in a cut can only be moved, not
destroyed. Thus, we can show that the necessary sampled capacity is coming from
somewhere, even if it is not coming from the edges that originally had it. This idea
is captured in the following lemma.

Lemma 6.4. Let G be any undirected graph with minimum cut c and edge ca-
pacities ue ≤ 1. Let G′ be a (possibly directed) variant of G on the same edges but
with capacities u′

e satisfying u′
e ≤ 2ue. Let ε ≤ 1. If we let p = ρε/c as in [2, Basic

Sampling Theorem 3.1] and construct G′(p), then with high probability, each cut of
value v in G and v′ in G′ will have value at least pv′(1− ε

√
2v/v′) in G′(p).

Note that the capacity condition on G′ is satisfied by any residual graph of G.
Proof. The theorem [2, Basic Sampling Theorem 3.1] was proved by bounding

the probability that each cut diverged by ε from its expectation and summing those
probabilities in a union bound. For this new lemma, we have chosen the error bound
for each cut in G′(p) so that the Chernoff bound on the probability of exceeding
it is the same as the Chernoff bound on the probability that the same cut (vertex
partition) in G(p) exceeds its factor (1− ε) error bound in Theorem 3.1 of [2]. Thus,
when we apply the union bound on G′(p) we get the same sum as we did for G(p)
and can conclude that with high probability no cut exceeds its error bound in G′(p).

In more detail, consider a cut of value v in G and v′ in G′. The expected value of
sampled edges in G′(p) is pv′. We are setting a target error bound of (1− ε

√
2v/v′) =

(1 − δ), where δ = ε
√
2v/v′. Since each u′

e ≤ 2ue ≤ 2, we can scale all weights
by 1/2 (halving the expected value to pv′/2) and apply the Chernoff bound [3] for
variables of maximum value 1 to conclude that the probability that the cut exceeds

c© 2015 David R. Karger and Matthew S. Levine

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

334 DAVID R. KARGER AND MATTHEW S. LEVINE

its error bound is exp(−δ2(pv′/2)/3) = exp(−ε2pv/3), which is same bound we gave
on the divergence probability of the analogous cut by ε in G(p) in the proof of Basic
Sampling Theorem 3.1 of [2]. Thus, the union bound has the same small value.

We now prove Theorem 6.3 by generalizing the above lemma on (residual) graphs
of minimum-cut c to arbitrary c-smooth residual graphs, using the same graph-
summation technique we used in Theorem 4.2.

Proof of Theorem 6.3. We first sketch the special case of the analysis done pre-
viously for undirected graphs [2]. It decomposes the graph G as a weighted sum of
at most n graphs G =

∑
αiGi such that each graph Gi has maximum edge weight

ue/ke ≤ 1/c (for the smoothness parameter c) and minimum cut 1. We apply [2, Basic
Sampling Theorem 3.1] to conclude that, when sampled with probability p = ρε/c,
each graph Gi diverges by at most ε from its expectation with high probability. If no
one graph diverges too much, then the sum does not diverge. In [2, Basic Sampling
Theorem 3.1] the bound on the divergence probability for each graph was based on a
union bound that summed the probability that each cut diverged from its expectation.

To generalize this sampling approach to residual graphs we decompose the graph
in exactly the same way, assigning edge weight uf(e)/ke in Gi to each ki-strong edge
present in Gi (where uf (e) is the residual capacity of e given flow f) and using the
same αi. Given the flow, the graphs Gi may not be ki-strong using their residual
connectivities. However, the residual capacities satisfy 0 ≤ uf (e) ≤ 2ue—since G is
undirected, the amount of residual capacity added to edge e can be at most ue. We
can therefore apply Lemma 6.4 to conclude a bound on the deviation probabilities of
residual cuts in each Gi that can be summed to bound the cut in Gf .

In more detail, consider some particular s-t cut of value w inG and thus w′ = w−f
in Gf . Its value is spread over the various graphs Gi; let wi and w′

i be the value
contribution to that cut from Gi and G′

i, respectively, meaning
∑

αiwi = w and∑
αiw

′
i = w − f . Lemma 6.4 asserts that the value of this cut in G′

i(p) is at least
pw′

i(1 − ε
√
2wi/w′

i) with high probability. It follows that with high probability the
total value of this cut in Gf (p) exceeds

∑
αipw

′
i

(
1− ε

√
2wi/w′

i

)
=

∑
αipw

′
i − pε

∑
αi

√
2wiw′

i

= pw′ − pε
∑√

2αiwi · αiw′
i

≥ pw′ − pε

√
2
(∑

αiwi

)(∑
αiw′

i

)

= pw′ − pε
√
2ww′

= p(w − f)
(
1− ε

√
2w/(w − f)

)
.

The final quantity is an increasing function of w (because w/(w − f) is decreasing);
thus, since w ≥ v for any s-t cut, we can conclude that every cut has value at least
p(v − f)(1− ε

√
2v/(v − f)).

At this point, we have proven that when p = ρε/c as in Lemma 6.4, then with high
probability the relative error is ε

√
2v/(v − f). It follows that if instead we multiply

p by a factor of 2v/(v − f) to p = (ρε/c)(v/(v − f)), as is proposed in Theorem 6.3,
then, since p is quadratic in the error ε, the error decreases by a factor of

√
2v/(v − f)

to ε. The completes the proof of Theorem 6.3.

6.2. Application: Approximate max-flow. We show how that above sam-
pling theorem can be used in an approximation algorithm for maximum flow in arbi-

c© 2015 David R. Karger and Matthew S. Levine

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

RANDOMIZED AUGMENTING PATHS 335

trarily weighted graphs. The bound we achieve is essentially dominated by the new
generation of Õ(m/ε2)-time approximation algorithms [26, 21]; however, it demon-
strates a general technique for speeding up flow algorithms.

Goldberg and Rao [9] show how blocking flows can be applied to capacitated
graphs, achieving a time bound of Õ(m3/2) for maximum flow on any graph. Benczúr
and Karger [2] use the Goldberg–Rao algorithm in an approximation algorithm for
maximum flow; it finds a flow with (1 − ε) of the maximum flow’s value in time
Õ(m

√
n/ε). We show how sampling from residual graphs can improve the algorithm’s

running-time dependence on ε next.
Theorem 6.5. In an undirected graph, a (1− ε)-approximation to the maximum

flow can be found in Õ(m
√

n/ε) time.
Proof. Let us evaluate the time to convert from a (1 − δ) approximation to a

(1−δ/2)-approximation—that is, to reduce the residual flow from v−f = δv to δv/2.
Note that over the course of this augmentation we have v/(v − f) ≥ 2/δ.

Benczúr and Karger [2] show how to transform any graph into a c = m/n-smooth
graph with O(m) edges and the same cut and flow values in Õ(m) time. Consider
some flow f on the graph, and let us set ε = 1/2. Theorem 6.3 says that so long
as there is δv/2 residual flow, there is a p = Õ(nv/m(v − f)) = Õ(n/δm) such that
sampling every edge with probability p yields a graph that, with high probability,
has residual flow at least 1

2p(v − f). We can find this flow using the blocking flow

algorithm of Goldberg and Rao [9] for capacitated graphs, which runs in Õ(m3/2)
time on m-edge graphs. Suppose we repeat this whole process 3/p times. If we
don’t reduce to δv/2 residual flow, then, by the above argument, we will find at least
(3/p)(12p(v − f)) > v − f additional flow, a contradiction. So within 3/p iterations
we will reduce to δv/2 residual flow. The time taken for these 3/p iterations is
Õ((1/p)(pm)3/2) = Õ(

√
pm3/2) = Õ(m

√
n/δ).

Suppose now that we wish to find a flow within (1 − ε) of the maximum flow.
Start by setting δ = 1/2, meaning that we initially sample Õ(n) edges and run
O(mδ/n) = O(m/n) phases, and continue halving δ until it reaches the desired value
ε. This will take O(log 1/ε) phases of geometrically increasing runtime, dominated by
the final phase’s runtime of Õ(m

√
n/ε). In other words, the overall time to find a

(1− ε)-approximate maximum flow will be Õ(m
√
n/ε).

Note that in the above algorithm v need not be known. The number of edges
sampled in the δ-phase is pm = Õ(n/δ), independent of v. Thus the algorithm iterates
purely by setting the density parameter δ.

The choice of c = m/n for smoothing and ε = 1/2 in the inner phase may
seem arbitrary. However, using a worse smoothness doesn’t reduce the asymptotic
number of edges, while achieving better smoothness (which would reduce the required
sampling probability) requires that more edges be created, at a rate that exactly
cancels out the benefit of the smaller sampling rate. Similarly, for a given smoothness,
using a smaller ε can at best double the amount of residual flow found in a sample
(since we already find half), but quadratically increases the size of the sample, for a
net loss.

One might hope to apply this algorithm to get a faster exact algorithm, by first
approximating the max-flow and then using augmenting paths to find the final residue;
unfortunately, the best such algorithm (attained by balancing for δ) is no faster than
the exact algorithms already developed. In particular, notice that although our ran-
domized augmenting paths algorithm from section 4 has running time O(nv) to find
the entire flow, its (best currently provable) running time is also Ω(nv) for finding

c© 2015 David R. Karger and Matthew S. Levine

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

336 DAVID R. KARGER AND MATTHEW S. LEVINE

just the last
√
v units of flow. Thus, to beat an Õ(nv) running time, we need to find

a way to reduce the residual flow below
√
v before switching to the augmenting path

cleanup. Unfortunately, achieving ε = 1/
√
v in our approximation algorithm takes

time Õ(mn1/2v1/4), a time bound dominated by the existing ones.

6.2.1. Contrast to the method of Benczúr and Karger. Given that we
are using a subroutine max-flow algorithm with no dependence on v, it may seem
strange that we are first sampling sparsely and then densely—wouldn’t the algorithm
find the same approximate flow if we sampled densely at the beginning? This is the
algorithm of Benczúr and Karger [2]. The key difference is that our sampling step
preserves residual capacity, meaning that we can repeatedly sample more sparsely
than Benczúr and Karger while still progressively finding more flow each time.

When targeting a (1−ε)-approximate max-flow, after making the graph c-smooth
for c = m/n, the approximation algorithm of Benczúr and Karger using their Smooth
Sampling Theorem 7.2 from [2] needs to set a sampling rate p small enough to guar-
antee that the relative error introduced by sampling—which is Ω̃(1/

√
pc)—is smaller

than the target ε, i.e., that p = Õ(1/ε2c). Our algorithm, instead of trying to achieve
the ε-approximation in one leap, creeps up on it by repeatedly augmenting a partial
flow. To do so, it only needs to choose a p large enough to ensure that half the
current residual flow is preserved in the sample. In particular, when aiming for a
(1− ε)-optimal flow, we can choose p = Õ(1/εc).

6.3. Approximating the s-t min-cut value. Our approximate max-flow al-
gorithm can in turn slightly improve the performance of Benczúr and Karger’s ap-
proximation algorithm for s-t minimum cuts. That algorithm finds a (1 + ε) ap-
proximation to the s-t minimum cut by compressing the graph to Õ(n/ε2) edges
and finding a maximum flow and min-cut in that graph in Õ(m3/2) = Õ(n3/2/ε3)
time using the Goldberg–Rao algorithm [9]. We can instead use our approximate
flow algorithm, with the same parameter ε, and find an approximate max-flow in
Õ((n/ε2)

√
n/ε) = Õ(n3/2/ε5/2) time. That approximate max-flow will approximate

the value of the s-t min-cut. Note, however, that it will give only the value and will
not identify a cut of that value.

We can improve things yet further if we invoke our sampling approximation result
for residual graphs. Suppose we want to find a 1+O(ε)-approximation to the minimum
s-t cut of value v. As a first step, we can use (undirected) graph compression to reduce
the number of edges to m′ = Õ(n/ε2) while sacrificing only an ε error factor in cut
values. If we then find a 1 +O(ε)-approximate s-t min-cut in the compressed graph,
it will also be a 1 + O(ε)-approximate s-t min-cut in the original graph. The key
question, then, is how quickly we can find a 1 + O(ε)-approximate s-t min-cut in a
graph with Õ(n/ε2) edges.

To do this we will find a (1 − δ)-approximate maximum s-t flow f , of value at
least (1 − δ)v. (If the resulting value exceeds (1 − δ)v, we will reduce it to focus on
this worst case.) In the resulting residual graph, the minimum s-t cut has value δv.
We will use residual graph smoothing to find an ε/δ-approximation to this minimum
residual s-t cut. In other words, we will find a cut whose value is at most (1 + ε/δ)
times the minimum residual cut of value δv. It follows that the value of this cut in the
original compressed graph is at most (1− δ)v + (1 + ε/δ)δv ≤ (1 + ε)v, so we achieve
our 1 +O(ε)-approximation.

For the approximate residual cut computation, we make the graph m′/n =
Õ(1/ε2)-smooth and plug v/(v− f) = 1/δ into Theorem 6.3. We conclude that, using

c© 2015 David R. Karger and Matthew S. Levine

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

RANDOMIZED AUGMENTING PATHS 337

p = Õ((n/δ2m)(1/δ)) = Õ(n/δ3m), we will get a sample of Õ(n/δ3) edges where all
residual cut samples are within δ of their expected values, as required. Finding a
minimum s-t cut in the sample (by finding a maximum flow) thus yields the requisite
1+O(δ)-optimal s-t cut in the residual graph. This takes time Õ((n/δ3)3/2) using the
Goldberg–Rao flow algorithm. Since the first, approximate, flow computation takes
time Õ((n/ε2)

√
n/δ), balancing the two terms yields δ =

√
ε and an overall runtime

of Õ(n3/2/ε9/4).
We note that it is also possible to prove a compression theorem for a residual

graph along the lines of the compression theorem of Benczúr and Karger [2, Com-
pression Theorem 6.2]—that sampling with probabilities proportional to 1/ke and
multiplying up the capacity of each sampled edge e by ke preserves all residual cut
values reasonably well—but we have found no algorithmic use for this result, as flows
in this graph are not feasible for the original graph.

7. Conclusion. For unweighted graphs, our result of Õ(m+nv) time is a natural
stopping point, but it is not necessarily the end of progress on algorithms for small
maximum flows in undirected graphs. For one thing, it is randomized, so there is still
the question of how well a deterministic algorithm can do. Perhaps there is some way
to apply Nagamochi–Ibaraki sparse certificates [25] in a residual graph. For another,
Galil and Yu [7] showed there always exists a max-flow using O(n

√
v) edges on simple

graphs. Therefore, while some augmenting paths can require n − 1 edges, most of
them are much shorter. Thus Õ(m+ n

√
v) would be another natural time bound to

hope to achieve. And of course there is no evidence ruling out linear time.
Another open question is whether it is possible to give a faster algorithm for

small flows in general directed graphs. In sampling from residual graphs, we have
shown that random sampling in directed graphs is not entirely hopeless. Perhaps
there is a suitable replacement for edge strength in a directed graph that would
allow random sampling to be applied to arbitrary directed graphs. One discouraging
observation is that even a half-approximation algorithm for flows in directed graphs
can be transformed into an exact algorithm with little change in time bound, since we
can repeatedly find and augment half the flow in the residual graph. So approximation
is little easier than exact solution.

Finally, it is still an open question whether our sampling techniques can be applied
to finding exact flows in undirected graphs with large flow values. One obvious goal
would be to replace m by n in the currently best Õ(m3/2)-time exact algorithm [9].
There also remains the question of min-cost flows—even in simple undirected graphs,
none of our random sampling techniques have yet been applied successfully to that
problem.

Note added in proof. Subsequent to the original publication of this work [18],
algorithms for max-flow have continued to progress, and there also has been an ex-
plosion of results on approximate max-flow. For undirected graphs (the focus of this
paper), Lee, Rao, and Srivastava [22] give an algorithm with runtime Õ(m5/4v1/4).
Madry [24] gives a max-flow algorithm for unit-capacity directed graphs with run-
time Õ(m10/7). Lee and Sidford [23] solve max-flow even on capacitated graphs in
Õ(m

√
n log2 U) time. For approximate flows, both Kelner et al. [21] and Sherman [26]

show how to find an ε-approximate max-flow in undirected graphs in Õ(m/ε2) time.
Setting ε = v−1/3 yields a flow of value v − v2/3 in Õ(mv2/3) time. The resulting
flow may be nonintegral but can be converted to an integral flow in Õ(m) time [22].
Then v2/3 augmenting path steps can raise this to a max-flow in O(mv2/3) time. This
yields an Õ(mv2/3)-time max-flow algorithm for integer capacities.

c© 2015 David R. Karger and Matthew S. Levine

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

338 DAVID R. KARGER AND MATTHEW S. LEVINE

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and
Applications, Prentice–Hall, Englewood Cliffs, NJ, 1993.

[2] A. A. Benczúr and D. R. Karger, Randomized approximation schemes for cuts and flows
in capacitated graphs, SIAM J. Comput., 44 (2015), pp. 290–319.

[3] H. Chernoff, A measure of the asymptotic efficiency for tests of a hypothesis based on the
sum of observations, Ann. Math. Stat., 23 (1952), pp. 493–509.

[4] E. A. Dinitz, Algorithm for solution of a problem of maximum flow in networks with power
estimation, Soviet Math. Dokl., 11 (1970), pp. 1277–1280.

[5] S. Even and R. E. Tarjan, Network flow and testing graph connectivity, SIAM J. Comput.,
4 (1975), pp. 507–518.

[6] L. R. Ford, Jr., and D. R. Fulkerson, Maximal flow through a network, Canadian J. Math.,
8 (1956), pp. 399–404.

[7] Z. Galil and X. Yu, Short length versions of Menger’s theorem (extended abstract), in Pro-
ceedings of the 27th ACM Symposium on Theory of Computing, ACM, New York, 1995,
pp. 499–508.

[8] A. Goldberg and S. Rao, Flows in undirected unit capacity networks, in Proceedings of
the 30th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society Press, Piscataway, NJ, 1997, pp. 32–35.

[9] A. Goldberg and S. Rao, Beyond the flow decomposition barrier, J. ACM, 45 (1998), pp. 783–
797.

[10] R. E. Gomory and T. C. Hu, Multi-terminal network flows, J. Soc. Indust. Appl. Math., 9
(1961), pp. 551–570.

[11] R. Hariharan, T. Kavitha, D. Panigrahi, and A. Bhalgat, An O(mn) Gomory-Hu tree
construction algorithm for unweighted graphs, in Proceedings of the 39th Annual ACM
Symposium on Theory of Computing, ACM, New York, 2007, pp. 605–614.

[12] D. R. Karger, Global min-cuts in RNC and other ramifications of a simple mincut algorithm,
in Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms, ACM,
New York, SIAM, Philadelphia, 1993, pp. 21–30.

[13] D. R. Karger, Random sampling in cut, flow, and network design problems, Math. Oper.
Res., 24 (1999), pp. 383–413.

[14] D. R. Karger, Using random sampling to find maximum flows in uncapacitated undirected
graphs, in Proceedings of the 29th ACM Symposium on Theory of Computing, ACM, New
York, 1997, pp. 240–249.

[15] D. R. Karger, Better random sampling algorithms for flows in undirected graphs, in Pro-
ceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New
York, SIAM, Philadelphia, 1998, pp. 490–499.

[16] D. R. Karger, A randomized fully polynomial approximation scheme for the all-terminal
network reliability problem, SIAM J. Comput., 29 (1999), pp. 492–514; corrected version
in SIAM Rev., 43 (2001), pp. 499–522.

[17] D. R. Karger and M. Levine, Finding maximum flows in simple undirected graphs seems
faster than bipartite matching, in Proceedings of the 29th ACM Symposium on Theory of
Computing, ACM, New York, 1998, pp. 69–78.

[18] D. R. Karger and M. S. Levine, Random sampling from residual graphs, in Proceedings of
the 33rd ACM Symposium on Theory of Computing, ACM, New York, 2002, pp. 63–66.

[19] D. R. Karger and C. Stein, An Õ(n2) algorithm for minimum cuts, in Proceedings of the
25th ACM Symposium on Theory of Computing, Alok Aggarwal, ed., ACM, New York,
1993, pp. 757–765.

[20] D. R. Karger and C. Stein, A new approach to the minimum cut problem, J. ACM, 43
(1996), pp. 601–640.

[21] J. A. Kelner, Y. T. Lee, L. Orecchia, and A. Sidford, An almost-linear-time algorithm
for approximate max flow in undirected graphs, and its multicommodity generalizations, in
Proceedings of the Twenty-fifth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), SIAM, Philadelphia, 2014, pp. 217–226.

[22] Y. T. Lee, S. Rao, and N. Srivastava, A new approach to computing maximum flows using
electrical flows, in Proceedings of the 45th ACM Symposium on Theory of Computing
(STOC), ACM, New York, 2013, pp. 755–764.

[23] Y. T. Lee and A. Sidford, An õ(m
√

(n)) algorithm for the minimum cost flow problem,
arXiv:1312.6713, 2013.

[24] A. Madry, Navigating central path with electrical flows: From flows to matchings, and back,
in Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science,
IEEE Press, Piscataway, NJ, 2013, pp. 253–262.

c© 2015 David R. Karger and Matthew S. Levine

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

RANDOMIZED AUGMENTING PATHS 339

[25] H. Nagamochi and T. Ibaraki, Linear time algorithms for finding k-edge connected and
k-node connected spanning subgraphs, Algorithmica, 7 (1992), pp. 583–596.

[26] J. Sherman, Nearly maximum flows in nearly linear time, in Proceedings of the 54th Annual
IEEE Symposium on Foundations of Computer Science, IEEE Press, Piscataway, NJ, 2013,
pp. 263–269.

[27] R. E. Tarjan, Data Structures and Network Algorithms, CBMS-NSF Reg. Conf. Ser. Appl.
Math. 44, SIAM, Philadelphia, 1983.

c© 2015 David R. Karger and Matthew S. Levine

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

