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As a first step toward a fully two-dimensional asymptotic theory for the bifurcation of soli-
tons from infinitesimal continuous waves, an analytical theory is presented for line solitons, whose
envelope varies only along one direction, in general two-dimensional periodic potentials. For this
two-dimensional problem, it is no longer viable to rely on a certain recurrence relation for going
beyond all orders of the usual multi-scale perturbation expansion, a key step of the exponential
asymptotics procedure previously used for solitons in one-dimensional problems. Instead, we pro-
pose a more direct treatment which not only overcomes the recurrence-relation limitation, but also
simplifies the exponential asymptotics process. Using this modified technique, we show that line
solitons with any rational line slopes bifurcate out from every Bloch-band edge; and for each ra-
tional slope, two line-soliton families exist. Furthermore, line solitons can bifurcate from interior
points of Bloch bands as well, but such line solitons exist only for a couple of special line angles
due to resonance with the Bloch bands. In addition, we show that a countable set of multi-line-
soliton bound states can be constructed analytically. The analytical predictions are compared with
numerical results for both symmetric and asymmetric potentials, and good agreement is obtained.

1 Introduction

Nonlinear wave propagation in periodic media is currently a subject of intensive research in optics
and applied mathematics, with diverse applications ranging from nonlinear photonics [1, 2] to Bose–
Einstein condensates [3, 4]. While many types of soliton structures in periodic media have been
reported theoretically and experimentally (see [5] for a review), prior analytical work is limited to
special (symmetric) periodic potentials [6, 7], or to one spatial dimension [8, 9, 10].

In this paper, we study line solitons in general two-dimensional periodic media, employing
the nonlinear Schrödinger (NLS) equation with a spatially periodic potential as our model. Such
solitons have been reported theoretically and experimentally in certain periodic potentials before
[11, 12, 13, 14, 15], and it is known that they can bifurcate from edges of Bloch bands or from
certain high-symmetry points inside Bloch bands. However, systematic analytical construction of
line solitons is still lacking, and a number of open questions remain. It is not clear, in particular,
if the inclination angles and positions of these line solitons relative to the underlying potential can
be arbitrary or not.
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To address these issues, in this article we analytically examine small-amplitude line solitons
which bifurcate out from infinitesimal Bloch modes. Such solitons are in the form of slowly varying
Bloch-wave packets, with the envelope of the packet being uniform along the line direction. Using
standard asymptotic methods, the packet envelope can be readily shown to satisfy the familiar one-
dimensional NLS equation in the absence of a potential and thus have a sech-shape. However, the
position of the envelope relative to the potential is harder to determine because it hinges on effects
that are exponentially small in the soliton amplitude. For this purpose, techniques of exponential
asymptotics must be used.

In one-dimensional nonlinear wave systems, an exponential asymptotics method for analyzing
low-amplitude solitons that comprise a periodic carrier modulated by an envelope, has been devel-
oped in the past fifteen years [8, 9, 10, 16]. This method focuses on the Fourier transform with
respect to the slow spatial variable of the envelope function, motivated by the fact that the solitary-
wave tails in the physical domain are controlled by the pole singularities near the real axis of the
wavenumber space. The residues of these poles, which are exponentially small, are then calculated
by matched asymptotics near the poles and away from the poles. The solution away from the
poles, in particular, is expressed as a Taylor series of the wavenumber around zero, multiplied by
a factor which is exponentially small at the poles, and the coefficients in this series are computed
through a recurrence relation. Upon inverting the Fourier transform, these poles of exponentially
small strength give rise to growing tails of exponentially small amplitudes in the physical solution.
It turns out that these growing tails vanish only at two positions of the envelope relative to the
periodic carrier, which in turn reveals that only two soliton families are admitted.

In this paper, by investigating line solitons, we present the first step in developing a fully two-
dimensional asymptotic theory for the bifurcation of solitons from infinitesimal continuous waves.
For line solitons, the governing equation for the carrier envelope is still one-dimensional, hence the
corresponding Fourier transform depends on only one complex variable in the wavenumber domain.
While this simplifies matters, two new obstacles arise. The first is that, in a two-dimensional
problem, the Fourier transform of the solution contains pole singularities not only near the real
axis (which we call real poles), but also away from the real axis (which we call complex poles).
Which of these poles are relevant for the determination of line solitons is unclear. On this issue,
we will show that it is still the real poles which matter.

The second and more serious obstacle is that, in two dimensions, the poles closest to the origin
are often complex rather than real. As a consequence, utilizing a recurrence relation to determine
the residues of real poles, a key step in one-dimensional problems, is no longer viable: the radius of
convergence of the Taylor series (around the zero wavenumber) is limited by the nearest complex
poles and thus cannot reach the real poles further away, which makes the matched asymptotics
impossible to use. To overcome this obstacle, we shall give up the recurrence-relation approach and
directly solve the Fourier-transformed equation along the real line of the wavenumber plane, up to
the real poles. By doing so, complex poles become irrelevant and thus can be ignored. This modified
approach not only turns out to be effective for two dimensions, but also simplifies the exponential
asymptotics procedure: by working with the Fourier-transformed equation, the exponentially-small
terms are factored out and one is left with a Volterra integral equation, which is in fact easier to
solve numerically than the recurrence relation.

We apply this modified exponential asymptotics technique to line solitons bifurcating from edges
of Bloch bands in general two-dimensional periodic potentials. At low amplitudes, the solution is
a Bloch-wave packet whose envelope varies only in the direction normal to the line soliton. By
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using the Fourier-transform approach as outlined above, we analytically calculate growing tails of
exponentially small amplitudes in the normal direction. The results show that for any rational
slope, two line solitons relative to the potential exist, and the positions of their envelopes can be
explicitly obtained. By matching the growing and decaying tails, we also construct an infinite
family of multi-line-soliton bound states. These line solitons and multi-line-soliton bound states
have been obtained numerically as well, in agreement with the theory. To quantitatively verify the
analytical formula for the growing tails of exponentially-small amplitude, we use this tail formula to
calculate the bifurcation of the zero eigenvalue associated with the linear stability of low-amplitude
line solitons. This analytical eigenvalue formula is compared with the numerical eigenvalues, and
good quantitative agreement is reached. Finally, we also show that line solitons can bifurcate from
interior high-symmetry points of Bloch bands as well. But such line solitons exist only for very few
(up to three) special line angles due to resonance with the Bloch bands.

2 Line wavepackets at low amplitudes

We consider the nonlinear Schrödinger equation in two spatial dimensions with a periodic (lattice)
potential,

iΨt +∇2Ψ− V (x, y)Ψ + σ|Ψ|2Ψ = 0, (1)

where ∇2 = ∂xx + ∂yy, the potential V (x, y) is periodic in both x and y, and σ = ±1 is the sign
of nonlinearity. This equation governs the nonlinear propagation of light in photonic lattices as
well as the evolution of Bose–Einstein condensates in optical lattices [1, 2, 3, 17]. In the latter
community, this equation is referred to as the Gross−Pitaevskii equation.

In this article, we shall take the minimal periods of the potential V (x, y) to be the same in
both x and y. This matching periodicity in x and y, while not necessary for our analysis, allows
for simplification of the algebra. For a periodic potential with matching periodicity, rotation by an
angle θ, with tan(θ) rational, also yields a periodic potential, but the periods of the new potential
would change in general. For instance, for the potential V (x, y) = sin2 x + sin2 y with matching
periods π, a 45◦-rotation would yield a potential with matching periods

√
2π. To remove this

rotational freedom and the changing periods of the same potential, we align the potential in such a
way that its periods are minimal. We call the potential in such orientation as the minimal-period-
orientation potential, and this potential is used throughout the paper. Without loss of generality,
we also normalize the matching periods of this minimal-period-orientation potential as π.

We search for stationary solutions to Eq. (1) of the form

Ψ(x, y, t) = ψ(x, y)e−iµt, (2)

where µ is the propagation constant and ψ is a real-valued amplitude function that satisfies the
equation

∇2ψ + (µ− V (x, y))ψ + σψ3 = 0. (3)

In this article, we shall consider line-soliton solutions that are bounded (non-decaying) along a
certain line in the (x, y) plane but decay to zero along the direction orthogonal to this line. These
solutions may bifurcate out from edges of Bloch bands, or from certain high-symmetry points inside
Bloch bands [12, 13, 14, 15]. Our analysis will be developed first for line solitons bifurcating from
edges of Bloch bands. Afterwards (in section 11) we shall consider line solitons bifurcating from
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interior points of the Bloch bands, which do exist but under more restrictive conditions due to
resonance with Bloch bands.

Near edges of Bloch bands, solitons are low-amplitude wavepackets comprising the underlying
Bloch-wave carrier modulated by a slowly varying envelope, and they can be studied using multiple-
scale perturbation theory. For line solitons, the envelope only varies in one direction and the
associated ‘slow’ spatial variable will be

W = εw, w ≡ x sin θ − y cos θ, (4)

where θ is the angle the line soliton makes with the x axis, and
√
|µ− µ0| = ε� 1 is the deviation

from the edge point µ0. Plugging this into equation (3) yields

L0ψ + ε∂WL1ψ + ε2∂2
Wψ + σψ3 + (µ− µ0)ψ = 0, (5)

where
L0 = ∇2 + µ0 − V (x, y), L1 = 2∇ · [sin θ,− cos θ] . (6)

The perturbation series solution to Eq. (5) is readily found to be

ψ(x, y,W ) = εA(W )b(x, y) + ε2A′(W )ν(x, y) +O(ε3), (7)

where the functions of the fast variables satisfy

L0b(x, y) = 0, (8)

L0ν(x, y) = −L1b(x, y). (9)

Eq. (8) implies that b(x, y) is a Bloch mode at the edge point µ = µ0. For simplicity of the analysis,
we shall make the following assumption.

Assumption 1 The Bloch mode at the band edge µ = µ0 is unique (up to a multiplication
constant).

This assumption is for the purpose of avoiding nonlinear interactions between different Bloch
modes at the same band-edge point, and it holds for many band edges. We also normalize b(x, y)
so that max|b| = 1.

The inhomogeneous equation (9) is solvable, since the right-hand side −L1b is clearly orthogonal
to the homogeneous solution b(x, y) so the Fredholm condition is satisfied. To avoid ambiguity of
the homogeneous term in ν, we require 〈ν, b〉 = 0, where the inner product is defined as

〈f, g〉 =

∫ 2π

0

∫ 2π

0
f∗(x, y)g(x, y) dxdy, (10)

with the superscript ‘*’ representing complex conjugation.
From the solvability condition at order ε3, the envelope function A(W ) in expansion (7) satisfies

DA′′ + ηA+ σaA3 = 0, (11)

with

D =
〈L1ν + b, b〉
〈b, b〉 , η = sgn(µ− µ0), a =

〈b3, b〉
〈b, b〉 . (12)
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When sgn(σ) = sgn(D) = −sgn(η), the solution of the envelope equation (11) is

A(W ) = α sech
W −W0

β
, (13)

where W = W0 is the center position of the line envelope, and

α =
√

2/a, β =
√
|D|. (14)

The asymptotic expansion (7) may be carried to all powers of ε, with all terms being localized in
W (i.e., localized along the normal direction of the line solution), suggesting that line solitons exist
for all choices of W0. However, based on previous experience and numerical computations, this is
not the case. Specifically, it turns out that for rational tan θ, only two line-soliton families exist
(not counting their periodic replications in the lattice). These two soliton families are illustrated
in Fig. 1 for σ = 1, ε = 0.25 and tan θ = 1, 2 in the specific lattice

V (x, y) = 6
(
sin2x+ sin2y

)
, (15)

where they bifurcate out from the lowest Bloch-band edge µ0 = 4.1264. Solitons in the upper
panels have W0 = 0 and are called onsite solitons, while those in the lower panels have W0 = επ/2
and are called offsite solitons.

This discrepancy between the prediction of the multi-scale expansion (7) and true solutions was
first studied in [18] for a one-dimensional problem, and it was suggested that the issue could be
resolved by requiring that a Melnikov-integral condition be satisfied by the leading-order approxi-
mation of (7). While this constraint happens to specify W0 correctly for symmetric potentials, in
a general lattice all terms in the perturbation expansion (7) make contributions to the Melnikov
integral at the same order of ε, and the calculations involved quickly get out of hand. To handle
this difficulty, an exponential-asymptotics approach was developed for one-dimensional problems in
[8, 10], following an earlier treatment of a similar problem in the fifth-order KdV equation [16]. In
the next sections, we shall adapt this exponential-asymptotics method to the study of line solitons.
For this two-dimensional problem, certain key steps in the previous exponential-asymptotics pro-
cedure are no longer viable, and suitable modifications will be needed in order to overcome those
obstacles.

3 Solution in the wavenumber domain

The failure of the multi-scale expansion (7) stems from the fact that, for generic values of the
envelope position W0, the exact solution ψ(x, y;W ) contains growing tails when W � −1 or
W � 1; but the amplitudes of these tails are exponentially small in ε, and hence invisible in the
expansion (7). In order to obtain true line solitons, we shall first calculate these exponentially small
growing tails and then determine the envelope position W0 by insisting that these tails vanish.

As before [8, 10, 16], we shall work in the wavenumber domain. First, we take the Fourier
transform of ψ(x, y,W ) with respect to the slow variable W ,

ψ̂(x, y,K) =
1

2π

∫ ∞

−∞
ψ(x, y,W )e−iKWdW. (16)

Under this transformation, the growing tails of exponentially small amplitude in ψ(x, y,W ) are
transformed into poles of ψ̂ with exponentially small residues.
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Figure 1: (Color online) Line solitons for σ = 1, ε = 0.25 and tan θ = 1, 2 in the lattice (15). Upper
row: onsite solitons; lower row: offsite solitons.
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Taking the Fourier transform of the series solution (7) term-by-term yields

ψ̂(x, y,K) = ε
αβ

2
e−iW0Ksech

(
πβK

2

)
{b(x, y) + iεKν(x, y) + . . .} . (17)

This series is disordered at εK ∼ 1. Thus, we introduce the ‘slow’ wavenumber κ = εK and
rearrange this series as

ψ̂(x, y, κ) = εe−iW0κ/εsech

(
πβκ

2ε

)
U(x, y, κ; ε), (18)

where

U(x, y, κ; ε) =
αβ

2
{b(x, y) + iκν(x, y) + . . .} , κ� 1. (19)

We now derive the governing equation for U by taking the Fourier transform of equation (3) to
arrive at

L0ψ̂ + iκL1ψ̂ − κ2ψ̂ + σψ̂3 + ε2ηψ̂ = 0. (20)

Then, by substituting the expression (18), we find that U satisfies

L0U + iκL1U + (ηε2 − κ2)U + σ cosh

(
πβκ

2ε

)
×

∫ ∞

−∞

∫ ∞

−∞

U(κ− r)U(r − s)U(s)

cosh
(
πβ(κ−r)

2ε

)
cosh

(
πβ(r−s)

2ε

)
cosh

(
πβs
2ε

)drds = 0. (21)

4 Poles in the wavenumber plane

We are concerned with pole singularities in U(x, y, κ; ε) which account for the growing tails in the
physical space. Singularities of U are expected to occur near values of κ = κ0 where the linear part
of equation (21) is zero, i.e.,

L0φ+ iκ0L1φ− κ2
0φ = 0. (22)

With a change of variables φ = e−iκ0wφ̃, where w is defined in Eq. (4), equation (22) reduces to

L0φ̃ = 0, (23)

which has a single bounded solution φ̃ = b(x, y), the Bloch mode at band edge µ0. Thus, if we
restrict ourselves for the moment to real values of κ0, bounded solutions to Eq. (22) are

φ(x, y) = e−iκ0wb(x, y). (24)

Since the spatial period of the solution φ(x, y) should match that of the solution (19), φ(x, y) and
b(x, y) should have the same periodicity in (x, y). Then following the argument in [8], both κ0 cos(θ)
and κ0 sin(θ) should be even integers. For this to occur, tan θ must be a rational number, say

tan(θ) = p/q, (25)

where p and q are relatively prime. Now to satisfy the periodicity condition, we get

κ0 = 2n
√
p2 + q2 (26)
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for any integer n. Thus poles of U(x, y, κ; ε) near the real axis of κ are located near these κ0 values.
To get the approximate locations of all poles in U(x, y, κ; ε), we repose Eq. (22) as an eigenvalue

problem

i

[
L1 L0

−1 0

]
~φ = κ0

~φ, (27)

where ~φ = [φ, (1/iκ0)φ]T , with the superscript ‘T ’ denoting vector transpose. It can be easily
shown that all eigenvalues in (27) come in quadruples (κ0,−κ0, κ

∗
0,−κ∗0). This spectrum also has

periodicity 2
√
p2 + q2 in the real direction of κ0.

Numerically we solve the eigenvalue problem (27) using the Fourier collocation method to get
rough estimates of the spectrum, followed by the Newton-conjugate-gradient method to calculate
particular eigenvalues to high accuracy [5]. Examples of this spectrum are shown in Fig. 2 for
the lattice (15) at µ0 = 4.1264 (the edge of the semi-infinite gap) and tan θ = 1, 2. Notice that
this spectrum contains not only the real eigenvalues given by Eq. (26), but also a large number of
complex eigenvalues. In addition, when tan θ 6= 0, the eigenvalues closest to the origin are complex
eigenvalues rather than real eigenvalues.
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Figure 2: Locations of singularities in the wavenumber domain for the lattice (15) with tan θ = 1, 2.

The spectra in Fig. 2 raise serious questions on the applicability of the exponential-asymptotics
method, as used earlier for solitons in one-dimensional lattices, to this two-dimensional problem.
We recall that, in the one-dimensional case [8, 10, 16], this spectrum contains only real eigenvalues;
and it is those real eigenvalues which specify the envelope positions. In the present case, where
both real and complex eigenvalues exist, which of those eigenvalues are responsible for selecting the
envelope positions?

To tackle this issue, we consider line solitons in a simpler stripe lattice, where the lattice varies in
the x-direction only. The particulars of the analysis are covered in the appendix. For such a lattice,
we find that the spectrum contains only complex eigenvalues and no nonzero real eigenvalues. Here,
however, the envelope position of a line soliton can be arbitrary, as solutions with different envelope
positions are equivalent to each other under a vertical translation. This indicates that the envelope
position is not affected by complex eigenvalues, and thus we shall focus on poles of U(x, y, κ; ε)
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near the real eigenvalues (26). In particular, we need to determine the residues of poles near the
smallest real eigenvalues

κ0 = ±2
√
p2 + q2, (28)

since those poles provide the dominant contributions to the solitary-wave tails.
Even though only real eigenvalues affect the envelope position, the fact that the eigenvalues

closest to the origin are complex rather than real, as shown in Fig. 2, poses a major obstacle to
the calculation of the residues of poles near the real eigenvalues κ0 = ±2

√
p2 + q2 by the previous

exponential-asymptotics technique [8, 10, 16]. This difficulty and its resolution will be elaborated
in the next section.

5 Solution away from the poles

The basic idea for calculating the residues of poles in U(x, y, κ; ε) is to match the ‘inner’ solution
near the poles to the ‘outer’ solution away from the poles. Since the poles of interest are near
κ0 = ±2

√
p2 + q2, in this section we will determine the solution U(x, y, κ; ε) for real values of κ in

the interval −κ0 < κ < κ0 but not close to ±κ0.
When ε → 0, the main contribution of the double integral in (21) comes from the triangular

region 0 < s < κ, 0 < s < r when κ > 0 or κ < s < 0, r < s < 0 when κ < 0. Over this region,

cosh

(
πβκ

2ε

)/[
cosh

(
πβ(κ− r)

2ε

)
cosh

(
πβ(r − s)

2ε

)
cosh

(
πβs

2ε

)]
≈ 4, (29)

while outside this region the same expression is exponentially small. Thus, to O(ε2) the integral
equation (21) reduces to the “outer” equation

L0U
(0) + iκL1U

(0) − κ2U (0)

+ 4σ

∫ κ

0
dr U (0)(x, y, κ− r)

∫ r

0
ds U (0)(x, y, r − s)U (0)(x, y, s) = 0, (30)

where U(x, y, κ; ε) = U (0)(x, y, κ) + O(ε2). Here the main contribution to the error of the integral
comes from the three corners of the triangular integration region in the integral of (30); thus
this error is O(ε2), a result that has also been checked numerically for randomly chosen analytic
functions of U(κ).

In previous applications of exponential asymptotics, this outer integral equation was solved by
expanding U (0)(x, y, κ) into a power series of κ, which turns the outer integral equation into a
recurrence relation for the coefficients of the power series [8, 10, 16]. This treatment was possible
since the poles of interest were closest to the origin, hence the power series was convergent up to
those poles. In the present two-dimensional problem, however, this treatment fails, because the
power series for U (0)(x, y, κ) has radius of convergence bounded by the distance to the nearest
complex poles. Thus this power series cannot converge near the real poles of interest. As a result,
the previous approach of relying on the recurrence relation needs to be abandoned.

Instead, we propose to solve the outer integral equation (30) numerically. Since this is a Volterra
integral equation, it can be easily tackled by explicit numerical methods. First we discretize κ,
κn = n∆κ, and write

U (0)(x, y, κn) = Un(x, y). (31)
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Then we approximate the integral in (30) using the trapezoid rule. After the terms in the resulting
equation are rearranged, Un is found to satisfy a linear inhomogeneous equation

[
L0 + iκnL1 − κ2

n + 2σU2
0 (∆κ)2

]
Un = −4σFn, (32)

where the inhomogeneous term Fn is given by

Fn = ∆κ2

[
1

2
U0In +

n−1∑

m=1

UmIn−m

]
, (33a)

Im =

m−1∑

l=0

UlUm−l, for 1 ≤ m < n, (33b)

In =
n−1∑

l=1

UlUn−l. (33c)

Since the inner sums Im for m < n do not change on further iterations, these only need to be
computed once. Notice that the homogeneous operator in Eq. (32) is self-adjoint, thus this linear
inhomogeneous equation can be solved by the preconditioned conjugate gradient method. The
initial conditions U0 and U1 cannot be derived from Eq. (32) itself, but they can be obtained from
the equation (19) as

U0(x, y) =
αβ

2
b(x, y), U1(x, y) =

αβ

2
[b(x, y) + i∆κ ν(x, y)] . (34)

The above numerical scheme for solving the outer integral equation (30) is explicit. Our nu-
merical testing shows that its numerical error is O(∆κ), thus it is first order accurate in ∆κ. If
one wishes for a higher-order numerical scheme, then instead of the trapezoidal rule, one can use a
higher-order quadrature method (such as Simpson’s rule) to approximate the integral in (30).

From the local analysis near the poles in the next section, it will transpire that U (0)(x, y, κ) has
a fourth-order pole at κ0. Specifically,

U (0)(x, y, κ)→ 12C

5

b(x, y)

(κ− κ0)4
e−iκ0w, as κ→ κ0, (35)

where C is a complex constant. With a change of variables

Ũ(x, y, κ) = (κ− κ0)4U (0)(x, y, κ), (36)

then

Ũ(x, y, κ)→ 12C

5
b(x, y)e−iκ0w, as κ→ κ0. (37)

Numerically we have confirmed the above outer-solution behavior near the poles. As an example,
the numerical results for the lattice (15) with σ = 1, tan θ = 1 and µ0 = 4.1264 (edge of the semi-
infinite gap) are shown in figure 3. For this line slope, κ0 = 2

√
2. On the top left the contour plots

of Ũ(x, y, κ0) are displayed. The corresponding analytic formula (37) with real C is also shown at
the bottom for comparison. One can see that the two solutions match very well. On the right side
of Fig. 3, the solution Ũ(0, 0, κ) is shown. When κ→ κ0, Ũ(0, 0, κ)→ 22.05, thus the fourth-order
pole at κ = κ0 is numerically confirmed. If tan θ = 2, then we find that Ũ(0, 0, κ)→ 4.04× 104 as
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κ → κ0 = 2
√

5. Recalling the analytical formula (37) and Bloch-mode normalization (which boils
down to b(0, 0) = 1 here), the constant C is then inferred as

C = 9.19, for tan θ = 1, (38)

C = 1.68× 104, for tan θ = 2. (39)

In section 9 we are able to verify these values of C quantitatively, by comparing our predictions to
numerical calculations of a certain linear-stability eigenvalue.
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Figure 3: (Color online) Numerical solutions of the outer integral equation (30) for the lattice (15)
with σ = 1 and tan θ = 1. Left panels: solutions at the singularity κ = κ0; upper row: the numerical
solution, lower row: the analytical solution. Right panel: the solution versus κ at x = y = 0.

The approach taken here of directly solving the outer integral equation (30) by numerical meth-
ods not only overcomes the inadequacy of the recurrence relation (for two-dimensional problems),
but also has a number of additional advantages. Specifically, compared with the computation of
recurrence relations in earlier works [8, 10, 16], the direct numerical solution of the outer integral
equation, as was explained above, is actually easier. In addition, this direct computation gives di-
rectly the pole strength (35) in the outer solution, while in the previous approach the pole strength
was inferred indirectly from the recurrence solution. In view of these advantages, it is concluded
that this direct solving of the outer integral equation also simplifies the exponential asymptotics
procedure.

6 Solution near the poles

Based on experience from prior work [8, 10, 16], the actual poles in the solution U(x, y, κ; ε) are
expected to be O(ε) away from the real axis. To determine the residues of these true poles, we
need to analyze the solution U(x, y, κ; ε) near these poles. In this ‘inner’ region, the reduced outer
equation (30) does not hold, and one needs to work with the full equation (21) instead. For line
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solitons, it turns out that the analysis of the inner solution nearly replicates that in earlier works
[8, 10, 16], thus we shall keep this discussion brief.

Focusing on the behavior of the solution U(x, y, κ; ε) in the inner region near the closest positive
singularity,

κ0 = 2
√
p2 + q2, (40)

we introduce an inner variable, ξ = (κ − κ0)/ε, that is κ = κ0 + εξ, with ξ = O(1). In this region
we expand the solution to integral equation (21) as

U(x, y, κ; ε) =
e−iκ0w

ε4
{

Φ0(ξ)b(x, y) + iεξΦ0(ξ)ν(x, y) +O(ε2)
}
. (41)

Here the order of the solution near the pole U = O(ε−4) is chosen to match the large-ξ behavior of
the solution Φ0(ξ) = O(ξ−4) (see Eq. (54) below).

The dominant contribution from the double integral in equation (21) comes from the three
regions: (i) r ≈ 0, s ≈ 0, (ii) r ≈ κ, s ≈ 0, and (iii) r ≈ κ, s ≈ κ. In the first region,

U(x, y, r − s) ≈ U(x, y, s) ≈ αβ

2
b(x, y), (42)

U(x, y, κ− r) ≈ e−iκ0w

ε4
Φ0

(
κ− κ0 − r

ε

)
b(x, y), (43)

cosh
πβκ

2ε

/
cosh

πβ(κ− r)
2ε

≈ eπβr/2ε. (44)

Changing variables s̃ = s/ε, r̃ = r/ε and using the fact that
∫ ∞

−∞
sech(x− y)sech(y)dy = 2xcsch(x), (45)

the contribution from the double integral in the first region can be readily obtained. Contributions
from the other two regions can be calculated in a similar manner, and they turn out to be the same
as that from the first region.

With the change of variables U(x, y, ξ) = e−iκ0wÛ(x, y, ξ), we then find that near the singularity
the full integral equation (21) reduces to the inner equation

L0Û + εξL1Û + ε2(η − ξ2)Û +
3

2ε2
σα2β2b(x, y)3

×
∫ ∞

−∞
ωeπβω/2csch

(
πβω

2

)
Φ0(ξ − ω)dω = 0. (46)

After substituting in the expansion (41), at O(ε−4) and O(ε−3) the above equation is automatically
satisfied; and at O(ε−2) the equation governing Φ0(ξ) is found from the solvability condition as

(1 + β2ξ2)Φ0 − 3β2

∫ ∞

−∞
ωeπβω/2csch

(
πβω

2

)
Φ0(ξ − ω)dω = 0. (47)

This is a linear homogeneous Fredholm integral equation which has been solved before [8, 16]. Its
analytic solution in the region |Imag(ξ)| ≥ 1/β is

Φ0(ξ) =
6β4

1 + β2ξ2

∫ ±i∞

0

1

sin2 s
φ(s)e−sβξds, (48)
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where the plus sign in the contour is for Imag(ξ) ≤ −1/β, the minus sign for Imag(ξ) ≥ 1/β,

φ(s) = C

(
2

sin s
+

cos2 s

sin s
− 3s cos s

sin2 s

)
, (49)

and C is a complex constant. Clearly this solution has simple-pole singularities at ξ = ±i/β. Since
the integral of (48) at these points is equal to −C/6, we see that

Φ0(ξ) ∼ − Cβ4

1 + β2ξ2
, for ξ → ± i

β
, (50)

thus the pole has strength ±iβ3C/2 at ξ = ±i/β. After substituting this back into equation (41)
and changing variables to K = κ0/ε+ξ, we find that U(x, y,K) has simple poles at K = κ0/ε±i/β,
and

U(x, y,K) ∼ ± iβ3C

2ε4
e−iκ0wb(x, y)

1

K −
(
κ0
ε ± i

β

) for K → κ0

ε
± i

β
. (51)

Finally, from Eq. (18), we obtain the local behavior of ψ̂(x, y,K) near the simple poles K =
κ0/ε± i/β as

ψ̂(x, y,K) ∼ β3C

ε3
e−πβκ0/2εe±W0/β e−iκ0(w+w0)

K −
(
κ0
ε ± i

β

)b(x, y), K → κ0

ε
± i

β
, (52)

where
w0 = W0/ε.

Moreover, from the symmetry of the Fourier transform

ψ̂(x, y,K) = ψ̂∗(x, y,−K∗) (53)

for real functions ψ(x, y,W ), we also deduce the local behavior of ψ̂(x, y,K) near the simple poles
K = −κ0/ε± i/β.

From the above local analysis, the residues of these poles are only determined up to a constant
multiple (C is unknown at the moment). To determine C, we match the large-ξ asymptotics of
the above inner solution for U with the outer solution for U away from the singularities, in the
matching region 1� |ξ| � ε−1. To this end, we note that for |ξ| � 1 the main contribution of the
integral in solution (48) comes from the region s ≈ 0 where φ(s) ∼ 2

5Cs
3. This yields

Φ0(ξ) ∼ 12C

5

1

ξ4
, for |ξ| � 1. (54)

Putting this back into equation (41), we find the following large-ξ behavior for the inner solution,

U(x, y, κ) ∼ 12C

5

b(x, y)

(κ− κ0)4
e−iκ0w. (55)

As discussed in section 5, this behavior matches to the outer solution with |κ− κ0| � 1.
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7 Inversion of Fourier transform and true line solitons

We now take the inverse Fourier transform of (16),

ψ(x, y,W ) =

∫

C
ψ̂(x, y,K)eiKWdK (56)

in order to determine the tail behaviors in the physical solution ψ(x, y,W ). Here ψ̂(x, y,K) is
given by Eq. (18). As explained in [8], if we require this physical solution to decay upstream
(w → −∞), then the contour C in this inverse Fourier transform should be taken along the line
Imag(K) = −1/β and pass below the poles K = ±κ0/ε − i/β. It should also pass above the pole
K = −i/β of the sech(πβK/2) term in Eq. (18). Then when w � 1 (downstream), by completing
the contour C with a large semicircle in the upper half plane, we pick up dominant contributions
from the pole singularities at K = ±κ0/ε− i/β and K = i/β. Collecting these pole contributions,
the wave profile of the solution far downstream is then found to be

ψ ∼2εαe−(W−W0)/βb(x, y)

+
4πβ3C0

ε3
e−πβκ0/2ε sin(κ0w0 −Θ0)e(W−W0)/βb(x, y), w � 1/ε, (57)

where C0 > 0 and Θ0 are the amplitude and phase of the constant C (which is complex in general),
i.e., C = C0eiΘ0 .

For this solution to be a line soliton, the growing term in (57) must vanish so sin (κ0w0 −Θ0) =
0. Thus, there are two allowable locations for line solitons (relative to the lattice),

w0 = Θ0/κ0, (π + Θ0)/κ0. (58)

Line solitons at these two locations are called onsite and offsite solitons respectively. For the
particular lattice (15) and σ = 1, these two line solitons near the edge of the semi-infinite gap with
tan θ = 1, 2 are displayed in Fig. 1. For these solitons, Θ0 = 0 since C is real positive (see equations
(38) and (39)).

The above results show that for any rational slope tan θ, two line solitons with envelope locations
(58) exist in a general two-dimensional lattice. What if the slope is irrational? Treating an irrational
number as the limit of a rational number p/q with p, q →∞, then κ0 =

√
p2 + q2 →∞, hence the

growing tail downstream in (57) vanishes. This suggests that for an irrational slope, line solitons
exist for arbitrary envelope positions w0. But we cannot numerically verify this conjecture since
irrational numbers cannot be represented accurately on computers.

Finally, if one wishes to obtain line wave packets ψ(x, y,W ) which decay for w → +∞ but
contain a growing tail for w � −1, then the contour C in the inverse Fourier transform should be
taken along the line Imag(K) = 1/β and pass above the poles K = ±κ0/ε+ i/β and below the pole
K = i/β. Then when w � −1, by completing the contour C with a large semicircle in the lower
half plane and picking up dominant pole contributions, the wave profile of the solution is found to
be

ψ ∼2εαe(W−W0)/βb(x, y)

− 4πβ3C0

ε3
e−πβκ0/2ε sin(κ0w0 −Θ0)e−(W−W0)/βb(x, y), w � −1/ε. (59)

This ‘flipped’ wave solution will be useful when we construct multi-line-soliton bound states in the
next section.
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8 Construction of multi-line-soliton bound states

The asymptotic tail formula (57) can be used not only to determine the locations of line solitons, but
also to construct multi-line-soliton bound states. These bound states are analytically constructed
by matching the downstream growing tail of a line wavepacket with the upstream decaying tail
of another line wavepacket. This technique has been used for the construction of one-dimensional
multi-soliton bound states before [9, 10, 16]. Here we apply the same principle to the construction
of multi-line soliton solutions in a general two-dimensional lattice potential.

Consider the asymptotic expansion of two line wavepackets centered at w1 = W1/ε (left) and
w2 = W2/ε (right) receptively. The left wavepacket decays for w − w1 � −1 and has a growing
exponential tail for w−w1 � 1, and the right wavepacket decays for w−w2 � 1 and has a growing
exponential tail for w − w2 � −1. For line-soliton bound states, the decaying and growing tails
of the two wavepackets must match in the region w1 � w � w2. In this matching region, the
left wavepacket’s asymptotics is given by (57) with w0 replaced by w1, and the right wavepacket’s
asymptotics is given by (59) with w0 replaced by w2. Matching of these asymptotics results in the
following system of equations

2εαe−(W−W1)/βb(x, y) = ∓4πβ3C0

ε3
e−πβκ0/2ε sin (κ0w2 −Θ0) e−(W−W2)/βb(x, y),

2εαe(W−W2)/βb(x, y) = ±4πβ3C0

ε3
e−πβκ0/2ε sin (κ0w1 −Θ0) e(W−W1)/βb(x, y),

where the ∓ comes from the possible π phase shift between the two wavepackets. After simplifica-
tion, these matching conditions read

sin (κ0w1 −Θ0) = − sin (κ0w2 −Θ0) = ± αε4

2πβ3C0
eπβκ0/2εeε(w1−w2)/β. (60)

With a change of variables ŵ1 = −(w1−Θ0/κ0), ŵ2 = w2−Θ0/κ0, the above matching conditions
then become almost identical to the ones derived in [9] before. As has been explained there, this
system of equations admits an infinite number of solutions for each fixed ε > 0. Varying ε, then
infinite families of two-line soliton bound states are obtained.

Note that for equations (60) to have a solution, the right-hand side must have magnitude less
than one. Since this is not the case as ε → 0 for any finite distance w2 − w1 between the two
line wavepackets, bifurcations of these bound states occur at finite amplitude away from the band
edge. In figure 4, we show a particular family of bound states in the lattice (15) with σ = 1 and
tan θ = 1. This family bifurcates at µ ≈ 4.073 (near the edge µ0 = 4.1264 of the semi-infinite gap).
As predicted by the analysis of equation (60) in [9], this solution family contains three connected
branches, and their power curve is shown in Fig. 4 (upper left panel). Here the power is calculated
over one period along the line-soliton direction w′ = x cos θ + y sin θ, which is π

√
p2 + q2 in the

present case. Profiles of bound states at µ = 4.0639 of the three power branches are displayed in
Fig. 4 (A,B,C). The bound state in the A panel comprises roughly two onsite line solitons, the one
in the B panel comprises roughly an onsite and an offsite line solitons, and the bound state in the
C panel comprises roughly two offsite line solitons.

We would like to point out that the above construction of infinite families of line-soliton bound
states was performed for general two-dimensional lattices. This contrasts the earlier work in [9, 10]
where such construction was made only for symmetric one-dimensional lattices (where Θ0 = 0).
From the above calculations, it is now clear that the previous derivation of multi-soliton bound
states in [9, 10] can be extended to general one-dimensional lattices, too.
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9 Connection to zero-eigenvalue bifurcations

In this section, we consider the linear stability eigenvalues of single-line solitons as obtained in
section 7. Our interest lies in the pair of exponentially small eigenvalues of these solitons, which
bifurcate out from the origin at the band edge; the associated eigenfunctions have zero wavenumber
along the line-soliton direction (i.e., are periodic along the line direction with the period matching
that of the line soliton). Such eigenvalues can be analytically calculated from the tail asymptotics
(57) of line wavepackets which we have derived. Thus, by comparing the analytical formula of these
eigenvalues with the numerically computed eigenvalues, we can quantitatively verify the formula in
Eq. (57) for the exponentially small growing tails. We do caution, however, that we are ignoring
other eigenvalues whose eigenfunctions have nonzero wavenumber along the line-soliton direction,
and those eigenvalues are often more unstable [14, 15]. Thus the eigenvalue calculation in this
section does not constitute a full stability analysis.

The present calculation of zero-eigenvalue bifurcation closely parallels that in one-dimensional
problems [19, 8, 10]. Let ψs(x, y) = ψ(x, y;w0s) be a single-line soliton solution of equation (3)
with center at w0 = w0s, which decays to zero as w → ±∞ and is periodic along the line direction,
w′ = x cos θ+ y sin θ, with period matching that of the Bloch wave. Perturbing this line soliton by
normal modes

Ψ = e−iµt
[
ψs + (v + ϕ)eλt + (v∗ − ϕ∗)eλ∗t

]
, (61)

with v, ϕ� 1, we obtain the linear-stability eigenvalue problem

L0L1v = −λ2v, (62)

where
L0 = ∇2 + µ− V (x, y) + σψ2

s , L1 = ∇2 + µ− V (x, y) + 3σψ2
s ,

and λ is the stability eigenvalue. Since the bifurcated eigenvalue λ is small near band edges, we
expand the eigenfunction v into a perturbation series

v = v0 + λ2v1 + λ4v2 + . . . . (63)

Inserting this expansion into Eq. (62), at O(1) we get

L0L1v0 = 0. (64)

A solution to this equation is
v0 = (∂ψ/∂w0)w0=w0s

. (65)

Recalling the perturbation series expansion of ψ(x, y;w0) in Eq. (7) as well as the envelope solution
in Eq. (13), we find that

v0 ∼ −
ε2α

β
sech

ε(w − w0s)

β
tanh

ε(w − w0s)

β
b(x, y).

From this equation it is seen that the eigenfunction v is periodic along the line-soliton direction
w′ = x cos θ + y sin θ, with period matching that of the Bloch wave (and the line soliton), so the
net wavenumber of this eigenfunction along the line-soliton direction is zero.
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From the large-w asymptotics (57) of the solution ψ(x, y;w0), we see that when w � 1/ε, v0

contains a growing tail,

v0 ∼ ±ε−34πβ3κ0C0e−πβκ0/2εeε(w−w0s)/βb(x, y). (66)

Here the plus and minus sign correspond to the onsite and offsite line solitons, respectively. This
growing tail must be balanced by the higher-order terms in the expansion (63), thereby yielding an
analytical formula for the eigenvalue λ. Carrying out this program as in [8, 10, 19], we find that

λ2 = ∓C0
32πκ0β

4

αε
e−πβκ0/2ε. (67)

Thus this eigenvalue is stable for onsite line solitons and unstable for offsite ones, and its magnitude
is exponentially small.

A comparison of the analytical prediction (67) for the eigenvalue to numerical results for offsite
line solitons is presented in Fig. 5 for the lattice (15) with σ = 1 and tan θ = 1, 2. It is seen that
the analytical and numerical eigenvalues agree with each other very well. Notice that the analytical
eigenvalue formula contains the constant C0, and the ratio of λ2/[32πκ0β

4e−πβκ0/2ε/αε] approaches
C0 when ε→ 0. We have plotted this ratio for numerically obtained eigenvalues in the right panels
of Fig. 5. It is seen that as ε→ 0, this ratio indeed approaches the C value obtained from equations
(38) and (39) in section 5. Thus our formula (57) for the exponentially-small growing tails in line
wavepackets is fully verified quantitatively.

10 Further examples with asymmetric potentials

To help demonstrate the generality of our theory, we now consider the asymmetric lattice

V (x, y) =
3

2
(sin 2x+ sin 4x+ sin 2y + sin 4y), (68)

which is shown in Fig. 6 (top left panel). For this lattice, the edge of the semi-infinite gap is
µ0 = −0.6891. With soliton inclination tan θ = −1 and nonlinearity coefficient σ = 1, we find the
two soliton families which bifurcate off this band edge (see Fig. 6, bottom panel). In this case
numerical solution of the “outer” integral equation (30) yields a complex value for C = C0eiΘ0 ,

C0 = 8.25, Θ0 = 2.66, (69)

see Fig. 6 (top right panel). This Θ0 value in turn gives the center of the solitons, from formulae
(58), as w0 = 0.94 and 2.05 for onsite and offsite, respectively (up to periodic repetitions in the
lattice). Comparison of this prediction with the envelope locations of numerically obtained solitons
shows good agreement (see Fig. 6, bottom panel).

11 Line solitons bifurcated from interior points of Bloch bands

In previous sections, we studied line solitons that bifurcate from edges of Bloch bands. But line
solitons can also bifurcate from high-symmetry points inside Bloch bands, as has been reported
numerically and experimentally before [13, 14, 15]. Here the high-symmetry points are points on
the dispersion surface µ = µ(kx, ky) where ∂µ/∂kx = ∂µ/∂ky = 0, with kx, ky being the Bloch
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wavenumbers in the x and y directions. For line solitons bifurcated from such interior points of
Bloch bands, however, resonance with Bloch modes may occur. Such resonance excites Bloch-wave
tails that are non-vanishing in the direction perpendicular to the line and hence makes the line
“soliton” nonlocal [20]. To obtain true line solitons inside Bloch bands, this resonance must be
absent, a requirement that poses strong restrictions on the angles of line solitons. Indeed, we will
see below that inside Bloch bands, line solitons at only a couple of special angles are admissible.

First we consider a concrete example with the lattice

V (x, y) = 6 sin2 x+ 4 sin2 y. (70)

Inside the first Bloch band, µ ∈ [3.6080, 4.1565], of this lattice there is an X-symmetry point

(kx0, ky0, µ0) = (0, 1, 3.9529), (71)

whose Bloch mode is π-periodic in x and 2π-periodic in y. The dispersion surface near this X-point
is saddle-shaped. For line solitons bifurcating from this X-point, µ = µ0 + ηε2, η = ±1, and ε� 1.
Taking ε = 0.2, the level curves of the dispersion surface at µ(kx, ky) = µ0 + ηε2 for η = ±1 are
displayed in Fig. 7 (left panels, solid lines).

Suppose the angle of the line soliton with the x-axis is θ. Then at the µ value of the line soliton,
linear Bloch modes that are periodic along this line direction, with the period matching that of the
X-point Bloch wave, are located in the wavenumber plane at the intersections of the parametrically
defined line

kx = κ0 sin θ + kx0, (72a)

ky = −κ0 cos θ + ky0, (72b)

with the level curve
µ(kx, ky) = µ0 + ηε2. (73)

Existence of such intersections means that the line soliton is in resonance with Bloch modes.
Inspection of the level curves in Fig. 7 shows that for almost all angles θ, the line (72), whose

slope is − cot θ, always intersects those level curves for both η = ±1. The only exceptions are
θ = 0,±π/4 for η = 1 and θ = π/2 for η = −1. In these cases, resonance is absent, thus true
line solitons could exist. Recalling the conditions for envelope solitons below Eq. (12), we see that
true line solitons with angles θ = 0,±π/4 may bifurcate from the X-point (71) under defocusing
nonlinearity (σ = −1), and true line solitons with angle θ = π/2 may bifurcate from this X-point
under focusing nonlinearity (σ = 1). But where are the envelope positions of these bifurcating
line solitons inside Bloch bands? To answer this question, it is again necessary to use exponential
asymptotics.

Strictly speaking, our exponential-asymptotics analysis in the previous sections was for line
solitons bifurcating from edges of Bloch bands and residing outside of them (thus resonance with
Bloch bands never occurs). But for line solitons with special angles inside Bloch bands, those
which avoid resonance, our previous analysis can be applied without any additional work. The
conclusion is that, for each of those special angles, two families of line solitons, one onsite and the
other offsite, bifurcate out from this X-symmetry point; and their envelope locations are given by
the formulae (58). Numerically we have confirmed these predictions. For instance, the onsite line
solitons near the X-point (71), at angle θ = π/4 for defocusing nonlinearity and at angle θ = π/2
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for focusing nonlinearity, have been numerically obtained and displayed in Fig. 7 (right panels);
and their envelope locations agree with those predicted by the formulae (58). Our analytical results
are consistent with the numerical and experimental reports of line solitons inside Bloch bands in
[13, 14, 15] as well.
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Figure 7: (Color online) In-band line solitons in the lattice (70) near the X-symmetry point
(kx, ky) = (0, 1) at special angles for ε = 0.2. Top: η = 1 and σ = −1 (defocusing nonlinear-
ity). Bottom: η = −1 and σ = 1 (focusing nonlinearity). Left: level curves µ(kx, ky) = µ0 + ηε2

extended periodically (solid) and the line (72) (dashed) for values of angle θ which admit true line
solitons. Right: onsite line solitons at these special angles with µ = µ0 + ηε2.

As explained above, inside Bloch bands, line solitons for most inclination angles are nonlocal
(in the normal direction), in the sense that they comprise non-vanishing Bloch-wave tails far away
from the central line. Then a natural question is, how can we determine the amplitudes of those
non-vanishing Bloch-wave tails? It turns out that this question can also be treated in the framework
of the exponential-asymptotics theory developed above. Specifically, we should first recognize that
the κ0 value at the intersection of the line (72) and the level curve (73) also satisfies equation
(22) for singularity locations (which can be easily checked). Thus this κ0 value of resonant Bloch
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modes is also a real pole in the Fourier transform ψ̂(x, y,K) of the nonlocal line-soliton solution
ψ(x, y,W ). Unlike the fourth-order poles (26) in our earlier analysis (see Eq. (35)), this resonant
pole is simple (i.e., first-order). The residue of this resonant pole is also exponentially small in
ε, and its exact value can be computed from the same outer integral equation (30) by the same
numerical algorithm (32) in the earlier text. From the residue of this resonant pole and the inverse
Fourier transform (56), the amplitudes of non-vanishing Bloch-wave tails in the nonlocal line solitons
will then be obtained. This problem of calculating amplitudes of non-vanishing Bloch-wave tails
in nonlocal line solitons resembles that of calculating amplitudes of continuous-wave tails in the
fifth-order Kortewegde Vries equation, the third-order NLS equation and other related equations
[5, 21, 22, 23, 24, 25, 26]. But our treatment of directly solving the outer integral equation for
the residues of resonant poles differs from those earlier one-dimensional works, which hinge on the
recurrence relation for the coefficients of the Taylor expansion of the Fourier transform.

The results from the above specific example hold qualitatively for all line solitons inside Bloch
bands. Specifically, inside Bloch bands true line solitons exist only for very few (up to three) special
angles due to the requirement of resonance suppression. For each of those special angles, there exist
two line solitons, one onsite and the other offsite.

12 Conclusion

In this paper, we have presented what we believe is the first step toward a fully two-dimensional
asymptotic theory for the bifurcation of solitons from infinitesimal continuous waves. For line soli-
tons bifurcating from infinitesimal Bloch waves in a general two-dimensional periodic potential, an
analytical theory utilizing exponential asymptotics is developed. For this two-dimensional problem,
the previous approach of relying on a certain recurrence relation to solve the outer integral equation
is no longer viable due to the presence of complex poles which are closer to the origin than the
real poles. Instead, we solved this outer equation directly along the real line up to the real poles.
This new approach not only overcomes the recurrence-relation limitation, but also simplifies the
exponential-asymptotics process.

Using this modified technique, we showed that from every edge of the Bloch bands, line solitons
with any rational line slope bifurcate out; and for each rational slope, two line-soliton families
exist. In addition, a countable set of multi-line-soliton bound states have been constructed analyti-
cally. Furthermore, as a byproduct of this exponential-asymptotics theory, a certain linear-stability
eigenvalue that bifurcates out of the origin at a band edge, is analytically obtained. Line solitons
bifurcating from interior points of the Bloch bands were investigated as well, and it was shown that
such solitons exist (inside Bloch bands) only for a couple of very special line angles due to reso-
nance with the Bloch bands. These analytical predictions were compared with numerical results
for symmetric as well as asymmetric potentials, and good qualitative and quantitative agreement
was obtained.

Throughout the analysis, the potential in Eq. (1) is taken to be in minimal-period orientation.
If the potential is not aligned along that minimal-period orientation, all our results would still hold,
except that the smallest of the real poles in Eq. (26) would not be those given by Eq. (28), but
rather be a certain multiple of those numbers.

In this article, we assumed that the potential in Eq. (1) has equal periods in x and y. If the
x- and y-periods are not the same, say π in x and χπ in y, with χ being the ratio between the two
periods, then we can introduce the scaled y variable ŷ = y/χ. In this scaled variable, the periods
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of the potential are π in both x and ŷ, hence satisfying the assumption in this paper. Due to
this y-scaling, the Laplacian ∇2 in Eq. (1) changes to ∂xx + χ−2∂ŷŷ. For this scaled “Laplacian”,
all our analysis is still valid (except for very minor modifications), because our analysis does not
rely on the equal coefficients in the Laplacian at all. Following this analysis, we shall find that
from every edge of the Bloch bands, line solitons with slopes of any rational number divided by χ
bifurcate out; and for each of those slopes, two line-soliton families exist. We shall also find that
from a high-symmetry point inside Bloch bands, line solitons at only a couple of special angles may
bifurcate out.

Finally, we point out that the analysis in this paper is developed for line solitons bifurcating
from high-symmetry points of the Bloch bands where the Bloch mode is unique (see Assumption
1). At certain points of the Bloch bands, however, the Bloch modes are not unique [27]. In such
cases, nonlinear interactions between different Bloch modes would occur [27]. To treat line-soliton
bifurcations from such Bloch-band points, the exponential asymptotics analysis of this article would
need to be generalized. Such generalizations will be left for future studies.
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Appendix: Line solitons in stripe lattices

In this appendix, we consider line solitons in stripe lattices, i.e., lattices which vary only in
one direction V (x, y) = V (x). We shall show that line solitons in such lattices only have complex
poles and no real poles. In addition, the envelopes of these solitons can be arbitrarily located. Our
conclusion will be that complex poles do not place restrictions on envelope locations.

The bulk of the analysis remains the same as in the main text. We consider stationary solutions
whose leading-order term is a Bloch-wave packet,

ψ(x, y,W ) ∼ εA(W −W0)b(x). (74)

The packet envelope A(W−W0) has a sech-profile and varies only in the direction of W = ε(x sin θ−
y cos θ), and W0 = εx0 is the location of this envelope.

The pole singularities of these line wavepackets are the values of κ0 where Eq. (22) holds, except
that the operator L0 drops the y-dependence now. That is,

L0φ+ iκ0L1φ− κ2
0φ = 0, (75)

and
L0 = ∂2

x + µ0 − V (x), L1 = 2∇ · [sin θ,− cos θ] . (76)

Converting this equation into the eigenvalue problem (27), we find that all eigenvalues κ0 are now
complex-valued and not real (excluding 0). This is illustrated in figure 8 (right panel). Here the
lattice is chosen as V (x) = 6 sin2 x and the line slope as tan(θ) = 1.

In this stripe lattice, we have numerically found line solitons. An example with σ = 1 is shown
in figure 8 (left panel). Since the lattice is y-independent, so are the Bloch modes b(x). Then if
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Figure 8: (Color online) A line soliton (left) and its singularity structure (right) for the stripe
lattice V (x) = 6 sin2x with tan θ = 1 and σ = 1.

a line soliton exists with the envelope centered at a particular W0 value, from equation (74) it is
clear that line solitons with the envelope centered at arbitrary W0 values would exist, because any
variation in W0 may be compensated for by a shift in the y coordinate of W .

From the above analysis, we conclude that in a stripe lattice, envelopes of line solitons can be
arbitrarily positioned, and poles of those solitons are all complex-valued (off the real axis).
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